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CHAPTER 1

Conditional probability and expectation

1. Conditional expectation

Let (Ω,F ,P) be a probability space. Let G ⊆ F be a sub sigma algebra of F . Let X : Ω → R
be a real-valued random variable. The goal is to find the closest G-measurable random variable

to X . For example, if G = σ(Z), then we want the function g so that g(Z) is the closest to X .

This problem of predicting one (perhaps not easily observable) random variable in terms of other

(observable) random variables is one of the fundamental problems of Statistics.

To say anything, we must first decide on the sense of closeness.

Square-integrable case. If E[X2] < ∞, then we can ask for G-measurable Y that minimizes

E[|X − Y |2]. Why does is exist, and is it unique? For this, we move to equivalence classes of

random variables and regard W = L2(Ω,G,P|G) as a closed subspace of the Hilbert space H =

L2(Ω,F ,P). Hilbert space theory tell us that there is a projection map P : H → W such that for

any u, the unique closest vector in W is Pu. An equivalent way of stating this is that Pu ∈W and

〈u, v〉 = 〈Pu, v〉 for all v ∈W .

Thus, if [X] ∈ L2 is the equivalence class containing X , and Y is any member of the equiv-

alence class P [X] (any two choices agree up to a P-null G-measurable set), then E[|X − Y |2] ≤
E[|X − Z|2] for any G-measurable square integrable random variable Z. Equivalently,

(1) Y is G-measurable and square integrable,

(2) E[XZ] = E[Y Z] for any G-measurable, square integrable Z.

For later purpose, we note that the projection operator that occurs above has a special property

(which does not even make sense for a general orthogonal projection in a Hilbert space).
Exercise 1

If X ≥ 0 a.s. and E[X2] < ∞, show that PW [X] ≥ 0 a.s. [Hint: If [Y ] = PW [X], then

E[(X − Y+)2] ≤ E[(X − Y )2] with equality if and only if Y ≥ 0 a.s.]

Integrable case. Now suppose we only assume that E[|X|] < ∞. It is tempting to consider

the closed subspace W = L1(Ω,G,P|G) of the Banach space H = L1(Ω,F ,P). But there is no good

projection theory in L1, hence we cannot repeat what we did for the square integrable case.
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Example 1

On ([−1, 1],B, λ) (where λ is the uniform probability measure), let G = σ(x 7→ |x|). Then

G-measurable random variables are precisely measurable even functions. If X(t) = t and

Y = f(|t|), then E[|X −Y |] =
∫ 1
−1 |t− f(|t|)| =

∫ 1
0 (|t− f(t)|+ |t+ f(t)|)dt. The integrand is

at least 2t, and equality is achieved if −t < f(t) < t. There are infinitely many measurable

f satisfying this for all t ∈ [0, 1], hence there is no unique closest G-measurable random

variable to X . Find example where existence fails

The correct analogy with the square integrable case is to think of a random variableX as acting

on other random variables by Y 7→ E[XY ]. IfX ∈ L2, the correct space of Y is L2, while ifX ∈ L1,

then the correct space of Y is L∞. This leads us to the following definition.

Definition 1: Conditional expectation

A random variable Y : Ω → R is said to be a conditional expectation of X given G if (a) Y

is G-measurable and integrable, and (b) E[Y Z] = E[XZ] for all bounded G-measurable

random variables Z. Any such Y is denoted E[X
∣∣∣∣∣∣ G].

Some remarks are in order.

(1) It suffices to check the second condition for indicator variables. That is, E[Y 1A] = E[X1A]

for all A ∈ G. If this holds, then E[Y Z] = E[XZ] for simple G-measurable Z. For general

bounded G-measurable Z, find simple functions Zn such that |Zn| ≤ |Z| and Zn
a.s.→ Z.

DCT applies on both sides of E[XZn] = E[Y Zn] to show that E[XZ] = E[Y Z].

(2) The same reasoning as in the previous point shows that if E[|X|p] < ∞ for some p > 0,

and E[X1A] = E[Y 1A] for all A ∈ G, then E[XZ] = E[Y Z] for the larger class of Z ∈
Lq(Ω,G,P|G), where 1

p + 1
q = 1.

(3) Taking p = 2 in the previous point, we see that for square integrable X , the conditional

expectation exists and is the closest L2(Ω,G,P|G) random variable to X .

The main question is whether a conditional expectation exists for integrable X , and if it is unique.

Yes and Yes. Before giving a proof, let us see some examples.

Example 2

Let B,C ∈ F . Let G = {∅, B,Bc,Ω} and let X = 1C . Since G-measurable random variables

must be constant on B and on Bc, we must take Y = α1B + β1Bc . Writing the condition

for equality of integrals of Y and X over B and over Bc, we get αP(B) = P(C ∩ B),
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βP(Bc) = P(C ∩ Bc). It is easy to see that the equality of integrals over ∅ and over Ω also

hold. Hence, the unique choice for conditional expectation of X given G is

Y (ω) =

P(C ∩B)/P(B) if ω ∈ B,

P(C ∩Bc)/P(Bc) if ω ∈ Bc.

This agrees with the notion that we learned in basic probability classes. If we get to know

that B happened, we update our probability of C to P(C ∩B)/P(B) and if we get to know

that Bc happened, we update it to P(C ∩Bc)/P(Bc).

Exercise 2

Let B1, . . . , Bn be a measurable partition of Ω. Assume that P(Bk) > 0 for each k. Show

that the unique conditional expectation of 1C given G is
n∑
k=1

P(C ∩Bk)
P(Bk)

1Bk .

Example 3

Suppose Z is Rd-valued and (X,Z) has density f(x, z) with respect to Lebesgue measure

on R× Rd. Let G = σ(Z). Then, we claim that a version of E[X
∣∣∣∣∣∣ G] is given by

Y (ω) =


∫
R
xf(x,Z(ω))dx∫

R
f(x,Z(ω))dx

if the denominator is positive,

0 otherwise.

As Y is a function of Z, it is G-measurable. Here, it is clear that the set of ω for which∫
f(x, Z(ω))dx is zero is a G-measurable set. Hence, Y defined above is G-measurable.

We leave it as an exercise to check that Y is a version of E[X
∣∣∣∣∣∣ G].

Uniqueness of conditional expectation: Suppose Y1, Y2 are two versions of E[X
∣∣∣∣∣∣ G]. Then∫

A Y1dP =
∫
A Y2dP for all A ∈ G, since both are equal to

∫
AXdP. Let A = {ω : Y1(ω) > Y2(ω)}.

Then the equality
∫
A(Y1 − Y2)dP = 0 can hold if and only if P(A) = 0 (since the integrand is

positive on A). Similarly P{Y2 − Y1 > 0} = 0. This, Y1 = Y2 a.s. (which means that {Y1 6= Y2} is

G-measurable and has zero probability under P).

Thus, conditional expectation, if it exists, is unique up to almost sure equality.

Existence of conditional expectation: We give two proofs.
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First approach - Radon-Nikodym theorem: Let X ≥ 0 and E[X] < ∞. Then consider the measure

Q : G → [0, 1] defined by Q(A) =
∫
AXdP (we assumed non-negativity so that Q(A) ≥ 0 for all

A ∈ G). Further, P is a probability measure when restricted to G (we continue to denote it by P). It

is clear that ifA ∈ G and P(A) = 0, then Q(A) = 0. In other words, Q is absolutely continuous to P

on (Ω,G). By the Radon-Nikodym theorem, there exists Y ∈ L1(Ω,G,P) such that Q(A) =
∫
A Y dP

for all A ∈ G. Thus, Y is G-measurable and
∫
A Y dP =

∫
AXdP (the right side is Q(A)). Thus, Y is

a version of E[X
∣∣∣∣∣∣ G].

For a general integrable random variable X , let X = X+ −X− and let Y+ and Y− be versions

of E[X+

∣∣∣∣∣∣ G] and E[X−
∣∣∣∣∣∣ G], respectively. Then Y = Y+ − Y− is a version of E[X

∣∣∣∣∣∣ G].

Remark 1

Where did we use the integrability ofX in all this? WhenX ≥ 0, we did not! In other words,

for a non-negative random variableX (even if not integrable), there exists a Y taking values

in R+ ∪ {+∞} such that Y is G-measurable and
∫
A Y dP =

∫
AXdP. However, it is worth

noting that if X is integrable, so is Y .

In the more general case, if there is a set of positive measure on which both Y+ and Y− are

both infinite, then Y+ − Y− is ill-defined on that set. Therefore, it is best to assume that

E[|X|] <∞ so that Y+ and Y− are finite a.s.

Second approach - Approximation by square integrable random variables: Let X ≥ 0 be an integrable

random variable. Let Xn = X ∧ n so that Xn are square integrable (in fact bounded) and Xn ↑ X .

Let Yn be versions of E[Xn

∣∣∣∣∣∣ G], defined by the projections PW [Xn] as discussed earlier.

Now, Xn+1 − Xn ≥ 0, hence by the exercise above PW [Xn+1 − Xn] ≥ 0 a.s., hence by the

linearity of projection, PW [Xn] ≤ PW [Xn+1] a.s. In other words, Yn(ω) ≤ Yn+1(ω) for all ω ∈ Ωn

where Ωn ∈ G is such that P(Ωn) = 1. Then, Ω′ := ∩nΩn is in G and has probability 1, and for

ω ∈ Ω′, the sequence Yn(ω) is non-decreasing.

Define Y (ω) = limn Yn(ω) if ω ∈ Ω′ and Y (ω) = 0 for ω 6∈ Ω′. Then Y is G-measurable. Further,

for any A ∈ G, by MCT we see that
∫
A YndP ↑

∫
A Y dP and

∫
AXndP ↑ XdP. If A ∈ G, then∫

A YndP =
∫
AXndP. Thus,

∫
A Y dP =

∫
AXdP. This proves that Y is a conditional expectation of

X given G.
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2. Conditional probability

Definition 2: Regular conditional probability

Let (Ω,F ,P) be a probability space and let G be a sub sigma algebra of F . By regular

conditional probability of P given G, we mean any function Q : Ω×F → [0, 1] such that

(1) For P-a.e. ω ∈ Ω, the map A→ Q(ω,A) is a probability measure on F .

