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1. DEFINITION OF BROWNIAN MOTION AND WIENER MEASURE

Definition 1: Brownian motion

A collection of random variables W = (Wt)t≥0 defined on a common probability space
(Ω,F ,P) and satisfying the following properties.

(1) For any n ≥ 1 and any 0 = t0 < t1 < . . . < tn, the random variables Wtk −Wtk−1
,

1 ≤ k ≤ n, are independent.

(2) For any s < t the distribution of Wt −Ws is N(0, t− s). Also, W0 = 0, a.s.

(3) For a.e. ω ∈ Ω, the function t 7→Wt(ω) is continuous.

That such a collection of random variables exists requires proof. But first, why such a definition?
We give some semi-historical and semi-motivational explanation in this section.

Einstein and the physical Brownian motion: In 1820s, the botanist Brown observed under water
under a microscope and noticed certain particles buzzing about in an erratic manner. There was
no explanation of this phenomenon till about 1905 when Einstein and Smoluchowski (indepen-
dently of each other) came up with an explanation using statistical mechanics. More precisely,
in Einstein’s paper, he predicted that a small particle suspended in a liquid undergoes a random
motion of a specific kind, and tentatively remarked that this could be the same motion that Brown
observed.

We give a very cut-and dried (and half-understood) summary of the idea. Imagine a spherical
particle inside water. The particle is assumed to be small in size but observable under a micro-
scope, and hence much larger than the size of water molecules (which at the time of Einstein, was
not yet universally accepted). According to the kinetic theory, at any temperature above absolute
zero, molecules of water are in constant motion, colliding with each other, changing their direc-
tion, etc. (rather, it is this motion of molecules that defines the temperature). Now the suspended
particle gets hit by agitating water molecules and hence gets pushed around. Each collision affects
the particle very slightly (since it is much larger), but the number of collisions in a second (say), is
very high. Hence, the total displacement of the particle in an interval of time is a sum of a large
number of random and mutually independent small displacements. Then, letting Wt denote the
displacement of the x-coordinate of the particle, we have the following conclusions.

(1) The displacements in two disjoint intervals of time are independent. This is the first con-
dition in the definition of Brownian motion.

(2) The displacement in a given interval (provided it is long enough that the number of colli-
sions with water molecules is large) must have Normal distribution. This is a consequence
of the central limit theorem.
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(3) If the liquid is homogeneous and isotropic and kept at constant temperature, then the
displacement in a given interval of time must have zero mean and variance that depends
only on the length of the time interval, say σ2t for an interval of length t.

From the first and third conclusion, σ2t+s = σ2t +σ2s , which means that σ2t = D · t for some constant
D. If we set D = 1, we get the first two defining properties of Brownian motion. In his paper,
Einstein wrote a formula for D in terms of the size of the suspended particle, the ambient tem-
perature, some properties of the liquid (or water) and the Avogadro number N . All of these can
be measured except N . By measuring the displacement of a particle over a unit interval of time
many times, we can estimate E[W 2

1 ]. Since D = E[W 2
1 ], this gives D and hence N . This was Ein-

stein’s proposal to calculate the Avogadro number by macroscopic observations and apparently
this evidence convinced everyone of the reality of atoms.

Wiener and the mathematical Brownian motion: After the advent of measure theory in the
first few years after 1900, mainly due to Borel and Lebesgue, mathematicians were aware of the
Lebesgue measure and the Lebesgue integral on Rn. The notion of abstract measure was also
developed by Fréchet before 1915. Many analysts, particularly Gateaux, Lévy and Daniell and
Wiener, pursued the question as to whether a theory of integration could be developed over in-
finite dimensional space1. One can always put an abstract measure on any space, but they were
looking for something natural.

What is the difficulty? Consider an infinite dimensional Hilbert space such as `2, the space of
square summable infinite sequences. Is there a translation invariant Borel measure on `2? Con-
sider the unit ball B. There are infinitely many pairwise disjoint balls of radius 1 inside

√
2B (for

example, take unit balls centered around each co-ordinate vector ei, i ≥ 1). Thus, if µ(B) > 0,
then by translation invariance, all these balls have the same measure and hence µ(

√
2B) must be

infinite! This precludes the existence of any natural measure such as Lebesgue measure.
What else can one do? One of the things that was tried essentially amounted to thinking of a

function f : [0, 1] → R as an infinite vector f = (ft)t∈[0,1]. In analogy with Rn, where we have
product measures, we can consider a product measure⊗t∈[0,1]µ on R[0,1] (the space of all functions
from [0, 1] to R) endowed with the product sigma-algebra. But this is very poor as a measure space
as we have discussed in probability class. For example, the spaceC[0, 1] is not a measurable subset
of R[0,1], since sets in the product sigma-algebra are determined by countably many co-ordinates.

Norbert Wiener took inspiration from Einstein’s theory to ask for the independence of incre-
ments of f rather than of independence of the values of f (which is what product measure does).

1In 1924 or so, Wiener himself realized that dimension is irrelevant in measure theory. Indeed, in probability theory

class we have see that once Lebesgue measure on [0, 1] is constructed, one can just push it forward by appropriate maps

to get all measures of interest such as Lebesgue measure on [0, 1]n and even product uniform measure on [0, 1]N. All

these spaces are the same in measure theory, in sharp contrast to their distinctness in topology. Therefore, today no one

talks of integration in infinite dimension anymore (I think!). We just think that Wiener measure is interesting.
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And then, he showed that it is possible to put a measure on C[0,∞) such that the increments
are independent across disjoint intervals. This is why, his 1923 paper that introduced Brownian
motion is titled Differential space.

2. THE SPACE OF CONTINUOUS FUNCTIONS

It is most appropriate to think of Brownian motion as aC[0,∞)-valued random variable. Hence
we recall the topology and measure structure on this space.

If X is a metric space, let Cd(X) be the space of continuous functions from X to Rd. If d = 1, we
just write C(X). Of particular interest to us are C[0,∞), C[0, 1]. When discussing d-dimensional
Brownian motion, we shall need Cd[0,∞) and Cd[0, 1].

On C[0, 1], define the norm ‖f‖sup = max{|f(t)| : t ∈ [0, 1]} and the metric d(f, g) = ‖f − g‖sup.
It is a fact that C[0, 1] is complete under this metric and hence, it is a Banach space. Obviously
the sup-norm can be defined for C[0, T ] for any T < ∞, but not for C[0,∞), as the latter contains
unbounded functions. The metric on C[0,∞) is defined by

d(f, g) =

∞∑
n=1

1

2n
‖f − g‖sup[0,n]

1 + ‖f − g‖sup[0,n]
.

