

HOMEWORK 1

POSTED 14/01/2020

Problem 1. Let (X, Y) have density $f(x, y)$ on \mathbb{R}^2 . Find the conditional distribution of X given Y . Find the conditional expectation of $\varphi(X)$ given Y for any bounded measurable $\varphi : \mathbb{R} \mapsto \mathbb{R}$.

Problem 2. Let $X \sim N_n(\mu, \Sigma)$. Write $X = (X_1, \dots, X_n)^t$. For $m < n$, let $Y = (X_1, \dots, X_m)^t$ and $Z = (X_{m+1}, \dots, X_n)^t$. Find the conditional distribution of Z given Y as explicitly as possible. In particular, work out the case when $m = n - 1$.

Problem 3. Let X_1, \dots, X_n be i.i.d. $\text{Ber}(p)$ random variables. Find the conditional distribution of (X_1, \dots, X_n) given $S := X_1 + \dots + X_n$.

Problem 4. Let X, Y be integrable random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub-sigma algebra and $A \in \mathcal{G}$. If $X = Y$ on A , show that $\mathbf{E}[X \mid \mathcal{G}] = \mathbf{E}[Y \mid \mathcal{G}]$ a.e. $[\mathbf{P}]$ on A . [Remark: This is called locality property of conditional expectation.]

Problem 5. Prove the following statements. The setting is $(\Omega, \mathcal{F}, \mathbf{P})$ and $\mathcal{G} \subseteq \mathcal{F}$ a sub-sigma algebra.

- (1) Conditional Markov inequality: If $X \geq 0$ and integrable, then $\mathbf{P}(X \geq t \mid \mathcal{G}) \leq \frac{1}{t} \mathbf{E}[X \mid \mathcal{G}]$ a.s. $[\mathbf{P}]$.
- (2) Conditional Cauchy-Schwarz inequality: If X, Y are square integrable, then $\mathbf{E}[XY \mid \mathcal{G}]^2 \leq \mathbf{E}[X^2 \mid \mathcal{G}] \mathbf{E}[Y^2 \mid \mathcal{G}]$ a.s. $[\mathbf{P}]$.
- (3) Analysis of variance: If X has finite variance, then $\text{Var}(X) = \mathbf{E}[\text{Var}(X \mid \mathcal{G})] + \text{Var}(\mathbf{E}[X \mid \mathcal{G}])$.

Problem 6.

- (1) Let X_1, X_2, \dots be i.i.d. random variables with finite mean. Let $S_n = X_1 + \dots + X_n$. Show that $\mathbf{E}[X_1 \mid S_n] = \frac{1}{n} S_n$.
- (2) If $X \sim \text{Exp}(\lambda)$, and $Y = \mathbf{1}_{X \geq t}$, find the conditional distribution of X given Y .
- (3) If X, Y are i.i.d. $\text{Exp}(\lambda)$, find the conditional distribution of $\frac{X}{X+Y}$ given $X + Y$.

Problem 7. Let $(\Omega_i, \mathcal{F}_i)$ be two measure spaces and let ν be a probability measure on Ω_1 and let $\kappa : \Omega_1 \times \mathcal{F}_2 \mapsto [0, 1]$ be a stochastic kernel (as defined in class). Define a probability measure μ on $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$ by $\mu(A \times B) = \int_A [\int_B \kappa(x, dy)] \nu(dx)$ for cylinder sets $A \times B \in \mathcal{F}_1 \otimes \mathcal{F}_2$. Let X, Y be the projections from $\Omega_1 \times \Omega_2$ to Ω_1 and to Ω_2 , respectively.

- (1) Find the conditional distribution of Y given X .
- (2) Find the conditional distribution of X given Y . (This is called *Bayes' rule*).

Problem 8. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and let \mathbf{Q} be another probability measure on \mathcal{F} such that $d\mathbf{Q} = Y d\mathbf{P}$ (Y is the Radon Nikodym derivative). If X is a random variable integrable with respect to \mathbf{Q} , then XY is integrable with respect to \mathbf{P} and for any $\mathcal{G} \subseteq \mathcal{F}$,

$$E_{\mathbf{Q}}[X \mid \mathcal{G}] = \frac{E_{\mathbf{P}}[XY \mid \mathcal{G}]}{E_{\mathbf{P}}[Y \mid \mathcal{G}]}.$$