(2) For each A ∈ F , then map ω → Q(ω,A) is a version of E[1A
∣∣∣∣∣∣ G].

The second condition of course means that for any A ∈ F , the random variable Q(·, A) is

G-measurable and
∫
B Q(ω,A)dP(ω) = P(A ∩B) for all B ∈ G.

It is clear that if it exists, it must be unique (in the sense that if Q′ is another conditional prob-

ability, then Q′(ω, ·) = Q(ω, ·) for a.e. ω[P]. However, unlike conditional expectation, conditional

probability does not necessarily exist.

Suppose we define Q(ω,B) to be a version of E[1B
∣∣∣∣∣∣ G] for each B ∈ F . Can we not simply

prove that Q is a conditional probability? The second property is satisfied by definition. But for

Q(ω, ·) to be a probability measure, we require that for any Bn ↑ B it must hold that Q(ω,Bn) ↑
Q(ω,B). Although the conditional MCT assures us that this happens for a.e. ω, the exceptional set

where it fails depends on B and Bns. As there are uncountably many such sequences (unless F is

finite) it may well happen that for each ω, there is some sequence for which it fails (an uncountable

union of zero probability sets may have probability one). A concrete example where it does not

exist is given at the end of the section. This is why, the existence of conditional probability is not

trivial. But it does exist in all cases of interest.

Theorem 1

Let M be a complete and separable metric space and let BM be its Borel sigma algebra.

Then, for any Borel probability measure P on (M,BM ) and any sub sigma algebra G ⊆ BM ,

a regular conditional probability Q exists. It is unique in the sense that if Q′ is another

regular conditional probability, then Q(ω, ·) = Q′(ω, ·) for P-a.e. ω ∈M .

In probability theory we generally do not ask for any structure on the probability space, but

in this theorem we do. It is really a matter of language, since we always restrict our random

variables to take values in complete and separable metric spaces. Thus, another way to state the

above theorem is that in a general probability space (Ω,F ,P) and G ⊆ F , regular conditional

probability w.r.t. G may not exist on F , but it will exist on any sub sigma algebra F ′ ⊆ F that is

generated by a random variable taking values in a complete, separable metric space. We state this

as a theorem.
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Theorem 2

Let (Ω,F ,P) be a probability space and let G ⊆ F be a sub sigma algebra. Let F ′ = σ(X)

be any sub sigma algebra of F generated by a random variable X : Ω 7→ M where M

is a complete and separable metric space (endowed with its Borel sigma algebra). Then a

regular conditional probability for G exists on F ′. That is, there is a Q : Ω×F ′ 7→ [0, 1] such

that Q(ω, ·) is a probability measure on (Ω,F ′,P) for each ω ∈ Ω and Q(·, A) is a version of

E[1A
∣∣∣∣∣∣ G] for each A ∈ F ′.

In this situation ofF ′ = σ(X), one can push forwardQ(ω, ·) toM and get probability measures

νω = Q(ω, ·) ◦ X−1. Then νω is called the regular conditional distribution of X given G. For

example, if X = (X1, . . . , Xd) is Rd-valued, then νω is the measure with the distribution function

Fω(t1, . . . , td) = Q(ω, {X1 ≤ t1, . . . , Xm ≤ td}).

We shall prove this for the special case when Ω = R. The same proof can be easily written for

Ω = Rd, with only minor notational complication. The general fact can be deduced from the fact

that any complete separable metric space M is isomorphic as a measure space to a Borel subset

of the real line1. Of course, it should be noted that the metric plays little role, if the topology is

preserved by changing the metric, we may do so. For example, (0, 1) is not complete with the

usual metric, but we can endow it with a complete metric.

PROOF OF THEOREM 1 WHEN M = R. We start with a Borel probability measure P on (R,BR)

and G ⊆ BR. For each t ∈ Q, let Yt be a version of E[1(−∞,t]
∣∣∣∣∣∣ G]. For any rational t < t′, we

know that Yt(ω) ≤ Yt′(ω) for all ω 6∈ Nt,t′ where Nt,t′ is a Borel set with P(Nt,t′) = 0. Further, by

the conditional MCT, there exists a Borel set N∗ with P(N∗) = 0 such that for ω 6∈ N∗, we have

limt→∞ Yt(ω) = 1 and limt→−∞ Yt = 0 where the limits are taken through rationals only.

Let N =
⋃
t,t′ Nt,t′ ∪ N∗ so that P(N) = 0 by countable additivity. For ω 6∈ N , the function

t → Yt(ω) from Q to [0, 1] is non-decreasing and has limits 1 and 0 at +∞ and −∞, respectively.

Now define F : Ω× R→ [0, 1] by

F (ω, t) =

inf{Ys(ω) : s > t, s ∈ Q} if ω 6∈ N,

0 if ω ∈ N.

By exercise 3 below, for any ω 6∈ N , we see that F (ω, ·) is the CDF of some probability measure

µω on R, provided ω 6∈ N . Define Q : Ω × BR → [0, 1] by Q(ω,A) = µω(A). We claim that Q is a

conditional probability of P given G.

1For a proof, see Chapter 13 of Dudley’s book Real analysis and probability or this paper by B. V. Rao and S. M.

Srivastava.
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The first condition, that Q(ω, ·) be a probability measure on BR is satisfied by construction. We

only need to prove the first condition. To this end, define

H = {A ∈ BR : Q(·, A) is a version of E[1A
∣∣∣∣∣∣ G]}.

First we claim that H is a λ-system. Indeed, if An ↑ A and Q(·, An) is a version of E[1A
∣∣∣∣∣∣ G], then

by the conditional MCT, Q(·, A) which is the increasing limit of Q(·, An), is a version of E[1A
∣∣∣∣∣∣ G].

Similarly, if A ⊆ B and Q(·, A), A(·, B) are versions of E[1A
∣∣∣∣∣∣ G] and E[1B

∣∣∣∣∣∣ G], then by linearity of

conditional expectations, Q(·, B \A) = Q(·, B)−Q(·, A) is a version of E[1B\A
∣∣∣∣∣∣ G].

Next, we claim thatH contains the π-system of all intervals of the form (−∞, t] for some t ∈ R.

For fixed t, by definition Q(ω, (−∞, t]) is the decreasing limit of Ys(ω) = E[1(−∞,s]
∣∣∣∣∣∣ G](ω) as s ↓ t,

whenever ω 6∈ N . By the conditional MCT it follows thatQ(·, (−∞, t]) is a version of E[1(−∞,t]
∣∣∣∣∣∣ G].

An application of the π-λ theorem shows thatH = BR. This completes the proof. �

The following exercise was used in the proof.
Exercise 3

Let f : Q→ [0, 1] be a non-decreasing function such that f(t) converges to 1 or 0 according

as t→ +∞ or t→ −∞, respectively. Then define F : R→ [0, 1] by F (t) = inf{f(q) : t < q ∈
Q}. Show that F is a CDF of a probability measure.

PROOF OF THEOREM 1 FOR GENERAL M . Let ϕ : M → R be a Borel isomorphism. That is ϕ is

bijective and ϕ,ϕ−1 are both Borel measurable. We are given a probability measure P on (M,BM )

and a sigma algebra G ⊆ BM . Let P′ = P◦ϕ−1 be its pushforward probability measure on (R,BR).

Let G′ = {ϕ(A) : A ∈ G}, clearly a sub sigma algebra of BR.

From the already proved case, we get Q′ : R × BM → [0, 1], a conditional probability of P′

given G′. Define Q : M × BM → [0, 1] by Q(ω,A) = Q′(ϕ(ω), ϕ(A)). Check that Q′ is a conditional

probability of P given G. �

Now we give an example where regular conditional probability does not exist.

Example 4

Consider ([0, 1],B, λ). Let E ⊆ [0, 1] be a non-measurable set with λ∗(E) = 1 = λ∗(Ec). Let

F = σ{B, E} = {(A ∩ E) t (B ∩ Ec) : A,B ∈ B}. On F , define a measure by

µ((A ∩ E) t (B ∩ Ec)) =
1

2
λ(A) +

1

2
λ(B).

This is well defined becauseA∩E = A′∩E implies thatA∆A′ ⊆ Ec and measurable subsets

of Ec have zero measure (why?). Thus, λ(A) = λ(A′). Similarly, λ(B ∩Ec) does not depend

on the choice of B. That µ is a measure is then easy to see.
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Suppose regular conditional probability Q of µ w.r.t. B were to exist. Then Q(·, A) = 1A

a.e., for any A ∈ B, in particular for A = [0, x] for any x ∈ [0, 1]. Take intersection over

x ∈ Q to see that Q(ω, [0, x]) = 1[0,x](ω) for all x ∈ Q ∩ [0, 1], for a.e.ω. As x 7→ Q(ω, [0, x])

is a distribution function, we see that Q(ω, ·) = δω, for a.e. ω. But then, Q(ω,E) = 1 if

ω ∈ E and Q(ω,E) = 0 if ω ∈ Ec. But this means that Q(·, E) = 1E is not B measurable,

contradicting a requirement of conditional probability.

3. Relationship between conditional probability and conditional expectation

LetM be a complete and separable metric space (or in terms introduced earlier, a Polish space).

Let P be a probability measure on BM and let G ⊆ BM be a sub sigma algebra. Let Q be a reg-

ular conditional probability for P given G which exists, as discussed in the previous section. Let

X : M → R be a Borel measurable, integrable random variable. We defined the conditional expec-

tation E[X
∣∣∣∣∣∣ G] in the first section. We now claim that the conditional expectation is actually the

expectation with respect to the conditional probability measure. In other words, we claim that

E[X
∣∣∣∣∣∣ G](ω) =

∫
M

X(ω′)dQω(ω′)(1)

where Qω(·) is a convenient notation probability measure Q(ω, ·) and dQω(ω′) means that we use

Lebesgue integral with respect to the probability measure Qω (thus ω′ is a dummy variable which

is integrated out).