The metric is irrelevant, what matters is the topology and the fact that the topology is metrizable.
In fact, many other metrics such as d̃(f, g) =

∑∞
n=1

1
n2 min{1, ‖f − g‖sup[0,n]} induces the same

topology on C[0,∞). In this topology, fn → f if fn converges to f uniformly on all compact sets
of R+ = [0,∞). For t ∈ [0,∞), define the projection map Πt : C[0,∞) → R by Πt(f) = f(t). The
topology on C[0,∞) can also be described as the smallest topology in which all the projections are
continuous (exercise!).

Once the topology is defined, we have the Borel σ-algebra B(C[0,∞)) which is, by definition,
the smallest sigma-algebra containing all open sets. Alternately, we may say that the Borel σ-
algebra is generated by the collection of projection maps. Sets of the form (Πt1 , . . . ,Πtn)−1(B) for
n ≥ 1 and t1 < . . . < tn and B ∈ B(Rn), are called (finite dimensional) cylinder sets. Cylinder sets
form a π-system that generate the Borel sigma-algebra. Thus, by the π−λ theorem, any two Borel
probability measures that agree on cylinder sets agree on the entire Borel σ-algebra B(C[0,∞)).
All these considerations apply if we restrict our attention to C[0, 1].

Definition 2: Wiener measure

is the Borel probability measure µ on C[0,∞) such that for any n ≥ 1 and any t1 < . . . < tn,
the measure µ ◦ (Πt1 , . . . ,Πtn)−1 (a Borel probability measure on Rn) is the multivariate
Gaussian distribution with zero means and covariance matrix equal to (ti ∧ tj)1≤i,j≤n.

It is not yet proved that Wiener measure exists. But if it exists, it must be unique, since any
two such measures agree on all cylinder sets. In fact, Wiener measure and Brownian motion are
two sides of the same coin, just as closely related as a Gaussian random variable and the Gaussian

4



measure. In other words, Wiener measure is the distribution of Brownian motion, as the following
exercise shows.

Exercise 1

(1) Suppose µ is the Wiener measure. Then, the collection of random variables (Πt)t∈R+

defined on the probability space (C[0,∞),B(C[0,∞)), µ) is a Brownian motion.

(2) Suppose W is a Brownian motion on a probability space (Ω,F ,P), then define the
map T : Ω→ C[0,∞) by

T (ω) =

W·(ω) if t 7→Wt(ω) is continuous,

0 otherwise.

Then the push-forward measure µ := P ◦ T−1 is the Wiener measure.

Remark 1

At first one might think it more natural to consider the space of all functions, R[0,1], endowed
with the cylinder sigma-algebra (the one generated by the projections Πt(f) = f(t)). But
the only events that are measurable in this sigma-algebra are those that are functions of
countably many co-ordinates. In particular, sets such as C[0, 1] are not measurable subsets.
In all of probability, when we talk of stochastic processes, it is usually on a space of functions
with some continuity properties. Although C[0,∞) is restrictive for some purposes (eg.,
point processes, or events that happen in a time instant), in this course this will suffice for
us. More generally one works with the space of right continuous functions having left limits
(RCLL).
However, some books start by considering a measure on this space with the finite dimen-
sional distributions of Brownian motion (such a measure exists by Kolmogorov consistency)
and then show that that the outer measure of C[0, 1] is 1. From there, it becomes possible to
get the measure to sit onC[0, 1] to get Brownian motion. I feel that this involves unnecessary
technical digressions than the proof we give in the next section.

3. CHAINING METHOD AND THE FIRST CONSTRUCTION OF BROWNIAN MOTION

We want to construct random variables Wt, indexed by t ∈ R+, that are jointly Gaussian and
such that E[Wt] = 0 and E[WtWs] = t ∧ s. Here is the sketch of how it is done by the so called
chaining method of Kolmogorov and Centsov.

(1) Let D ⊆ [0, 1] be a countable dense set. Because of countability, we know how to construct
Wt, t ∈ D, on some probability space (Ω,F ,P), having a joint Gaussian distribution with
zero means and covariance t ∧ s.
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(2) We show that for P − a.e. ω, the function t 7→ Wt(ω) is uniformly continuous. This is the
key step.

(3) By standard real analysis, this means that for each such ω, the function t 7→Wt(ω) extends
to a continuous function on [0, 1].

(4) Since limits of Gaussians are Gaussian, the resulting Wt, t ∈ [0, 1], have joint Gaussian
distribution with the prescribed covariances.

Actually our construction will give more information about the continuity properties of Brownian
motion. We start with some basic real analysis issues.

Let D ⊆ [0, 1] be a countable dense set and let f : [0, 1] 7→ R be given. We say that f extends
continuously to [0, 1] if there exists F ∈ C[0, 1] such that F ||| D = f . Clearly, a necessary condition
for this to be possible is that f be uniformly continuous on D to start with. It is also sufficient. In-
deed, a uniformly continuous function maps Cauchy sequences to Cauchy sequences, and hence,
if tn ∈ D and tn → t ∈ [0, 1], then (tn)n is Cauchy and hence (f(tn))n is Cauchy and hence
lim f(tn) exists. Clearly, the limit is independent of the sequence (tn)n. Hence, we may define
F (t) = lim

D3s→t
f(s) and check that it is the required extension.

But we would like to prove a more quantitative version of this statement. Recall that the modulus
of continuity of a function f : [0, 1]→ R is defined aswf (δ) = sup{|f(t)−f(s)| : |t−s| ≤ δ}. Clearly,
f is continuous if and only if wf (δ) ↓ 0 as δ ↓ 0. The rate at which wf (δ) decays to 0 quantifies the
level of continuity of f . For example, if f is Lipschitz, then wf (δ) ≤ Cfδ and if f is Hölder(α) for
some 0 < α ≤ 1, then wf (δ) ≤ Cfδα. For example, tα is Hölder(α) (and not any better) on [0, 1].

Henceforth, we fix the countable dense set to be the set of dyadic rationals, i.e., D =
⋃
nDn

where Dn = {k2−n : 0 ≤ k ≤ 2n}.

Lemma 1: Kolmogorov-Centsov

Let f : [0, 1]→ R. Let Define ∆n(f) = max{|f(k+1
2n )− f( k

2n )| : 0 ≤ k ≤ 2n− 1}. Assume that∑
n ∆n(f) < ∞. Then, f extends to a continuous function on [0, 1] (we continue to denote

it by f ) and wf (δ) ≤ 10
∑

n≥mδ ∆n(f) where mδ = blog2(1/δ)c.

Assuming the lemma, we return to the construction of Brownian motion.

Construction of Brownian motion. First construct Wt, t ∈ D, that are jointly Gaussian with zero
means and covariance t ∧ s. Then, W (k+1

2n ) −W ( k
2n ), 0 ≤ k ≤ 2n − 1, are i.i.d. N(0, 2−n). Hence,

by the tail estimate of the Gaussian distribution,

P

{
∆n(f) ≥ 2

√
n√
2n

}
≤ 2nP

{
|ξ| ≥ 2

√
n
}
≤ 2n exp

{
−1

2
(4n)

}
≤ 2−n.

