

PROBLEM SET 8 (MEASURE THEORY)

TO BE DISCUSSED ON 4TH APRIL IN TUTORIALS. PROBLEMS MARKED (*) ARE OPTIONAL.

Problem 1. Let $1 \leq p \leq \infty$. Is $L^p(\mathbb{R}, \mathcal{B}, \lambda_1)$ separable in L^p metric?

Problem 2. Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be measure spaces such that $\nu = \mu \circ T^{-1}$ for some $T : X \mapsto Y$. Then show that for any $f \in L^1(\nu)$, the function $f \circ T \in L^1(\mu)$ and that $\int_X (f \circ T) d\mu = \int_Y f d\nu$.

Problem 3. Let L be a positive linear functional on $C_c^\infty(\mathbb{R}^d)$ (endowed with sup-norm). Show that $L(f) = \int_X f d\mu$ for a unique Radon measure μ on \mathbb{R}^d .

Problem 4. Which of the following sets is dense in $L^p([0, 1], \mathcal{B}, \lambda_1)$? Consider the case $p = \infty$ carefully.

- (1) $C[0, 1]$.
- (2) $C^\infty[0, 1]$.
- (3) The set of all polynomials.
- (4) The collection of all step functions.

Problem 5. If μ is a finite measure, show that $\frac{\|f\|_{p+1}^{p+1}}{\|f\|_p^p} \rightarrow \|f\|_\infty$ as $p \rightarrow \infty$.

Problem 6. Let (X, \mathcal{F}, μ) be a measure space. Let $A_n \in \mathcal{F}$. Write out explicitly the meaning of $\mathbf{1}_{A_n} \rightarrow 0$ in *a.e. $[\mu]$* sense, in measure and in L^1 . Which of these imply the others? (Do this directly, without invoking the general theorems proved in class). What if μ is finite?

Problem 7. Let μ be a measure that is not supported at a single point. Show that $L^p(\mu)$ norm does not come from an inner product if $p \neq 2$ and does come from an inner product if $p = 2$.

Problem 8. Suppose f_n, f are non-negative measurable functions such that $f_n \rightarrow f$ *a.e. $[\mu]$* . Show that $\int_X f_n d\mu \rightarrow \int_X f d\mu$ if and only if $\int_X |f_n - f| d\mu \rightarrow 0$.

Problem 9. if $f_n \rightarrow f$ in measure μ , and $|f_n| \leq g$ for some integrable function g , then show that $\int_X |f_n - f| d\mu \rightarrow 0$ (DCT under convergence in measure only).