To show this, it suffices to argue that the right hand side of (1) is G-measurable, integrable and

that its integral over A ∈ G is equal to
∫
AXdP.

Firstly, let X = 1B for some B ∈ BM . Then, the right hand side is equal to Qω(B) = Q(ω,B).

By definition, this is a version of E[1B
∣∣∣∣∣∣ G]. By linearity, we see that (1) is valid whenever X is a

simple random variable.

IfX is a non-negative random variable, then we can find simple random variablesXn ≥ 0 that

increase to X . For each n

E[Xn

∣∣∣∣∣∣ G](ω) =

∫
M

Xn(ω′)dQω(ω′) a.e.ω[P].

The left side increases to E[X
∣∣∣∣∣∣ G] for a.e.. ω by the conditional MCT. For fixed ω 6∈ N , the right

side is an ordinary Lebesgue integral with respect to a probability measure Qω and hence the

usual MCT shows that it increases to
∫
M

X(ω′)dQω(ω′). Thus, we get (1) for non-negative random

variables.

For a general integrable random variable X , write it as X = X+−X− and use (1) individually

for X± and deduce the same for X .
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Remark 2

Here we explain the reasons why we introduced conditional probability. In most books on

martingales, only conditional expectation is introduced and is all that is needed. However,

when conditional probability exists, conditional expectation becomes an actual expectation

with respect to a probability measure. This makes it simpler to not have to prove many

properties for conditional expectation as we shall see in the following section. Also, it is

aesthetically pleasing and psychologically satisfying to know that conditional probability

exists in most circumstances of interest.

A more important point is that, for discussing Markov processes (as we shall do when we

discuss Brownian motion), conditional probability is the more natural language in which to

speak. This is explained next.

3.1. Specifying measures by conditional probabilities. Think of the following familiar ob-

jects in probability: Markov chains, Branching processes, Pólya’s urn scheme. The last one will

be defined later in the course, but the point here is that in all three cases and many others, the

verbal description is of the form: “do something, and depending on what the outcome is, do this

or that, ...”. The very description contains the idea of conditioning. We explain with the example

of Markov chains.

Markov chains: A discrete time Markov chain on a state space S with a sigma algebra S is spec-

ified by two ingredients: A probability measure ν on S and a stochastic kernel κ : S × S 7→ [0, 1]

such that κ(·, A) is measurable for all A ∈ S and κ(x, ·) is a probability measure on (S,S).

Then, a Markov chain with initial distribution ν and transition kernel κ is a collection of ran-

dom variables (Xn)n≥0 (on some probability space) such that X0 ∼ ν and the conditional distri-

bution of Xn+1 given X0, . . . , Xn is κ(Xn, ·).

Does a Markov chain exist? It is easy to answer yes by defining probability measures µn on

(Sn,S⊗n) by

µn(A0 ×A1 × . . .×An−1) =

∫
A0

. . .

∫
An−1

ν(dx0)κ(x0, dx1) . . . κ(xn−3, dxn−2)κ(xn−2, dxn−1)

for Ai ∈ S . This does define a probability measure on Sn, and further, these measures are con-

sistent (the projection of µn+1 to the first n co-ordinates gives µn). By Kolmogorov’s consistency

theorem, there is a measure µ on (SN,SN) whose projection to the first n co-ordinates is µn. On

(SN,SN, µ), the co-ordinate random variables form a Markov chain with the given initial distribu-

tion and transition kernel.
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Remark 3

In fact, the Markov property is not needed. Suppose a measure ν on (S,S), and stochastic

kernels κn : Sn × S 7→ [0, 1] are given. Define

µn(A0 ×A1 × . . .×An−1)

=

∫
A0

. . .

∫
An−1

ν(dx0)κ1(x0, dx1)κ2(x0, x1, dx2) . . . κn−1(x0, . . . xn−2, dxn−1).

This is again a consistent family of distributions, and we can construct random variables

(Xk)k≥0 on a suitable probability space so that (X0, . . . , Xn−1) ∼ µn.

In that sequence, X0 ∼ ν and the conditional distribution of Xn given (X0, . . . , Xn−1) =

(x0, . . . , xn−1) is given by κn(x0, . . . , xn−1, dx). Thus, a sequence of random variables may

be described by giving the distribution of X0, and for each n ≥ 1 specifying the distribution

of Xn given the previous Xis.

4. Properties of conditional expectation

Let (Ω,F ,P) be a probability space. We write G,Gi for sub sigma algebras of F and X,Xi for

integrable F-measurable random variables on Ω.

Properties specific to conditional expectations:

(1) If X is G-measurable, then E[X
∣∣∣∣∣∣ G] = X a.s. In particular, this is true if G = F .

(2) If X is independent of G, then E[X
∣∣∣∣∣∣ G] = E[X]. In particular, this is true if G = {∅,Ω}.

(3) Tower property: If G1 ⊆ G2, then E[E[X
∣∣∣∣∣∣ G2]

∣∣∣∣∣∣ G1] = E[X
∣∣∣∣∣∣ G1] a.s. In particular (taking

G = {∅,Ω}), we get E[E[X
∣∣∣∣∣∣ G]] = E[X].

(4) G-measurable random variables are like constants for conditional expectation: For any

bounded G-measurable random variable Z, we have E[XZ
∣∣∣∣∣∣ G] = ZE[X

∣∣∣∣∣∣ G] a.s.

The first statement is easy, since X itself satisfies the properties required of the conditional

expectation. The second is easy too, since the constant random variable E[X] is G-measurable and

for any A ∈ G we have E[X1A] = E[X]E[1A].

Property (4): First consider the last property. If Z = 1B for some B ∈ G, it is the very definition

of conditional expectation. From there, deduce the property when Z is a simple random variable,

a non-negative random variable, and a general integrable random variable (but we also need XZ

to be integrable, which is implied if Z is bounded). We leave the details as an exercise.
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Property (3): Now consider the tower property which is of enormous importance to us. But the

proof is straightforward. Let Y1 = E[X
∣∣∣∣∣∣ G1] and Y2 = E[X

∣∣∣∣∣∣ G2]. If A ∈ G1, then by definition,∫
A Y1dP =

∫
AXdP. Further,

∫
A Y2dP =

∫
AXdP since A ∈ G2 too. This shows that

∫
A Y1dP =∫

A Y2dP for all A ∈ G1. Further, Y1 is G1-measurable. Hence, it follows that Y1 = E[Y2

∣∣∣∣∣∣ G1]. This is

what is claimed there.

Properties akin to expectation:

(1) Linearity: For α, β ∈ R, we have E[αX1 + βX2

∣∣∣∣∣∣ G] = αE[X1

∣∣∣∣∣∣ G] + βE[X2

∣∣∣∣∣∣ G] a.s.

(2) Positivity: If X ≥ 0 a.s., then E[X
∣∣∣∣∣∣ G] ≥ 0 a.s. and E[X

∣∣∣∣∣∣ G] is zero a.s. if and only if

X = 0 a.s. As a corollary, if X1 ≤ X2, then E[X1

∣∣∣∣∣∣ G] ≤ E[X2

∣∣∣∣∣∣ G].

(3) Conditional MCT: If 0 ≤ Xn ↑ X a.s., then E[Xn

∣∣∣∣∣∣ G] ↑ E[X
∣∣∣∣∣∣ G] a.s. Here either assume

that X is integrable or make sense of the conclusion using Remark 1.

(4) Conditional Fatou’s: Let 0 ≤ Xn. Then, E[lim inf Xn

∣∣∣∣∣∣ G] ≤ lim inf E[Xn

∣∣∣∣∣∣ G] a.s.

(5) Conditional DCT: Let Xn
a.s.→ X and assume that |Xn| ≤ Y for some Y with finite expec-

tation, then E[Xn

∣∣∣∣∣∣ G]
a.s.→ E[X

∣∣∣∣∣∣ G].

(6) Conditional Jensen’s inequality: If ϕ : R → R is convex and X and ϕ(X) are integrable,

then E[ϕ(X)
∣∣∣∣∣∣ G] ≥ ϕ(E[X

∣∣∣∣∣∣ G]). In particular, of E[|X|p] < ∞ for some p ≥ 1, then

E[|X|p
∣∣∣∣∣∣ G] ≥ (E[|X|

∣∣∣∣∣∣ G])p of which the special cases E[|X|
∣∣∣∣∣∣ G] ≥ |E[X

∣∣∣∣∣∣ G]| and

E[X2
∣∣∣∣∣∣ G] ≥ (E[X

∣∣∣∣∣∣ G])2 are particularly useful.

(7) Conditional Cauchy-Schwarz: If E[X2],E[Y 2] <∞, then (E[XY
∣∣∣∣∣∣ G])2 ≤ E[X2

∣∣∣∣∣∣ G]E[Y 2
∣∣∣∣∣∣ G].

If we assume that Ω is a Polish space and F is its Borel sigma algebra, then no proofs are needed!

Indeed, then a conditional probability exists, and conditional expectation is just expectation with

respect to conditional probability measure. Thus, ω by ω, the properties above hold for conditional

expectations2.

But the assumption that conditional probability exists is not necessary for the above properties

to hold. Recall that the difficulty with the existence of conditional probability was in choosing

versions of conditional expectation for 1B for uncountably many B so that countable additivity

of B 7→ E[1B
∣∣∣∣∣∣ G](ω) holds for each fixed ω. But if we restrict attention to countably many events

or random variables, then we can find a common set of zero probability outside of which there is

no problem. Since in all the properties stated above, we have only a finite or countable number

2You may complain that conditional MCT was used to show existence of conditional probability, then is it not cir-

cular reasoning to use conditional probability to prove conditional MCT? Indeed, at least a limited form of conditional

MCT was already used. But the derivation of other properties using conditional probability is not circular.
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of random variables, we can just consider a mapping of ω 7→ (Xn(ω))n from Ω to RN and transfer

the problem to the Polish space (RN,B(RN)). We leave it as an exercise to work out the details and

instead give direct arguments that amount to the same.