By the Borel-Cantelli lemma, it follows that ∆n ≤ 2
√
n√
2n

for all n ≥ N for some random variable N
that is finite w.p.1. If N(ω) < ∞, then we can se a large constant C(ω) to take care of ∆n(W•(ω))
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for n ≤ N(ω) and write

∆n(W•(ω)) ≤ C(ω)

√
n√
2n

for all n ≥ 1

for a random variable C that is finite w.p.1.
Fix any ω such that C(ω) < ∞. Then, by the lemma, we see that (Wt(ω))t∈D extends continu-

ously to a function (Wt(ω))t∈[0,1] and that the extension has modulus of continuity

w(δ) ≤
∑
n≥mδ

√
n√
2n
≤ 10C(ω)

√
mδ√
2mδ

≤ C ′(ω)

√
δ log

1

δ

using mδ = blog2(1/δ)c. This shows that w.p.1., the extended function t 7→ Wt is not only uni-
formly continuous but has modulus of continuity O(

√
δ
√

log(1/δ)).
It remains to check that the extended function has joint Gaussian distribution with the desired

covariances. If 0 ≤ t1 < . . . < tm ≤ 1, then find ti,n ∈ D that converge to ti, for 1 ≤ i ≤ m. Then
(Wt1,n,...,Wtm,n

)
a.s.→ (Wt1 , . . . ,Wtm). But (Wt1,n,...,Wtm,n

) has joint Gaussian distribution. Hence,
after taking limits, we see that (Wt1 , . . . ,Wtm) has joint Gaussian distribution. In addition, the
covariances converge, hence

E[Wt1Wt2 ] = lim
n→∞

E[Wt1,nWt2,n ] = lim
n→∞

t1,n ∧ t2,n = t1 ∧ t2.

Thus,Wt, t ∈ [0, 1] is the standard Brownian motion (indexed by [0, 1], extension to [0,∞) is simple
and will be shown later). �

It only remains to prove the lemma.

Proof of Lemma 1. A function on D and its extension to [0, 1] have the same modulus of continuity.
Hence, it suffices to show that |f(t)− f(s)| ≤ 10

∑
n≥mδ ∆n(f) for t, s ∈ D, |t− s| ≤ δ.

Let 0 < t− s ≤ δ, s, t ∈ D. We write I = [s, t] as a union of dyadic intervals using the following
greedy algorithm. First we pick the largest dyadic interval (by this we mean an interval of the
form [k2−n, (k + 1)2−n] for some n, k). contained in [s, t]. Call it, I1 and observe that |I1| = 2−m

where 2−m ≤ t − s ≤ 4.2−m. Then inside I \ I1, pick the largest possible dyadic interval I2. Then
pick the largest possible dyadic interval in I \ (I1 ∪ I2) and so on. Since t, s ∈ Dn for some n and
hence, in a finite number of steps we end up with the empty set, i.e., we arrive at I = I1tI2t. . .tIq
for some positive integer q.

A little thought shows that for the lengths of Ij are non-increasing in j and that for any n ≥ m,
at most two of the intervals I1, . . . , Iq can have length 2−n. Write the intervals from left to right
and express f(t)− f(s) as a sum of the increments of f over these intervals to see that

|f(t)− f(s)| ≤ 2
∑
n≥m

∆n(f).

Since 2−m ≤ t− s, we see that m ≥ log2
1
t−s ≥ mδ and hence the conclusion in the statement of the

lemma follows. �

We put together the conclusions in the following theorem and extend the index set to R+.
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Theorem 2

Standard Brownian motion W = (Wt)t∈[0,∞) exists. Further, for any ε > 0 and any T < ∞,
w.p.1., the sample paths t 7→Wt are uniformly Hölder

(
1
2 − ε

)
on [0, T ].

Proof. We used countably many i.i.d. standard Gaussians to construct standard Brownian mo-
tion on [0, 1]. By using countably many such independent collections, we can construct (say
on ([0, 1],B, λ)) a collection of independent Brownian motions W (k) = (W k(t))t∈[0,1]. Then for
0 ≤ t <∞, define

W (t) =
m−1∑
k=1

W (k)(1) +W (m)(t−m)

if m ≤ t < m + 1 for m ∈ N. In words, we just append the Brownian motions successively to the
previous ones.

We leave it for you to check that W is indeed a standard Brownian motion. Each W (k) has

modulus of continuity O(
√
δ
√

log 1
δ ) which is of course O(δ

1
2
−ε) for any ε > 0. For finite T , only

finitely many wW [0,T ](δ) ≤ 2 max{wW (k)[0,1](δ) : k ≤ T + 1}. Hence, Hölder continuity holds on
compact intervals. �

4. SOME INSIGHTS FROM THE PROOF

The proof of the construction can be used to extract valuable consequences.

Existence of continuous Gaussian processes with given covariance: Suppose K : [0, 1]× [0, 1] 7→
R is a postive semi-definite kernel. Do there exists random variables Xt, t ∈ [0, 1] having joint
Gaussian distribution with zero means and covariance E[XtXs] = K(t, s)? It is not difficult to see
that continuity of K is a necessary condition (why?).

To get a sufficient condition, we may follow the same construction as before, and construct Xt,
t ∈ D, having the prescribed joint distributions. How do we estimate ∆n?

Set h(δ)2 = max{K(t, t) + K(s, s) − 2K(t, s) : 0 ≤ t, s ≤ 1, |t − s| ≤ δ} (to understand what
is happening, observe that if (Xt, Xs) has the prescribed bivariate Gaussian distribution, then
E[(Xt −Xs)

2] = K(t, t) +K(s, s)− 2K(t, s)). Then, each of X(k + 12n)−X( k
2n ) is Gaussian with

standard deviation less than or equal to h(2−n). By a union bound and the standard estimate for
the Gaussian tail, we see that ∆n ≤

√
10(1 + δ)

√
nh(2−n), with probability 1 − 2−n (observe that

even though there is independence of increments in the Brownian case, we did not really use it in
this step). Then the same steps as before show that X extends to a continuous function on [0, 1]

provided
∑

n

√
nh(2−n) <∞.

In the case of Brownian motion, we had h(δ) =
√
δ. If h(δ) ≤ Cδp for any positive p, then∑

n

√
nh(2−n) <∞. In fact, it suffices if h(δ) ≤ (log(1/δ))p for a sufficiently large p.
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Beyond Gaussians: Now suppose for every k ≥ 1 and every 0 ≤ t1 < t2 < . . . < tk ≤ 1, we are
given a probability distribution µt1,...,tk on Rn (in the Gaussian case it was enough to specify the
means and covariances, but not in general). The question is whether there exist random variables
Xt, t ∈ [0, 1], such that (X(t1), . . . , X(tk)) has distribution µt1,...,tk for every k and every t1 < . . . <

tk and such that t 7→ X(t) is continuous a.s.? We shall of course need the consistency of the finite
dimensional distributions, but that is not enough.

From the consistency, we can construct Xt, t ∈ D, as before. It remains to estimate ∆n. The
Gaussian distribution was used when we invoked the tail bound P{Z > t} ≤ e−t

2/2. Now that
we do not have that, assume that E[(Xt −Xs)

α] ≤ C|t − s|1+β for some positive numbers C,α, β
and for all t, s ∈ [0, 1]. Observe that by E[|Xt −Xs|α] we mean the quantity

∫
R2 |x− y|αdµt,s(x, y).

Then, it follows that

P

{
|X(

k + 1

2n
)−X(

k

2n
)| ≥ un

}
≤ u−αn E[|X(

k + 1

2n
)−X(

k

2n
)|α] ≤ u−αn 2−n(1+β).

by the usual Chebyshev idea. Taking union over 0 ≤ k ≤ 2n − 1, we see that

P{∆n ≥ un} ≤ Cu−αn 2−nβ.

which is summable if un = 2−γn for some 0 < γ < β
α . Therefore, we get a process with continuous

sample paths having modulus of continuity given by the series∑
n≥log2(1/|t−s|)

un � 2−γ log2(1/|t−s|) = |t− s|γ .

The paths are Hölder continuous for any exponent smaller than β/α. This is the original form of
the Kolmogorov-Centsov theorem.

Exercise 2

Deduce that Brownian motion is Hölder continuous with any exponent less than 1
2 .

5. LÉVY’S CONSTRUCTION OF BROWNIAN MOTION

Our first construction involved first defining Wt, t ∈ D, having the specified covariances, and
then proving uniform continuity of the resulting function. For constructing Wt, t ∈ D, we showed
in general that a countable collection of Gaussians with specified covariances can be constructed
by choosing appropriate linear combinations of i.i.d. standard Gaussians.

In the following construction, due to Lévy and Cisielski, the special form of the Brownian co-
variance is exploited to make this construction very explicitly2.

Lévy’s construction of Brownian motion: As before, we construct it on time interval [0, 1]. Let
ξn,k, k, n ≥ 0 be i.i.d. standard Gaussians. Let F0(t) = ξ0t. For n ≥ 1, define the random functions

2If the following description appears too brief, consult the book of Mörter and Peres where it is explained beautifully.
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FIGURE 1. The first few steps in Lévy’s construction. On the left are the functions
Fn and on the right are the functions F0 + . . .+ Fn, for 0 ≤ n ≤ 4.

Fn by

Fn(t) =

ξn,k2−
1
2
(n+1) if 0 ≤ k ≤ 2n − 1 is odd,

0 if 0 ≤ k ≤ 2n − 1 is even,

and such that Fn is linear on each dyadic interval [ k2n ,
k+1
2n ]. Then define

Wn = F0 + F1 + . . .+ Fn.

In Figure 5, you may see the first few steps of the construction.
We claim that ‖Fn‖sup ≤ 10

√
n√
2n

with probability ≥ 1 − 1
2n . This is because Fn attains its max-

imum at k2−n for some odd k, and by definition, these values are independent Gaussians with
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mean zero and variance 1/2n+1. The usual estimate for the maximum of Gaussians gives the
claim.

From this, it follows that
∑

n ‖Fn‖sup < ∞ a.s.Therefore, w.p.1., the series
∑∞

n=0 Fn converges
uniformly on [0, 1] and defines a random continuous function W . Further, at any dyadic rational
t ∈ Dm, since Fn(t) = 0 for n > m, the series defining W (t) is a finite sum of independent
Gaussians. From this, we see that W (t), t ∈ D are jointly Gaussian.

We leave it as an exercise to check that E[W (t)W (s)] = t ∧ s (for t, s ∈ D). Since W is already
continuous, and limits of Gaussians are Gaussian, conclude that the Gaussianity and covariance
formulas are valid for all t, s ∈ [0, 1]. Thus, W is standard Brownian motion on [0, 1].

Remark 2

Let In,k = [ k2n ,
k+1
2n ] for 0 ≤ k ≤ 2n − 1 and n ≥ 0. Define Hn,k : [0, 1]→ R by

Hn,k(x) =


+2−n/2 if x ∈ [ k2n ,

k+ 1
2

2n ),

−2−n/2 if x ∈ [
k+ 1

2
2n , k+1

2n ],

0 otherwise.

Then, together with the constant function 1, the collection Hn,k, 0 ≤ k ≤ 2n− 1, 0 ≤ n, form
an orthonormal basis for L2[0, 1]. It is easy to see that

Fn+1(t) =
2n−1∑
k=0

ξn+1,k

∫ t

0
Hn,k(u)du.

Thus, the above construction gives the following “formula” for Brownian motion:

W (t) = ξ0

∫ t

0
1(u)du+

∞∑
n=0

2n−1∑
k=0

ξn+1,k

∫ t

0
Hn,k(u)du.

6. SERIES CONSTRUCTIONS OF BROWNIAN MOTION

Let us do some formal (meaning, non-rigorous) manipulations that sheds a light on the con-
struction of Brownian motion. We start with the idea of “differential space” as Wiener termed it:
If W is Brownian motion, the differentials dW (t), 0 ≤ t ≤ 1, are i.i.d. Gaussians (we can’t say with
what variance, because this is a formal statement without meaning!). Now take any orthonormal
basis {ϕn} for L2[0, 1]. We know that∑

n

〈f, ϕn〉〈g, ϕn〉 = 〈f, g〉

for any f, g ∈ L2[0, 1]. If we set f = δt and g = δs, then formally we get
∑

n ϕn(t)ϕn(s) = 〈δt, δs〉,
which is precisely the covariance structure we want for dW (t). This suggests that we construct
dW by setting dW (t) =

∑
nXnϕn(t), where Xn are i.i.d. N(0, 1) (because when we compute

E[dW (t)dW (s)], all terms with m 6= n vanish and we get
∑

n ϕn(t)ϕn(s). If so, since we want
11



W (0) = 0, we must have

W (t) =
∑
n

Xn

∫ t

0
ϕn(u)du(1)

where Xn are i.i.d. standard Gaussians.
Now we can forget the means of derivation and consider the series on the right hand side of

(1). If we can show that the series converges uniformly over t ∈ [0, 1] (with probability 1), then the
resulting random function is continuous (since t 7→

∫ t
0 ϕn is), and W (t)s will be jointly Gaussian

and the means are zero. If we check that the covariances match those of Brownian motion, that
gives a new construction (or a new representation) of Brownian motion! I do not know if this
works for any orthonormal basis, but here we look at a few specific ones.