Proofs of properties of conditional expectations:

(1) Let Yi be versions of E[Xi

∣∣∣∣∣∣ G]. Then for A ∈ G,∫
A

(αY1 + αY2)dP = α

∫
A
Y1dP + β

∫
A
Y2dP

= α

∫
A
X1dP + β

∫
A
X2dP =

∫
A

(αX1 + βX2)dP

which shows that αY1 + βY2 is a version of E[αX1 + βX2

∣∣∣∣∣∣ G].

(2) This is clear if you go back to the proof of the existence of conditional expectation. Here

is a more direct proof. Let Y be a version of E[X
∣∣∣∣∣∣ G] and set A = {Y < 0} ∈ G. Then∫

A Y dP =
∫
AXdP ≥ 0 (as X ≥ 0 a.s.) but Y < 0 on A, hence P(A) = 0.

(3) Choose versions Yn of E[Xn

∣∣∣∣∣∣ G]. By redefining them on a zero probability set we may

assume that Y1 ≤ Y2 ≤ . . ., hence Y = limYn exists. For any A ∈ G, by the usual MCT we

have E[Yn1A] ↑ E[Y 1A] and E[Xn1A] ↑ E[X1A]. But also E[Yn1A] = E[Xn1A] for each n,

hence E[Y 1A] = E[X1A]. This is what was claimed.

(4) Since Z := lim inf Xn is the increasing limit of Zn := infk≥nXk, for any A ∈ G by the

conditional MCT we have E[Zn
∣∣∣∣∣∣ G] ↑ E[Z

∣∣∣∣∣∣ G]. ButXn ≥ Zn, hence E[Zn
∣∣∣∣∣∣ G] ≤ E[Xn

∣∣∣∣∣∣ G].

Putting these together, we see that lim inf E[Xn

∣∣∣∣∣∣ G] ≥ E[Z
∣∣∣∣∣∣ G] which is what we wanted.

(5) Apply the conditional Fatou’s lemma to Y −Xn and Y +Xn.

(6) Fix a version of E[X
∣∣∣∣∣∣ G] and E[ϕ(X)

∣∣∣∣∣∣ G]. Write ϕ(t) = supi∈I(ai + bit), where I is

countable (e.g., supporting lines at all rationals). For each i ∈ I , we have E[ϕ(X)
∣∣∣∣∣∣ G] ≥

E[ai + biX
∣∣∣∣∣∣ G] = ai + biE[X

∣∣∣∣∣∣ G]. Take supremum over i ∈ I to get ϕ(E[X
∣∣∣∣∣∣ G]) on the

right.

(7) Observe that E[(X − tY )2
∣∣∣∣∣∣ G] ≥ 0 a.s. for any t ∈ R. Hence E[X2

∣∣∣∣∣∣ G] + t2E[Y 2
∣∣∣∣∣∣ G] −

2tE[XY
∣∣∣∣∣∣ G] ≥ 0 a.s. The set of zero measure indicated by “a.s.” depends on t, but we can

choose a single set of zero measure such that the above inequality holds for all t ∈ Q, a.s.

(for a fixed version of E[X
∣∣∣∣∣∣ G] and E[Y

∣∣∣∣∣∣ G]). By continuity in t, it holds for all t ∈ R, a.s.

Optimize over t to get the conditional Cauchy-Schwarz.
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5. Cautionary tales on conditional probability

Even when knows all the definitions in and out, it is easy to make mistakes with conditional

probability. Extreme caution is advocated! Practising some explicit computations also helps. Two

points are to be noted.

Always condition on a sigma-algebra: Always specify the experiment first and then the outcome

of the experiment. From the nature of the experiment, we can work out the way probabilities and

expectations are to be updated for every possible outcome of the experiment. Then we apply that

to the outcome that actually occurs.

For example, suppose I tell you that the bus I caught today morning had a 4-digit registration

number of which three of the digits were equal to 7, and ask you for the chance that the remaining

digit is also a 7. You should refuse to answer that question, as it is not specified what experiment

was conducted. Did I note down the first three digits and report them to you, or did I look for

how many 7s there were and reported that to you? It is not enough to know what I observed, but

also what else I could have observed.

Conditioning on zero probability events: If (X,Y ) have a joint density f(x, y), then E[X
∣∣∣∣∣∣ Y ] =∫

xf(x,Y )dx∫
f(x,Y )dx

. If we set Y = 0 in this formula, we get E[X
∣∣∣∣∣∣ Y = 0]. However, since conditional

expectation is only defined up to zero measure sets, we can also set E[X
∣∣∣∣∣∣ Y = 0] to be any other

value. Why this particular formula?

The point is the same as asking for the value of a measurable function at a point - changing the

value at a point is of no consequence for most purposes. However, there may be some justification

for choosing a particular value. For example, if 0 is a Lebesgue point of f , it makes sense to take

f(0) to be lim
ε↓0

1
2ε

∫ ε
−ε f(x)dx. This is true in particular if f is continuous at 0.

Similarly, if we have to specify a particular value for E[X
∣∣∣∣∣∣ Y = 0], it has to be approached

via some limits, for example we may define it as limε↓0 E[X
∣∣∣∣∣∣ |Y | < ε], if the limit exists (and

P(|Y | < ε) > 0 for any ε > 0). For instance, if the joint density f(x, y) is continuous, this will limit

will be equal to the formula we got earlier, i.e.,
∫
xf(x,0)dx∫
f(x,0)dx

.

Example 5

Here is an example that illustrates both the above points. Let (U, V ) be uniform on [0, 1]2.

Consider the diagonal line segment L = {(u, v) ∈ [0, 1]2 : u = v}. What is the expected

value of U conditioned on the event that it lies on L? This question is ambiguous as the
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experiment is not specified and the event that (U, V ) lies on L has zero probability. Here are

two possible interpretations. See Figure 5.

(1) The experiment measured Y = U − V and the outcome was 0. In this case we

are conditioning on σ{Y }. If we take limits of E[U
∣∣∣∣∣∣ |Y | < ε] as ε ↓ 0, we get

E[X
∣∣∣∣∣∣ Y = 0] = 1

2 .

(2) The experiment measured Z = U/V and the outcome was 1. In this case we are

conditioning on σ{Z}. If we take limits of E[U
∣∣∣∣∣∣ |Z| < ε] as ε ↓ 0, we get E[X

∣∣∣∣∣∣ Z =

1] = 2
3 (do the calculation!).

FIGURE 1. Two ways of conditioning a uniformly chosen point on the square to lie

on the diagonal line. In the first case we condition on |U −V | < ε and in the second

case on |UV − 1| < ε (a value of ε = 0.02 was taken). Under that conditioning,

the point is uniform in the shaded regions. In the first conditioning, U is almost

uniform on [0, 1] but not so in the second.

Conditional probability is the largest graveyard of mistakes in probability, hence it is better to

keep these cautions in mind3. There are also other kinds of mistakes such as mistaking P(A
∣∣∣∣∣∣ B)

for P(B
∣∣∣∣∣∣ A), a standard example being the Bayes’ paradox (given that you tested positive for a

rare disease, what is the chance that you actually have the disease?) that we talked about in more

3There are many probability puzzles or “paradoxes”, where the gist is some mistake in conditioning of the kind

stated above (the famous Tuesday brother problem is an example of conditioning on an event without telling what the

measurement is). A real-life example: No less a probabilist than Yuval Peres told us of a mistake he made once: In

studying the random power series f(z) = a0 + a1z + a2z
2 + . . . where ak are i.i.d. N(0, 1), he got into a contradiction

thinking that conditioning on f(0) = 0 is the same as conditioning the zero set of f to contain the origin! The two

conditionings are different for reasons similar to the example given in the text.
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basic courses. This same thing is called representational fallacy by Kahnemann and Tversky in their

study of psychology of probability (a person who is known to be a doctor or a mathematician is

given to be intelligent, systematic, introverted and absent-minded. What is the person more likely

to be - doctor or mathematician?).

Here is a mind-bender for your entertainment4. If you like this, you can find many other such

questions on Gil Kalai’s blog under the category Test your intuition.

Elchanan Mossel’s amazing dice paradox: A fair die is thrown repeatedly until a 6 turns up.

Given that all the throws showed up even numbers, what is the expected number of throws (in-

cluding the last throw)?

One intuitive answer is that it is like throwing a die with only three faces, 2, 4, 6, till a 6 turns

up, hence the number of throws is a Geometric random variable with mean 3. This is wrong!

6. Finer aspects of conditional probabilities (omit on first, second, third and fourth readings)

For those interested to go deeper into the subtleties of conditional probabilities, here are things

I may expand on in the notes at some later time. You may safely skip all of this and increase the

happiness in your life by a non-negative amount. The two aspects touched upon here are not of

equal value. The first one is somewhat esoteric and I don’t know if anyone cares about it anymore.

The second one is fundamental to statistical physics, which forms a large part of probability theory.

6.1. Existence of regular conditional probabilities. Given (Ω,F ,P) and G ⊆ F ′ ⊆ F , we

want to know when a regular conditional probability Q : Ω × F ′ 7→ [0, 1] for conditioning with

respect to G, exists. If F ′ can be taken equal to F , all the better! The strongest statements I know

of are from a paper of Jirina5, of which I state the friendlier statement (for the more general one,

see the paper). We need the notion of a perfect measure, introduced by Gnedenko and Kolmogorov.

A probability measure P on (Ω,F) is said to be perfect if for every f : Ω 7→ R that is Borel

measurable, there is a Borel set B ⊆ f(Ω) such that P ◦ f−1(Bc) = 0. Since forward images of

measurable sets need not be measurable, it is not always true that f(Ω) is a Borel set, hence this

definition which settles for something a little less.

Theorem: Assume that P is a perfect measure on (Ω,F), and that F is countably generated. Then

for any G ⊆ F , a regular conditional probability exists on F .