Haar basis: Consider the Haar basis, 1, H0,0, H1,0, H1,1, H2,0, . . . ,H2,3, . . .. In this case, it makes
sense to index our i.i.d. Gaussian coefficients as X,X0, X1,0, X1,1, X2,0, . . . , X2,3, . . .. The random
function

2n−1∑
k=0

Xn,k

∫ t

0
Hn,k(u)du

is precisely what was called Fn+1(t) in the previous section (see Remark 2). And it was shown that
the series actually converges uniformly and has the correlations of the Brownian motion. What
is special and helps here is that if t is a dyadic rational, then the series for W (t) has only finitely
many non-zero terms.

Trigonometric basis: 1,
√

2 cos(2πnt),
√

2 sin(2πnt), n ≥ 1, form an orthonormal basis3 for L2[0, 1].
In this case, the series form (1) becomes

W (t) = X0t+
√

2

∞∑
n=1

1

2πn
[Xn sin(2πnt) + Yn(1− cos(2πnt))]

where Xn, Yn are i.i.d. standard Gaussian random variables. In this case it is possible (but not
trivial at all) to show that the series converges uniformly with probability 1, and that the resulting
random function is Brownian motion.

Another trigonometric basis: The functions
√

2 cos[π(n + 1
2)t], n ≥ 0, form an orthonormal basis

of L2[0, 1]. The series (1) then becomes

W (t) =
√

2
∑
n≥0

Xn
sin[π(n+ 1

2)t]

π(n+ 1
2)

.(2)

3You may have seen this in Fourier analysis class as an immediate consequence of Fejér’s theorem. If not, consider

the span of all these functions, and apply Stone-Weierstrass theorem to show that the span is dense in C[0, 1] with the

sup-norm metric and hence in L2[0, 1] with the L2 metric.
12



Again, it can be shown that the series converges uniformly with probability 1, and gives back
Brownian motion. This particular expansion is known as the Karhunen-Loeve expansion (it is an
expansion first introduced by D. D. Kosambi. The orthonormal basis here are the eigenfunctions
of the integral operator on L2[0, 1] with kernel K(t, s) = t ∧ s).

Complex Brownian motion: By complex-valued Brownian motion we mean WC = W (t) + iW ′(t)

where W,W ′ are i.i.d. Brownian motions on [0, 1]. In the formal manipulation that we gave at the
beginning of the section, if we allow complex valued functions and complex scalars, we end up
with complex Brownian motion. In other words, the analogue of (1) is

WC(t) =
∑
n

Zn

∫ t

0
ϕn(u)du

where {ϕn} is an orthonormal basis of L2[0, 1] (now complex-valued functions) and Zn are i.i.d.
standard complex Gaussians (meaning that the real and imaginary parts are i.i.d. N(0, 1) random
variables).

Again, this may or may not be true for general orthonormal basis. We take the particular case
of complex exponentials {en : n ∈ Z}, where en(t) = e2πint. Then the series becomes

WC(t) = Z0t+
∑
n6=0

Zn
2πin

e2πint.

The series converges uniformly with probability 1 and gives complex Brownian motion.

6.1. Ideas of proofs. In the last three examples, we did not present proofs. There are two stages:
First prove that the series converges uniformly on [0, 1] with probability 1. Then show that the
resulting random function has the right correlations. The first step is similar in all three examples,
so let us consider the last one.

Lemma 3

The series
∑

n
Zn
2πine

2πint converges uniformly over t ∈ [0, 1], with probability 1.

If Zn/n was absolutely summable with probability 1, then we would be done, but that is false!
The main idea is to use cancellation between terms effectively by breaking the sum into appro-
priately large blocks. Another point worth noting is that for fixed t, the series converges almost
surely, by Khinchine-Kolmogorov theorems on sums of independent random variables. One can
adapt their proof to Hilbert-space valued random variables and show that the series converges in
L2[0, 1], with probability 1. The difficulty here is in getting uniform convergence.

Proof of Lemma 3. For n ≥ 1 define

Fn(t) =

2n∑
k=2n−1+1

Zk
k
e2πikt.

13



We aim to show that
∑

n ‖Fn‖sup < ∞ with probability 1, which of course implies that
∑

n Fn

converges uniformly. That implies that the sum over n ≥ 1 of Zn
n e

2πint converges uniformly with
probability 1.

To control ‖Fn‖sup, write M = 2n−1 + 1 and N = 2n and observe that

|Fn(t)|2 =
N−M−1∑
r=M−N+1

e2πirt
∑

k:M≤k,k+r≤N

ZkZk+r
k(k + r)

≤ 1

M2

N−M−1∑
r=M−N+1

∣∣∣ ∑
M≤k,k+r≤N

ZkZk+r

∣∣∣
and hence writing ‖Fn‖ for the sup-norm of Fn on [0, 1], we have

E[‖Fn‖2] ≤
1

M2

N−M−1∑
r=M−N+1

E

∣∣∣ ∑
M≤k,k+r≤N

ZkZk+r

∣∣∣
 .

Observe that E[ZkZ`] = 2δk,`. Therefore, for r = 0, the summand is E[
∑N

k=M |Zk|2] = 2(N −
M + 1). For r 6= 0, we bound the summand by the square root of

E

∣∣∣ ∑
M≤k,k+r≤N

ZkZk+r

∣∣∣2
 = E

 ∑
M≤k,k+r≤N

∑
M≤`,`+r≤N

ZkZk+rZ`Z`+r

 = 2(N −M + 1)

because all terms with k 6= ` vanish. This shows that

E[‖Fn‖2] ≤
1

M2

{
2(N −M + 1) + 2(N −M)

√
2(N −M + 1)

}
≤ 5

N
3
2

M2
≤ 20

2
n
2

.

Therefore E[‖Fn‖] ≤ 5× 2−n/4 which is summable, showing that
∑

n ‖Fn‖ < ∞ w.p.1. Hence the
series converges uniformly with probability 1. �

The proofs of uniform convergence is similar in the other cases. Then one must show that the
resulting random continuous function has the covariance structure of Brownian motion. If the
series is

∑
n ξnψn(t), then all we want is to show that∑

n

ψn(t)ψn(s) = t ∧ s.

Let us carry this out in the series (2). We shall assume knowledge of spectral decomposition of
compact operators (if you do not, omit the proof).

Lemma 4

The series
∑
n≥0

sin[π(n+ 1
2
)s]

π(n+ 1
2
)

sin[π(n+ 1
2
)t]

π(n+ 1
2
)

converges uniformly on [0, 1]× [0, 1] to 1
2(t ∧ s).

14



Proof. Let K(t, s) = t ∧ s and define the operator T : L2[0, 1] 7→ L2[0, 1] by

Tf(t) =

∫ 1

0
K(t, s)f(s)ds.

It is well-known (and easy to check) that T is a compact operator (as it can be approximated by fi-
nite dimensional operators using Riemann sums) and is self-adjoint (as K(t, s) = K(s, t)). Hence,
we know by the spectral theorem that Tψn = λnψn for an orthonormal set {ψn} inL2[0, 1] and a se-
quence λn (non-zero real numbers) that converges to zero and such that Ker(T ) = span{ψ1, ψ2, . . .}⊥.
We proceed to find these ψns. As K is a positive definite kernel, it is also true that λn > 0 for all n.