4Thanks to P. Vasanth, Manan Bhatia and Gaurang Sriramanan for bringing this to my attention!
5Jirina, Conditional probabilities on σ-algebras with countable basis. Czech. Math. J. 4 (79), 372-380 (1954) [Se-

lected Transitions in Mathematical Statistics and Probability, vol. 2 (Providence: American Mathematical Society, 1962),

pp. 79-86]

21

https://gilkalai.wordpress.com
https://gilkalai.wordpress.com/category/test-your-intuition/


Corollary: Let (X,B) be a metric space with its Borel sigma algebra. Assume that P is an inner

regular probability Borel probability measure (i.e., P(A) = sup{P(K) : K ⊆ A, K compact} for

any A ∈ B). Then, for any sub-sigma algebra G ⊆ B, a regular conditional probability exists

Q : X × B 7→ [0, 1] exists.

One of the fundamental facts about complete, separable metric spaces is that every Borel prob-

ability measure is inner regular. Hence, our earlier theorem that regular conditional probabilities

exist when working on Polish spaces is a consequence of the above theorem.

Perfect probabilties were introduced in the 1950s when the foundations of weak convergence

laid down by Prokhorov were still fresh. Over decades, the emphasis in probability has shifted

to studying interesting models coming from various applications, and the setting of complete

separable metric spaces has proved adequate for all purposes. Modern books in probability often

don’t mention this concept (even Kallenberg does not!). A good reference (if you still want to wade

into it) for all this and more is the highly educational book of K. R. Parthasarathy titled Probability

measures on metric spaces.

6.2. Specifying a measure via conditional probabilities. We already saw that the joint dis-

tribution of a sequence of random variables X1, X2, . . . may be specified by giving the marginal

distribution of X1 and the conditional distribution of Xn given σ{X1, . . . , Xn−1} for n ≥ 2.

What if the specifications are more complicated? For example, suppose we want {Xi : i ∈ I},
where the conditional distribution of {Xi : i ∈ F} given {Xi : i 6∈ F} are given for each finite set

F . Can we construct such a collection?

It is clear that some consistency conditions are needed.

Example 6

LetX1, X2, X3 be integer-valued random variables such that P{(X1, X2, X3) = (i, j, k)} > 0

for all (i, j, k) ∈ Z3 (to avoid worries about division by zero). Then∑
j

P{X1 = i
∣∣∣∣∣∣ X2 = j,X3 = k}P{X2 = j

∣∣∣∣∣∣ X3 = k} =
∑
j

P{X1 = i,X2 = j
∣∣∣∣∣∣ X3 = k}

which is a consistency requirement among the conditional distributions. You may object

that the second factor in the sum on the left is not quite in the form of conditional distribu-

tion of {Xi : i ∈ F} given {Xi : i 6∈ F}. No problem, rewrite the above as∑
j,`

P{X1 = i
∣∣∣∣∣∣ X2 = j,X3 = k}P{X1 = `,X2 = j

∣∣∣∣∣∣ X3 = k} =
∑
j

P{X1 = i,X2 = j
∣∣∣∣∣∣ X3 = k}

so that all terms are of that form.
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Let us now formulate the question taking into account this kind of consistency requirement.

The problem is already very interesting and non-trivial if the random variables take only two

values and I is countable6.

Specification: Let I be a countable set and let Ω = {0, 1}I (a compact metric space) and G = B(Ω).

Suppose that for each finite F ⊆ I we are given a stochastic kernel λF : Ω×F 7→ [0, 1] such that

(1) λF (x, ·) is a Borel probability measure on G.

(2) λF (·, A) is measurable w.r.t GF := σ{ωj : j 6∈ F}.

(3) λF (·, A) = 1A if A ∈ GF .

(4) If F1 ⊆ F2, then λF2 ◦ λF1 = λF2 where

λF2 ◦ λF1(x,A) :=

∫
Ω
λF1(y,A)λF2(x, dy).(2)

A collection {λF } satisfying these conditions is called a specification.

Gibbs measure: Given a specification as above, does there exists a measure µ on (Ω,G) such that

the regular conditional distribution given GF is λF , for any finite F ⊆ I . Such a measure µ is called

a Gibbs measure.

Equivalently, we may ask if there exist {0, 1}-valued random variables (Xi)i∈I (on some prob-

ability space) such that λF (x, ·) is the conditional distribution of (Xi)i∈F given that (Xi)i∈F c =

(xi)i∈F c , for any finite F ⊆ I . Then µ is distribution of (Xi)i∈I .

The result on existence of Gibbs measures: Unlike in the Kolmogorov consistency theorem, the ob-

vious consistency conditions (2) are not sufficient to ensure the existence of Gibbs measures. We

need more. The following fundamental forms the basis of the probabilistic study of Gibbs mea-

sures coming from statistical physics. The additional conditions imposed are not easy to interpret,

but there are easy to check sufficient conditions that ensure they hold.

Theorem 3: Dobrushin-Lanford-Ruelle

Assume that the specification {λF } satisfies the following conditions:

(1) There exists x0 ∈ Ω such that given any finite F ⊆ I and any ε > 0, there is a

probability measure ν on {0, 1}F such that for any A ⊆ {0, 1}F satisfying ν(A) < δ

and any finite F ′ ⊇ F , we have λF ′(x0, A) < ε.

6The material below is taken from C. Preston, Random Fields, Springer, Berlin Heidelberg, 2006.
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(2) For any finite dimensional cylinder set A ∈ G and any finite F ⊆ I and any ε > 0,

there is a finite F ′ ⊆ I and a function f : {0, 1}F ′ 7→ R such that |λF (x,A) −
f(xF ′)| < ε for all x ∈ Ω, where xF ′ is the projection of x to {0, 1}F ′ .

Then, a Gibbs measure exists for the given specification.

The question of uniqueness or non-uniqueness of Gibbs measure is one of the most fundamen-

tal questions in statistical physics, and underlies the mathematical study of phase transitions.
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CHAPTER 2

Martinagales: theory

1. Martingales

1.1. The setting. Let (Ω,F ,P) be a probability space. Let F• = (Fn)n∈N be a collection of

sigma subalgebras of F indexed by natural numbers such that Fm ⊆ Fn whenever m < n. Then

we say that F• is a filtration and refer to the quadruple (Ω,F ,F•,P) as a filtered probability space.

We refer to n as “time”, and the sigma-algebra at a given time represents the complete knowledge

at that instant.

A sequence of random variables X = (Xn)n∈N defined on (Ω,F ,P) is said to be adapted to the

filtration F• if Xn ∈ Fn for each n.

Definition 3: Martingales, Submartingales, Supermartingales

Let X = (Xn)n∈N be an adapted process on a filtered probability space (Ω,F ,F•,P). As-

sume that each Xn is integrable. We say that X is a

(1) super-martingale if E[Xn

∣∣∣∣∣∣ Fn−1] ≤ Xn−1 a.s. for each n ≥ 1,

(2) sub-martingale if −X is a super-martingale,

(3) martingale is it is both a super-martingale and a sub-martingale.

When we want to explicitly mention the filtration, we write F•-martingale or F•-super-

martingale etc.

Unlike say Markov chains, the definition of martingales does not appear to put too strong a re-

striction on the distributions ofXn, it is only on a few conditional expectations. Nevertheless, very

power theorems can be proved at this level of generality, and there are any number of examples

to justify making a definition whose meaning is not obvious on the surface.

1.2. Examples. In this section we give classes of examples.

Example 7: Random walk

Let ξn be independent random variables with finite mean and let Fn = σ{ξ1, . . . , ξn} (so

F0 = {∅,Ω}). Define X0 = 0 and Xn = ξ1 + . . . + ξn for n ≥ 1. Then, X is F•-adapted, Xn
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have finite mean, and

E[Xn

∣∣∣∣∣∣ Fn−1] = E[Xn−1 + ξn
∣∣∣∣∣∣ Fn−1]

= E[Xn−1

∣∣∣∣∣∣ Fn−1] + E[ξn
∣∣∣∣∣∣ Fn−1]

= Xn−1 + E[ξn]

since Xn−1 ∈ Fn−1 and ξn is independent of Fn−1. Thus, if E[ξn] is positive for all n, then X

is a sub-martingale; if E[ξn] is negative for all n, then X is a super-martingale; if E[ξn] = 0

for all n, then X is a martingale.

Example 8: Product martingale

Let ξn be independent, non-negative random variables and let Xn = ξ1ξ2 . . . ξn and X0 = 1.

Then, with Fn = σ{ξ1, . . . , ξn}, we see that X is F•-adapted and E[Xn] exists (equals the

product of E[ξk], k ≤ n). Lastly,

E[Xn

∣∣∣∣∣∣ Fn−1] = E[Xn−1ξn
∣∣∣∣∣∣ Fn−1] = Xn−1µn

where µn = E[ξn]. Hence, if µn ≥ 1 for all n, then X is a sub-martingale, if µn = 1 for all n,

then X is a martingale, and if µn ≤ 1 for all n, then X is a super-martingale.

In particular, replacing ξn by ξn/µn, we see that Yn := Xn
µ1...µn

is a martingale.

Example 9: Log-likelihood function

Let S = {1, 2, . . . ,m} be a finite set with a probability mass function p(i), 1 ≤ i ≤ m.

Suppose X1, X2, . . . are i.i.d. samples from this distribution. The likelihood-function of the

first n samples is defined as

Ln =
n∏
k=1

p(Xk).

Its logarithm, `n := logLn =
∑n

k=1 log p(Xk), is called the log-likelihood function. This is

a sum of i.i.d. random variables log p(Xk), and they have finite mean H := E[log p(Xk)] =∑m
i=1 p(i) log p(i) (if p(i) = 0 for some i, interpret p(i) log p(i) as zero). Hence `n − nH is a

martingale (with respect to the filtration given by Fn = σ{X1, . . . , Xn}), by the same logic

as in the first example.