Suppose Tf = λf for some f ∈ L2 and λ > 0, then

λf(t) =

∫ t

0
sf(s)ds+ t

∫ 1

t
f(s)ds.

A priori, the equality is in L2, but since f ∈ L2 ⊆ L1, the right hand side is continuous in t,
and hence f is continuous. But then the right hand side becomes differentiable in t, hence f is
differentiable. Inductively, we see that f is smooth and that the above identity holds pointwise
for t ∈ [0, 1]. Differentiate twice to get λf ′′(t) = −f(t) which implies that f(t) = a sin(t/

√
λ) +

b cos(t/
√
λ) for some a, b ∈ R. From the above identity, we also see that f(0) = 0 and f ′(1) = 1.

This forces b = 0 and cos(1/
√
λ) = 0 or 1√

λ
= (n + 1

2)π fr some n ≥ 0. Thus we have ψn(t) =
√

2 sin((n+ 1
2)πt) (normalized so that

∫ 1
0 ψ

2
n = 1) and λn = 1

π2(n+ 1
2
)2

, for n = 0, 1, 2 . . .. Define,

L(t, s) =
∑
n

λnψn(t)ψn(s) =
∑
n≥0

sin[π(n+ 1
2)s]

π(n+ 1
2)

sin[π(n+ 1
2)t]

π(n+ 1
2)

.

The last series clearly converges uniformly on [0, 1]2, since the nth term is uniformly bounded by

1/n2. But then
∫ 1
0 L(t, s)f(s)ds =

∑
n λnψn(t)〈f, ψn〉

L2

= Tf (to see the last equality write f =∑
n〈f, ψn〉ψn and apply T ). Thus, K and L define the same integral operator and hence K = L

a.e. Both are continuous on [0, 1]2, hence equal everywhere. That is K(t, s) is given by the series
in the statement of the lemma. �

7. BASIC PROPERTIES OF BROWNIAN MOTION

We have given two constructions of Brownian motion (and outlined one more). However, in our
further study of Brownian motion, we would not like to use the specifics of this construction, but
only the defining properties of Brownian motion. To this end, let us recall that standard Brownian
motion is a collection of random variables W = (Wt)t∈[0,∞) on a probability space (Ω,F ,P) such
that

(1) t 7→Wt(ω) is continuous for P-a.e. ω,

(2) Increments over disjoint intervals are independent,

(3) Wt −Ws ∼ N(0, t− s) for any s < t.
15



Equivalently, we may define W as a C[0,∞)-values random variable such that Wt, t ≥ 0, are
jointly Gaussian with mean zero and covariance E[WtWs] = t ∧ s.

Symmetries of Brownian motion: Let W be standard Brownian motion and let µW denote the
Wiener measure. By a symmetry, we mean a transformation T : C[0,∞) → C[0,∞) such that

µW ◦ T−1 = µW or in the language of random variables, T (W )
d
= W . Brownian motion has many

symmetries, some of which we mention now.

I (Reflection symmetry). T (f) = −f . That is, if Xt = −Wt, then X is standard Brownian
motion. To see this, observe that X is continuous w.p.1., Xt are jointly Gaussian and Xt −
Xs = −(Wt − Ws) has N(0, t − s) distribution by the symmetry of mean zero Gaussian
distribution.

I (Space-time scaling symmetry). Let α > 0 and define [T (f)](t) = 1√
α
f(αt). That is, if

Xt = 1√
α
Wαt, then X is a standard Brownian motion.

I (Time-reversal symmetry) Let W be standard Brownian motion on [0, 1]. Define X(t) =

W (1− t)−W (1) for 0 ≤ t ≤ 1. Then X is standard Brownian motion on [0, 1].

I (Time-inversion symmetry). Define Xt = tW1/t for t ∈ (0,∞). Then Xt are jointly Gauss-
ian, continuous in t w.p.1., and for s < t we have

E[XtXs] = tsE

[
W

(
1

t

)
W

(
1

s

)]
= ts

1

t
= s.

Thus, (Xs)s∈(0,infty) has the same distribution as (Ws)s∈(0,∞). In particular, if MX
δ =

sup0<s≤δXs andMW
δ = sup0<s≤δWs, then (MX

1/k)k≥1 has the same distribution as (MW
1/k)k≥1.

But limk→∞M
W
1/k = 0 w.p.1., and hence limk→∞M

X
1/k = 0 w.p.1. But that precisely means

that limt→0+X(t) = 0 w.p.1. The upshot is that if we set X0 = 0, then X is standard
Brownian motion.

I (Time-shift symmetry). Let t0 ≥ 0 and define [Tf ](t) = f(t + t0) − f(t0). That is, if
Xt = Wt+t0 −Wt0 , then X is standard Brownian motion. Joint Gaussianity and continuity
are clear. As for covariances, for s < t we get

E[XtXs] = E[Ws+t0Wt+t0 ]−E[Wt0Wt+t0 ]−E[Ws+t0Wt0 ] + E[Wt0Wt0 ]

= (s+ t0)− t0 − t0 + t0

= s.

ThusX is a standard Brownian motion. Whether the time-shift invariance holds at random
times t0 is an important question that we shall ask later.

8. OTHER PROCESSES FROM BROWNIAN MOTION

Having constructed Brownian motion, we can use it to define various other processes with
behaviour modified in many ways.
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Brownian motion started at any location: If W is standard Brownian motion and x ∈ R, the
process X defined by Xt = x+Wt for t ≥ 0, is called Brownian motion started at x.

Brownian motion with drift and scaling: Let µ ∈ R and σ2 > 0. Then define Xt = µt+ σWt. This
process X is called Brownian motion with drift µ and scale σ. More generally, we can consider the
process t 7→ f(t) + σWt for some fixed function f as a noisy version of f (especially if σ is small).
Brownian motion moves very randomly, these processes have a deterministic motion on which a
layer of randomness is added.

Multi-dimensional Brownian motion: Brownian motion in Rd, started at x ∈ Rd, is defined as the
stochastic process W = (W (t))t≥0 where W (t) are Rd-valued random variables,(a) W (0) = x a.s.,
(b) for any t1 < . . . < tk, the incrementsW (t1),W (t2)−W (t1),. . .W (tk)−W (tk−1) are independent,
(c) for any s < t the distribution of W (t) −W (s) is d-dimensional Gaussian with zero mean and
covariance matrix (t− s)Id, and (d) t 7→W (t) is continuous with probability 1.

The existence of such a process need not be proved from scratch. Since we know that standard
one-dimensional Brownian motion exists, we can find a probability space on which we have i.i.d.
copies W (k), k ≥ 1, of standard Brownian motion. Then define W (t) = x+ (W (1)(t), . . . ,W (d)(t)).
It is easy to check that this satisfies the properties stated above.

It is also worth noting that if we fix any orthonormal basis v1, . . . , vd of Rd and defineW (t) = x+

W (1)(t)v1+ . . .+W (d)(t)vd, this also gives d-dimensional Brownian motion (check the properties!).
Taking x = 0, this shows that standard Brownian motion W on Rd is invariant under orthogonal

transformations, i.e., if X(t) = PW (t) where P is a d× d orthogonal matrix, then X d
= W .

Ornstein-Uhlenbeck process: Is it possible to define Brownian motion indexed by R instead
of [0,∞). An obvious thing is to take two independent standard Brownian motions and set
X(t) = W1(t) for t ≥ 0 and X(t) = W2(−t), then X may be called a two-sided Brownian mo-
tion. Somehow, it is not satisfactory, since the location 0 plays a special role (the variance of X(t)

increases on either side of it).
A better model is to set X(t) = e−

1
2
tW (et) for t ∈ R. Then X is called Ornstein-Uhlenbeck

process. It is a continuous process and Xt, t ∈ R are jointly Gaussian with zero means and co-
variances E[XtXs] = e−

1
2
(s+t)E[W (es)W (et)] = e−

1
2
|s−t|. Note that X does not have independent

increments property. However, it has the interesting property of stationarity or shift-invariance: Fix
t0 ∈ R and define Y (t) = X(t0 + t). Then, check that Y has the same distribution of X (you may
use space-time scale invariance of W ). In other words, for the process X the origin is not a special
time-point, it is just like any other point.

Brownian bridge: Brownian bridge is the continuous Gaussian processX = (X(t))t∈[0,1] such that
E[XtXs] = s(1 − t) for 0 ≤ s < t ≤ 1. Observe that X(0) = X(1) = 0 w.p.1. It arises in many
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FIGURE 2. Top row left: Brownian motion run for time 10. Top row right: The
same after a time-space scaling to time interval [0, 1]. Middle row left: A Brownian
bridge. Middle row right: An Ornstein-Uhlenbeck sample path. Bottom row left:
Brownian motion with linear drift 2t. Bottom row right: Wt +

√
2t. Take note of the

markings on both axes.

situations, but for now we simply motivate it as a possible model for a random surface in 1 + 1

dimensions (the graph ofX is to be thought of as a surface) that is pinned down at both endpoints.
The existence of Brownian bride is easy t prove. Let W be a standard Brownian motion on [0, 1]

and set X(t) = W (t)− tW (1) for 0 ≤ t ≤ 1. Check that X has the defining properties of Brownian
bridge. This representation is also useful in working with Brownian bridge.

There is a third description of Brownian bridge. Consider standard Brownian motion W =

(W (t))t∈[0,1] on some (Ω,F ,P). Let G = σ{W (1)}. Then, a regular conditional distribution of
W given G exists. We may write it as µ(A, x), where A ∈ B(C[0, 1]) and x ∈ R (so µ(·, x) is a
probability measure that indicated the distribution of W given that W (1) = x). It can be checked
that the conditional distributions are continuous in x. In fact, there is one measure µ0 on C[0, 1]
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such that µ(A, x) = µ0{g : t 7→ g(t) + tx is in A}. This is given in the homework and will be left as
exercise.

Diffusions: Recall the physical motivation for Brownian motion as a particle in a fluid that is
being bombarded on all sides by the molecules of the fluid. The mathematical definition that we
have given assumes that the fluid is homogeneous (i.e., it is similar everywhere) and the motion is
isotropic (there is no preferred direction of motion). If one imagines motion in a non-homogeneous
medium, one arrives at the following kind of stochastic process.

For each x ∈ Rd, let m(x) ∈ Rd and Σx be a positive definite d× d matrix. We want a Rd-valued
stochastic process X = (X(t))t≥0 that has continuous sample paths, independent increments over
disjoint intervals of time and such that conditional on X(s), s ≤ t, for small h, the distribution
of X(t+ h)−X(t) is approximately Gaussian with mean vector hm(X(t)) and covariance matrix
hΣX(t). This last statement has to be interpreted in a suitable sense of h → 0. Such a process is
called a diffusion.

If m(x) = 0 and Σx = Id, then we get back Brownian motion. If m(x) = m (a constant) and
Σx = Σ (a constant matrix), then we can get such a process as X(t) = tm+ Σ

1
2W (t) where W is a

standard d-dimensional Brownian motion. But more generally, it is not easy to show that such a
process exists4 and we shall not be able to touch upon this topic in this course.

9. PLAN FOR THE REST OF THE COURSE

So far we have defined and constructed Brownian motion, and seen the most basic symmetries
of it. We shall study the following aspects which cover only a small fraction (but reasonable
enough for a first course) of things one could study about Brownian motion.

I Continuity properties of Brownian motion. The modulus of continuity is O(
√
δ log(1/δ)) and

hence it is Hölder(12 − ε) for any ε > 0. We shall see that W is nowhere Hölder(12 + ε) for any ε > 0.

IMarkov property and martingales in Brownian motion. Brownian motion will be shown to have
Markov and strong Markov property. We shall extract many martingales out of it. All this will be
used to get substantial information about the maximum of a Brownian motion, the zero set, the
time to exit a given set, recurrence and transience, etc. If time permits, we shall see the relationship
between multi-dimensional Brownian motion and harmonic functions and the Dirichlet problem.

I Brownian motion as a limiting object. We shall see that random walks converge to Brownian
motion (Donsker’s theorem). We shall use the connection between random walks and Brownian
motion to deduce results about each from results about the other (eg., law of iterated logarithm,

4One will have to either develop stochastic calculus first or a theory of general Markov processes and some existence

theorems for Elliptic partial differential equations.
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some arc-sine laws). If time permits we relate the difference between empirical distribution of an
i.i.d. sample and the true distribution to a Brownian bridge.

I There are many other aspects we may not have time for. Some of them are the ideas of Wiener
integral with respect to Brownian motion, Cameron-Martin formula, Hausdorff dimensions of
random fractal sets coming from Brownian motion, stochastic Calculus . . .

10. FURTHER CONTINUITY PROPERTIES OF BROWNIAN MOTION

Let W denote standard Brownian motion in [0, 1]. We have see that W is Hölder(12 − ε) for any
ε > 0 with probability 1. We shall show in this section that it is nowhere Hölder(12 + ε) for any
ε > 0, in particular, the paths are nowhere differentiable.

If f : [0, 1]→ R and 0 < α ≤ 1, we say that t is a Hölder(α) point for f if

lim sup
h↓0

f(t+ h)− f(t)

hα
<∞.

If the lim sup on the left is less than or equal to c, then we say that t is a Hölder(α; c) point (then
it is also a Hölder(α; c′) point for any c′ > c). Observe that if f is differentiable at t, then t is a
Hölder(1) point.