26



Example 10: Doob martingale

Here is a very general way in which any (integrable) random variable can be put at the end

of a martingale sequence. Let X be an integrable random variable on (Ω,F ,P) and let F•
be any filtration. Let Xn = E[X

∣∣∣∣∣∣ Fn]. Then, (Xn) is F•-adapted, integrable and

E[Xn

∣∣∣∣∣∣ Fn−1] = E
[
E
[
X
∣∣∣∣∣∣ Fn] ∣∣∣∣∣∣ Fn−1

]
= E[X

∣∣∣∣∣∣ Fn−1] = Xn−1

by the tower property of conditional expectation. Thus, (Xn) is a martingale. Such martin-

gales got by conditioning one random variable w.r.t. an increasing family of sigma-algebras

is called a Doob martingale.

Often X = f(ξ1, . . . , ξm) is a function of independent random variables ξk, and we study X

be sturying the evolution of E[X
∣∣∣∣∣∣ ξ1, . . . , ξk], revealing the information of ξks, one by one.

This givesX as the end-point of a Doob martingale. The usefulness of this construction will

be clear in a few lectures.

Example 11: Increasing process

Let An, n ≥ 0, be a sequence of random variables such that A0 ≤ A1 ≤ A2 ≤ . . . a.s.Assume

that An are integrable. Then, if F• is any filtration to which A is adapted, then

E[An
∣∣∣∣∣∣ Fn−1]−An−1 = E[An −An−1

∣∣∣∣∣∣ Fn−1] ≥ 0

by positivity of conditional expectation. Thus,A is a sub-martingale. Similarly, a decreasing

sequence of random variables is a super-martingalea.

aAn interesting fact that we shall see later is that any sub-martingale is a sum of a martingale and an increasing

process. This seems reasonable since a sub-martingale increases on average while a martingale stays constant

on average.

Example 12: Harmonic functions

Let R = (Rn)n≥0 be a simple random walk on a graph G with a countable vertex set V

where each vertex has finite degree. This means that R is a Markov chain with transition

probabilities pi,j = 1

deg(i)
if j ∼ i, and pi,j = 0 otherwise. Let ϕ : V 7→ R be a harmonic

function, i.e., ϕ(i) = 1

deg(i)

∑
j:j∼i ϕ(j), for all i ∈ V . Then, Xn = ϕ(Vn) is a martingale.

Indeed,

E[Xn

∣∣∣∣∣∣ Fn−1] =
1

deg(Vn−1)

∑
j:j∼Vn−1

ϕ(j) = ϕ(Vn−1) = Xn−1.
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We say that ϕ is subharmonic if ϕ(i) ≤ 1

deg(i)

∑
j:j∼i ϕ(j), for all i ∈ V and that ϕ is super-

harmonic if the inequality goes the other way. Correspondingly, X will be a submartingale

or a supermartingale.

Example 13: Branching process

Consider a Galton-Watson process with offspring variable L with P{L = k} = pk for k ∈ N.

Recall the informal description: At generation 0 there is one individual, who gives birth to

a random number of offsprings according to the distribution of L. These offsprings belong

to the first generation, and each of them give birth to offsprings according to the same

distribution, independently of each other and their ancestors. And so on.

Let Zn is the number of individuals in the nth generation. A precise construction of Zns can

by setting Z0 = 1 and

Zn :=

Ln,1 + . . .+ Ln,Zn−1 if Zn−1 ≥ 1,

0 if Zn−1 = 0.

where Ln,k, n, k ≥ 1, are i.i.d. copies of L.

The natural filtration to consider here is Fn = σ{Lm,k : m ≤ n, k ≥ 1}. Clearly Z = (Zn)n≥0

is adapted to F•. Assume that E[L] = m < ∞. Then, (see the exercise below to justify the

steps)

E[Zn
∣∣∣∣∣∣ Fn−1] = E[1Zn−1≥1(Ln,1 + . . .+ Ln,Zn−1)

∣∣∣∣∣∣ Fn−1]

= 1Zn−1≥1Zn−1m

= Zn−1m.

Thus, Znmn is a martingale.

Exercise 4

If N is a N-valued random variable independent of ξm, m ≥ 1, and ξm are i.i.d. with mean

µ, then E[
∑N

k=1 ξk
∣∣∣∣∣∣ N ] = µN .

Example 14: Pólya’s urn scheme

An urn has b0 > 0 black balls andw0 > 0 white balls to start with. A ball is drawn uniformly

at random and returned to the urn with an additional new ball of the same colour. Draw

a ball again and repeat. The process continues forever. A basic question about this process
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is what happens to the contents of the urn? Does one colour start dominating, or do the

proportions of black and white equalize?

In precise notation, the above description may be captured as follows. Let Un, n ≥ 1, be

i.i.d. Uniform[0, 1] random variables. Let b0 > 0, w0 > 0, be given. Then, define B0 = b0

and W0 = w0. For n ≥ 1, define (inductively)

ξn = 1

(
Un ≤

Bn−1

Bn−1 +Wn−1

)
, Bn = Bn−1 + ξn, Wn = Wn−1 + (1− ξn).

Here, ξn is the indicator that the nth draw is a black, Bn and Wn stand for the number of

black and white balls in the urn before the (n + 1)st draw. It is easy to see that Bn + Wn =

b0 + w0 + n (since one ball is added after each draw).

Let Fn = σ{U1, . . . , Un} so that ξn, Bn, Wn are all Fn measurable. Let Xn = Bn
Bn+Wn

=

Bn
b0+w0+n be the proportion of balls after the nth draw (Xn is Fn-measurable too). Observe

that

E[Bn
∣∣∣∣∣∣ Fn−1] = Bn−1 + E[1Un≤Xn−1

∣∣∣∣∣∣ Fn−1] = Bn−1 +Xn−1 =
b0 + w0 + n

b0 + w0 + n− 1
Bn−1.

Thus,

E[Xn

∣∣∣∣∣∣ Fn−1] =
1

b0 + w0 + n
E[Bn

∣∣∣∣∣∣ Fn−1]

=
1

b0 + w0 + n− 1
Bn−1

= Xn−1

showing that (Xn) is a martingale.

1.3. New martingales out of old. Let (Ω,F ,F•,P) be a filtered probability space.

I Suppose X = (Xn)n≥0 is a F•-martingale and ϕ : R → R is a convex function. If Yn =

ϕ(Xn) has finite expectation for each n, then Y = (Yn)n≥0 is a sub-martingale. If X was a

sub-martingale to start with, and if ϕ is increasing and convex, then Y is a sub-martingale.

Indeed, E[ϕ(Xn)
∣∣∣∣∣∣ Fn−1] ≥ ϕ(E[Xn

∣∣∣∣∣∣ Fn−1]) by conditional Jensen’s inequality. If X is

a martingale, then the right hand side is equal to ϕ(Xn−1) and we get the sub-martingale

property for (ϕ(Xn))n≥0.

If X was only a sub-martingale, then E[Xn

∣∣∣∣∣∣ Fn−1] ≥ Xn−1 and hence the increasing

property of ϕ is required to conclude that ϕ(E[Xn

∣∣∣∣∣∣ Fn−1]) ≥ ϕ(Xn−1).

I If t0 < t1 < t2 < . . . is a subsequence of natural numbers, and X is a martingale (or

sub-martingale or super-martingale), then Xt0 , Xt1 , Xt2 , . . . is also a martingale (respec-

tively sub-martingale or super-martingale). Of course, we must take the new filtration

29



Ft0 ,Ft1 , . . .. This follows from the tower property of conditional expectation: If n > m,

E[Xn

∣∣∣∣∣∣ Fm] = E[E[. . .E[Xn

∣∣∣∣∣∣ Fn−1]
∣∣∣∣∣∣ Fn−2] . . .

∣∣∣∣∣∣ Fm].

But it is a very interesting question that we shall ask later as to whether the same is true

if ti are random times.

If we had a continuous time-martingale X = (Xt)t≥0, then again X(ti) would be

a discrete time martingale for any 0 < t1 < t2 < . . .. Results about continuous time

martingales can in fact be deduced from results about discrete parameter martingales

using this observation and taking closely spaced points ti. If we get to continuous-time

martingales at the end of the course, we shall explain this fully.

I Let X be a martingale and let H = (Hn)n≥1 be a predictable sequence. This just means

that Hn ∈ Fn−1 for all n ≥ 1. Then, define (H.X)n =
∑n

k=1Hk(Xk −Xk−1). Assume that

(H.X)n is integrable for each n (true for instance if Hn is a bounded random variable for

each n). Then, (H.X) is a martingale. If X was a sub-martingale to start with, then (H.X)

is a sub-martingale provided Hn are non-negative, in addition to being predictable.

PROOF. E[(H.X)n − (H.X)n−1

∣∣∣∣∣∣ Fn−1] = E[Hn(Xn − Xn−1)
∣∣∣∣∣∣ Fn−1] = HnE[Xn −

Xn−1

∣∣∣∣∣∣ Fn−1]. If X is a martingale, the last term is zero. If X is a sub-martingale, then

E[Xn − Xn−1

∣∣∣∣∣∣ Fn−1] ≥ 0 and because Hn ≥ 0, the sub-martingale property of (H.X)

follows. �

1.4. Continuous time martingales? For continuous time processes, we must change the set-

ting. But most of what we said in this section goes through, with appropriate modifications.

I A filtration indexed by a totally ordered set I such as R+ = [0,∞) or Z or {0, 1, . . . , n} etc.

is just a family of sub sigma algebras Ft, t ∈ I such that Ft ⊆ Fs if t ≤ s.

I X = (Xt)t∈I is said to be adapted to F• = (Ft)t∈I if Xt ∈ Ft for all t ∈ I .

I Defining martingales may look tricky as there may be no “previous instant” n− 1. How-

ever, as we saw above, for a discrete time martingale, E[Xn

∣∣∣∣∣∣ Fm] = Xm for any n > m.

This can be taken as the definition in general. That is X = (Xt)t∈I is defined to be a

supermartingale if E[Xt

∣∣∣∣∣∣ Fs] ≤ Xs for any s < t.