Theorem 5: Paley, Wiener, Zygmund

With probability 1, the following statements hold.

(1) Standard Brownian motion is nowhere differentiable.

(2) Standard Brownian motion is nowhere Hölder(α) for any α > 1
2 .

(3) If c < 0.3, then Brownian motion has no Hölder(12 ; c) points.

These statements are increasingly stronger, hence it suffices to prove the last one. The usual
proof given in all books for the first two statements is a very elegant one due to Dvoretsky, Erdös
and Kakutani. As far as I can see, that method cannot prove the third. I went back to the original
proof of Paley, Wiener and Zygmund, and found that their proof, also very elegant, in fact gives
the third statement! However, historically, it appears that such a statement only appeared much
later in a paper of Dvoretsky, who proved the even stronger statement that Hölder(12 ; c) points
exist if and only if c > 1. I am a little confused but anyway...

Proof of nowhere differentiability due to Dvoretksy, Erdös and Kakutani. If f is differentiable at t, then
|f(s)−f(t)| ≤ C|s−t| for some C <∞ and for all s ∈ [0, 1]. Then, |f(s)−f(u)| ≤ C(|s−t|+ |u−t|)
for all s, u ∈ [0, 1]. In particular, for any n ≥ 0 and any 0 ≤ k ≤ 2n − 1, this holds when we take
s = k2−n and u = (k + 1)2−n. In particular, if ` is such that [`2−n, (` + 1)2−n] 3 t, then this holds
for k = `+ j, j = 1, 2, 3, or for k = `− j, j = 1, 2, 3 (if t is too close to 1, `+ 3 may be greater than
2n − 1 and if t is too close to 0, `− 3 may be less than 0, hence we consider both possibilities). For
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such k, we get ∣∣∣f (k + 1

2n

)
− f

(
k

2n

) ∣∣∣ ≤ C 10

2n
(3)

since k2−n and (k + 1)2−n are all within distance 5.2−n of t. Thus, if we define

A = {f : f is differentiable at some t ∈ [0, 1]},

An,C = {f : (3) holds for at least three consecutive k in 0, 1, . . . , 2n − 1},

then what we have shown is that A ⊆
∞⋃
C=1

∞⋂
n=1
An,C .

We show for each fixed C that P{W ∈ An,C} → 0 as n→∞. This implies5 that P{W ∈ A} = 0.
To show this,

P{W ∈ An} =

2n−3∑
`=0

P{(3) holds for f = W for k = `, `+ 1, `+ 2}

≤ (2n − 2)

(
P

{
|ξ| ≤ 10C√

2n

})3

≤ (2n − 2)

(
1√
2π

10C√
2n

)3

≤ 103C3 1√
2n
.

This proves the nowhere differentiability of Brownian motion. �

By considering several increments in place of three, one can show that W has no Hölder(12 + ε)

points.

Hölder(12 ; c) points: Next we adapt the original proof of Paley, Wiener and Zygmund to show that
there are no Hölder(12 ; c) points if c is small. For convenience of notation, let ∆f(I) = f(b)− f(a)

for f : [0, 1] 7→ R and I = [a, b] a subinterval of [0, 1]. Also, let In,k = [k2−n, (k + 1)2−n] for n ≥ 0

and 0 ≤ k ≤ 2n − 1.

A branching process proof due to Paley, Wiener and Zygmund. Let t is a Hölder(12 ; c) point, then there
exists M < ∞ such that |f(s) − f(t)| ≤ c

√
|s− t| for all s ∈ [t − 2−M , t + 2−M ]. In particular, if

n ≥M and In,k is the dyadic interval containing t, then

|∆f(I)| ≤ c
{√

(k + 1)2−n − t+
√
t− k2−n

}
≤
√

2c√
2n
.(4)

In the last inequality we used the elementary fact that if 0 ≤ x ≤ a, then
√
x+
√
a− x ≤

√
2a.

The collection of dyadic intervals carries a natural tree structure with I0,0 being the root vertex
and by declaring In+1,` as a child of In,k if In+1,` ⊆ In,k. This is a tree where each vertex has two

5One issue: IsA a Borel subset of C[0, 1]?! It is, but we don’t bother to prove it. Instead, let us always work with the

completion of Wiener measure. In other words, if A1 ⊆ A0 ⊆ A2 and A1 and A2 are Borel and P{W ∈ A1} = P{W ∈
A2}, then the same is deemed to be the value of P{W ∈ A0}.
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children. Let us declare a dyadic interval In,k to be alive if it satisfies ∆f(In,k) ≤ c
√

2/
√

2n. Thus,
if t is a Hölder(12 ; c) point, then for some M , the tree beyond generation M has an infinite chain of
descendents that are all alive (namely the dyadic intervals containing the point t).

The process of vertices alive is a Branching process that we shall prove will become extinct with
probability 1. To do this, let Fn = {∆W (In,k) : 0 ≤ k ≤ 2n − 1} so that these sigma-algebras
are increasing. Whether an interval In,k is alive or not is an event in Fn. Condition on Fn−1
and consider any live individual I in the (n − 1)st generation. It has two children J, J ′ in the nth
generation. Conditional onFn−1, we know the sum ∆W (J)+∆W (J ′) = ∆W (I). From Exercise 10
we can write ∆W (J) = 1

2∆W (I) + ξ√
2n+1

and ∆W (J ′) = 1
2∆W (I) − ξ√

2n+1
where ξ ∼ N(0, 1) is

independent of Fn−1. Now, J is alive if and only if |∆W (J)| ≤ c
√
2√

2n
. This means that ξ must lie

in an interval of length 4c centered at
√

2n−1∆W (I). By Exercise 10, irrespective of the value of
∆W (I), this probability is at most 4c/

√
2π.

In summary, the expected number of offsprings of I is at most λ = 8c/
√

2π. If c′ < 1, then
the number of descendants of an interval IM,k in the generation M + j is exactly λj . Thus the
expected total number of live individuals live in the M + j generation is 2Mλj which goes to zero
as j →∞, provided λ < 1. Hence, for c <

√
2π
8 = 0.313 . . ., the branching process goes extinct with

probability 1.
Since this is true for every M , taking a countable union over positive integer M , it follows that

for any c < 0.31, with probability 1, Brownian motion has no Hölder(12 ; c) points. �

We used two simple facts about Gaussian distribution in the proof. They are left as exercises.

Exercise 3

Let X,Y be i.i.d. N(0, 1). Then, the conditional distribution of (X,Y ) given X + Y = t is
the same as the (unconditional) distribution of (12 t+ 1√

2
ξ, 12 t−

1√
2
ξ) where ξ ∼ N(0, 1).

Exercise 4

If ξ ∼ N(0, 1), then sup
a∈R

P{ξ ∈ [a− t, a+ t]} ≤ 2t√
2π

.
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