I If J ⊆ I and (Xt)t∈I is a submartingale w.r.t. (Ft)t∈I , then so is (Xt)t∈J w.r.t (Ft)t∈J .

I By the previous remark, if (Xt)t∈R+ is a martingale, then so is any sequence Xq1 , Xq2 , . . .

provided q1 < q2 < . . .. Theorems that we prove for discrete time martingales apply to all

such subsequences, and putting them together, one can get analogous theorems for the

original process indexed by R+. This will be explained at the end. For now, this is just to

say that studying discrete time martingales is sufficient.
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Here are two examples of martingales in continuous time.
Exercise 5: Brownian motion

Let W = (Wt)t≥0 be a standard Brownian motion. Recall that this means that for any

t1 < . . . < tn, the variables Wt1 ,Wt2−Wt1 . . . ,Wtn−Wtn−1 are independent Gaussians with

zero means and variances t1, t2 − t1, . . . , tn − tn−1, respectively (the sample path continuity

of t 7→Wt is not needed for the following exercise).

Show that Wt and W 2
t − t are martingales.

Exercise 6: Poisson process

Let N = (Nt)t≥0 be a homogenous Poisson process with intensity 1. Recall that this means

that for any t1 < . . . < tn, the variables Nt1 , Nt2 − Nt1 , . . . , Ntn − Ntn−1 are independent

Poisson random variables with parameters t1, t2 − t1, . . . , tn − tn−1 respectively.

Show that Nt − t and (Nt − t)2 − t are martingales.

2. A short preview of things to come

Here are three distinct themes in the theory of martingales that we shall explore in some detail.

The usefulness can only be appreciated when one sees the variety of problems that can be solved

using these ideas.

(1) Several theorems that we have seen for sums of independent random variables go through

for martingales, with a few modifications. Two examples are Hoeffding’s inequality and

Kolmogorov’s maximal inequality. While the proofs are not all that different from the one

for independent sums, the applicability is greatly expanded by this generalisation. With

greater effort and imposing suitable conditions one can (we do not touch upon these) also

prove central limit theorems, laws of iterated logarithm, etc.

(2) Optional stopping/sampling theorems. By definition of martingales, E[MT ] = E[M0] for

any t, but the extension to certain kinds of random times T , known as stopping times,

brings with it many amazing consequences. The closest things one might have seen are

perhaps Wald’s identities in sequential analysis (where the idea of stopping at a random

time is the key point).

(3) Convergence theorems for martingales. Martingales stay constant on average. Turns out,

each sample path of a martingale must either converge or oscillate wildly. Convergence

theorems restrict the possibility of oscillating wildly to conclude convergence. The single

most useful statement is that any martingale sequence that is uniformly integrable must

converge almost surely and in L1. This has innumerable consequences.
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3. Hoeffding’s inequality

Theorem 4: Hoeffding’s inequality

Let X = (X0, . . . , Xn) be a martingale. Assume that |Xk − Xk−1| ≤ dk a.s. for 1 ≤ k ≤ n.

Then P{Xn −X0 ≥ t} ≤ e−
t2

2D2 for any t > 0, where D2 = d2
1 + . . .+ d2

n.

Earlier we proved this for the martingale Xk = ξ1 + . . .+ ξk, where ξi are independent random

variables with |ξk| ≤ dk. A key step in the proof is that for a zero mean random variable Y with

|Y | ≤ d,

E[eθY ] ≤ e
1
2
θ2d2

.(3)

Recall that this is proved by writing Y as the convex combination Y+d
2d (−d) + d−Y

2d (d) and using

convexity of exponential to get E[eθY ] ≤ eθd+e−θd

2 . It is an elementary fact that the latter is∑
k≥0

θ2kd2k

(2k)!
≤
∑
k≥0

(θ2d2/2)k

k!
= e

1
2
θ2d2

.

PROOF OF HOEFFDING’S INEQUALITY. Fix t > 0 and θ > 0 and use Markov’s inequality:

P{Xn −X0 ≥ t} = e−θtE[eθ(Xn−X0)].

Conditioning on Fn−1, the right side is just E[eθ(Xn−1−X0)E[eθ(Xn−Xn−1)
∣∣∣∣∣∣ Fn−1]]. Conditional on

Fn−1, the random variable Xn−Xn−1 has zero mean (martingale property) and is bounded by dn
anyway. By (3), the inner conditional expectation is at most eθ

2d2
n/2. Thus,

E[eθ(Xn−X0)] ≤ eθd2
n/2E[eθ(Xn−1−X0)].

Continuing, we get E[eθ(Xn−X0)] ≤ e
1
2
θ2D2

. Thus, P{Xn − X0 ≥ t} ≤ e−θt+
1
2
θ2D2

. The optimal

choice is θ = t
D , which gives the claimed bound. �

The only difference in the proof is that for independent random variables we factored E[eθSn ]

as a product of E[eθXk ], but here we do it by conditioning on the previous step. While there is not

much novelty in the proof of this extension, it greatly enhances the applicability.

3.1. Concentration for functions of independent random variables. Let ξ1, . . . , ξn be i.i.d.

random variables and let f : Rn → R be a fixed function. Assume that |f(x) − f(y)| ≤ d if

x, y ∈ Rn differ in at most one co-ordinate (i.e., xi = yi for all i 6= j, for some j).

Theorem 5: McDiarmid’s inequality

In the above setting, let Y = f(ξ1, . . . , ξn). Then

P{|Y −E[Y ]| ≥ t} ≤ 2e−
t2

2nd2 .
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PROOF. Create the Doob martingale Xk = E[Y
∣∣∣∣∣∣ Fk], where Fk = σ{ξ1, . . . , ξk}. Then Xn = Y

while X0 = E[Y ]. If we argue that |Xk −Xk−1| ≤ d a.s., then by Hoeffding’s inequality (apply to

X and to −X and add up the inequalities), we get the claimed result, since D2 = nd2.

To see the bound on Xk+1 −Xk, consider ξ′k, an independent copy of ξk. Then

Xk = E[f(ξ1, . . . , ξk−1, ξk, ξk+1, . . . , ξn)
∣∣∣∣∣∣ ξ1, . . . , ξk−1, ξk],

Xk−1 = E[f(ξ1, . . . , ξk−1, ξ
′
k, ξk+1, . . . , ξn)

∣∣∣∣∣∣ ξ1, . . . , ξk−1, ξk].

Note that the conditioning is on the same set in both cases, but f acts on vectors that differ only in

the kth co-ordinate. Therefore,

|Xk −Xk−1| ≤ E[|f(ξ1, . . . , ξk−1, ξk, ξk+1, . . . , ξn)− f(ξ1, . . . , ξk−1, ξ
′
k, ξk+1, . . . , ξn)|

∣∣∣∣∣∣ Fk].
As the random variable is bounded by d, so is its conditional expectation. �

Innumerable problems of probabilistic combinatorial optimization are of the form given here.

For example,

(1) Let ξ be a uniformly sampled binary string. Let Yn be the number of times the segment

s = 1011 occurs in ξ. That is Yn =
∑n−3

i=1 1(ξi,...,ξi+3)=s. While we can compute the mean

(E[Yn] ∼ n/4) and variance of Yn (Var(Yn) � n), the dependence causes difficulties in

studying the variable. But Hoeffding’s inequality tells us that

P{|Yn −E[Yn]| ≥ t
√
n} ≤ e−ct2 .

That is, Yn has sub-Gaussian tails around its mean, on the scale of
√
n, the same behaviour

(up to the constant c in the exponent) as if Yn were a sum of i.i.d. random variables.

(2) Pick two independent binary strings U, V of length n uniformly and independently at

random. Let

Yn = max{k : ∃i1 < . . . < ik, j1 < . . . < jk, such that Uir = Vjr for all r},

be the longest length of a common subsequence. By some elementary arguments one can

show that E[Yn] ∼ cn for some 0 < c < 1, but the value of c is unknown. Remarkably,

without any knowledge of the mean and variance, we can still say that P{|Yn −E[Yn]| ≥
t
√
n} ≤ 2e−t

2/2 (use Theorem 5 with ξi = (Ui, Vi)).

Of course, Hoeffding’s gives a one-way inequality. The window length one gets in specific prob-

lems may not be optimal. The power is in the generality.

4. Stopping times

Let (Ω,F ,F•,P) be a filtered probability space. Let T : Ω→ N ∪ {+∞} be a random variable.

If {T ≤ n} ∈ Fn for each n ∈ N, we say that T is a stopping time.
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Equivalently we may ask for {T = n} ∈ Fn for each n. The equivalence with the definition

above follows from the fact that {T = n} = {T ≤ n} \ {T ≤ n − 1} and {T ≤ n} = ∪nk=0{T =

k}. The way we defined it, it also makes sense for continuous time. For example, if (Ft)t≥0 is

a filtration and T : Ω → [0,+∞] is a random variable, then we say that T is a stopping time if

{T ≤ t} ∈ Ft for all t ≥ 0.

Example 15

Let Xk be random variables on a common probability space and let FX be the natural

filtration generated by them. If A ∈ B(R) and τA = min{n ≥ 0 : Xn ∈ A}, then τA is a

stopping time. Indeed, {τA = n} = {X0 6∈ A, . . . ,Xn−1 6∈ A,Xn ∈ A}which clearly belongs

to Fn.

On the other hand, τ ′A := max{n : Xn 6∈ A} is not a stopping time as it appears to require

future knowledge. One way to make this precise is to consider ω1, ω2 ∈ Ω such that τ ′A(ω1) =

0 < τ ′A(ω2) but X0(ω1) = X0(ω2). I we can find such ω1, ω2, then any event in F0 contains

both of them or neither. But {τ ′A ≤ 0} contains ω1 but not ω2, hence it cannot be in F0. In a

general probability space we cannot guarantee the existence of ω1, ω2 (for example Ω may

contain only one point or Xk may be constant random variables!), but in sufficiently rich

spaces it is possible. See the exercise below.

Exercise 7

Let Ω = RN withF = B(RN) and letFn = σ{Π0,Π1, . . . ,Πn} be generated by the projections

Πk : Ω→ R defined by Πk(ω) = ωk for ω ∈ Ω. Give an honest proof that τ ′A defined as above

is not a stopping time (let A be a proper subset of R).

Suppose T, S are two stopping times on a filtered probability space. Then T∧S, T∨S, T+S are

all stopping times. However cT and T − S need not be stopping times (even if they take values in

N). This is clear, since {T ∧S ≤ n} = {T ≤ n}∪{S ≤ n} etc. More generally, if {Tm} is a countable

family of stopping times, then maxm Tm and minm Tm are also stopping times.

Small digression into continuous time: We shall use filtrations and stopping times in the Brown-

ian motion class too. There the index set is continuous and complications can arise. For example,

let Ω = C[0,∞),F its Borel sigma-algebra,Ft = σ{Πs : s ≤ t}. Now define τ, τ ′ : C[0,∞)→ [0,∞)

by τ(ω) = inf{t ≥ 0 : ω(t) ≥ 1} and τ ′(ω) = inf{t ≥ 0 : ω(t) > 1}where the infimum is interpreted

to be +∞ is the set is empty. In this case, τ is an F•-stopping time but τ ′ is not (why?). In discrete

time there is no analogue of this situation. When we discuss this in Brownian motion, we shall
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enlarge the sigma-algebra Ft slightly so that even τ ′ becomes a stopping time. This is one of the

reasons why we do not always work with the natural filtration of a sequence of random variables.

4.1. The sigma algebra at a stopping time. If T is a stopping time for a filtration F•, then we

want to define a sigma-algebra FT that contains all information up to and including the random

time T .

To motivate the idea, assume that Fn = σ{X0, . . . , Xn} for some sequence (Xn)n≥0. One might

be tempted to define FT as σ{X0, . . . , XT } but a moment’s thought shows that this does not make

sense as written since T itself depends on the sample point. One way to fix this is to “freeze the

process” at time T to get the stopped process Yn := XT∧n, n ≥ 0 and define

FT := σ{Yn : n ≥ 0}.(4)

This is well-defined, and it is clear that it captures all knowledge up to the stopping time T .

Another way to think of this is to partition the sample space as Ω = tn≥0{T = n} and on

the portion {T = n} we consider the sigma-algebra generated by {X0, . . . , Xn}. Putting all these

together we get a sigma-algebra that we call FT . To summarize, we say that A ∈ FT if and only

if A ∩ {T = n} ∈ Fn for each n ≥ 0. Observe that this condition is equivalent to asking for

A ∩ {T ≤ n} ∈ Fn for each n ≥ 0 (check!). Thus, we arrive at the definition

FT := {A ∈ F : A ∩ {T ≤ n} ∈ Fn} for each n ≥ 0.(5)

The two definitions (4) and (5) are equivalent when the filtration is the one generated by X . We

leave this as an exercise. For general filtrations, we take (5) as the definition. Some basic observa-

tions.

(1) It does not make a difference if we wrote {T = n} instead of {T ≤ n} in (5). But in con-

tinuous time setting, it makes sense to define FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft for all t}.

(2) FT is a sigma-algebra. Indeed,

Ac ∩ {T ≤ n} = {T ≤ n} \ (A ∩ {T ≤ n}),

(
⋃
k≥1

Ak) ∩ {T ≤ n} =
⋃
k≥1

(Ak ∩ {T ≤ n}).

From these it follows that FT is closed under complements and countable unions. As

Ω ∩ {T ≤ n} = {T ≤ n} ∈ Fn, we see that Ω ∈ FT . Thus FT is a sigma-algebra.

(3) The idea behind the definition of FT is that it somehow encapsulates all the informa-

tion we have up to the random time T . The following lemma is a sanity check that

this intuition is captured in the definition (i.e., if the lemma were not true, we would

have to change our definition!). Here and later, note that XT is the random variable
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ω 7→ XT (ω)(ω). But this makes sense only if T (ω) < ∞, hence we assume finiteness be-

low. Alternately, we can fix some random variable X∞ that is F-measurable and use that

to define XT when T =∞.

Lemma 6

Let X = (Xn)n≥0 be adapted to the filtration F• and let T be a finite F•-stopping

time. Then XT is FT -measurable.

PROOF. {XT ≤ u} ∩ {T ≤ n} = {Xn ≤ u} ∩ {T ≤ n} which is in Fn, since {Xn ≤ u}
and {T ≤ n} both are. Therefore, {XT ≤ u} ∈ FT for any u ∈ R, meaning that XT is

FT -measurable. �

(4) Another fact is that T is FT -measurable (again, it would be a strange definition if this was

not true - after all, by time T we know that value of T ). To show this we just need to show

that {T ≤ m} ∈ Fm for any m ≥ 0. But that is true because for every n ≥ 0 we have

{T ≤ m} ∩ {T ≤ n} = {T ≤ m ∧ n} ∈ Fm∧n ⊆ Fn.

(5) If T, S are stopping times and T ≤ S (caution! here we mean T (ω) ≤ S(ω) for every

ω ∈ Ω), then FT ⊆ FS . To see this, suppose A ∈ FT . Then A ∩ {T ≤ n} ∈ Fn for each n.

If A ∈ FT , then A ∩ {T ≤ n} ∈ Fn and hence (A ∩ {T ≤ n}) ∩ {S ≤ n} ∈ Fn, as S is

a stopping time. But if T ≤ S, then A ∩ {S ≤ n} = A ∩ {S ≤ n} ∩ {T ≤ n} and hence

A ∩ {S ≤ n} ∈ Fn. This shows that A ∈ FS .

All these should make it clear that that the definition of FT is sound and does indeed capture the

notion of information up to time T .

For the sake of completeness: In the last property stated above, suppose we only assumed that

T ≤ S a.s. Can we still conclude that FT ⊆ FS? Let C = {T > S} so that C ∈ F and P(C) = 0. If

we try to repeat the proof as before, we end up with

A ∩ {S ≤ n} = [(A ∩ {T ≤ n}) ∩ {S ≤ n}] ∪ (A ∩ {S ≤ n} ∩ C).

The first set belongs to Fn but there is no assurance that A ∩ C does, since we only know that

C ∈ F .

One way to get around this problem (and many similar ones) is to complete the sigma-algebras

as follows. Let N be the collection of all null sets in (Ω,F ,P). That is,

N = {A ⊆ Ω : ∃ B ∈ F such that B ⊇ A and P(B) = 0}.

Then define F̄n = σ{Fn ∪N}. This gives a new filtration F̄• = (F̄n)n≥0 which we call the comple-

tion of the original filtration (strictly speaking, this completion depended on F and not merely on
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F•. But we can usually assume without loss of generality that F = σ{∪n≥0Fn} by decreasing F if

necessary. In that case, it is legitimate to call F̄• the completion of F• under P).

It is to be noted that after enlargement, F•-adapted processes remain adapted to F̄•, stopping

times for F• remain stopping times for F̄•, etc. Since the enlargement is only by P-null sets, it

can be see that F•-super-martingales remain F̄•-super-martingales, etc. Hence, there is no loss in

working in the completed sigma algebras.

Henceforth we shall simply assume that our filtered probability space (Ω,F ,F•,P) is such

that all P-null sets in (Ω,F ,P) are contained in F0 (and hence in Fn for all n). Let us say that F•
is complete to mean this.

Exercise 8

Let T, S be stopping times with respect to a complete filtration F•. If T ≤ S a.s (w.r.t. P),

show that FT ⊆ FS .

Exercise 9

Let T0 ≤ T1 ≤ T2 ≤ . . . (a.s.) be stopping times for a complete filtration F•. Is the filtration

(FTk)k≥0 also complete?

5. Optional stopping or sampling

Let X = (Xn)n≥0 be a super-martingale on a filtered probability space (Ω,F ,F•,P). We know

that (1) E[Xn] ≤ E[X0] for all n ≥ 0 and (2) (Xnk)k≥0 is a super-martingale for any subsequence

n0 < n1 < n2 < . . ..

Optional stopping theorems are statements that assert that E[XT ] ≤ E[X0] for a stopping time

T . Optional sampling theorems are statements that assert that (XTk)k≥0 is a super-martingale for an

increasing sequence of stopping times T0 ≤ T1 ≤ T2 ≤ . . .. Usually one is not careful to make the

distinction and OST could refer to either kind of result.

Neither of these statements is true without extra conditions on the stopping times. But they

are true when the stopping times are bounded, as we shall prove in this section. In fact, it is best to

remember only that case, and derive more general results whenever needed by writing a stopping

time as a limit of bounded stopping times. For example, T ∧ n are bounded stopping times and

T ∧ n a.s.→ T as n→∞.

Now we state the precise results for bounded stopping times.
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Theorem 7: Optional stopping theorem

Let (Ω,F ,F•,P) be a filtered probability space and let T be a stopping time for F•. If X =

(Xn)n≥0 is a F•-super-martingale, then (XT∧n)n≥0 is a F•-super-martingale. In particular,

E[XT∧n] ≤ E[X0] for all n ≥ 0.

PROOF. Let Hn = 1n≤T . Then Hn ∈ Fn−1 because {T ≥ n} = {T ≤ n − 1}c belongs to Fn−1.

By the observation earlier, (H.X)n, n ≥ 0, is a super-martingale. But (H.X)n = XT∧n − X0 and

this proves that (XT∧n)n≥0 is an F•-super-martingale. Then of course E[XT∧n] ≤ E[X0]. �

Optional stopping theorem is a remarkably useful tool. The way it is applied is to strengthen

the above statement to say that E[XT ] ≤ E[X0] (equality if it is a martingale) for a stopping time

T . This would follow if we could show that E[XT∧n] → E[XT ] as n → ∞. This seems reasonable

as XT∧n
a.s.→ XT for any finite stopping time T . However, it is not always true as the following

example shows.

Example 16

Let (Xn) be a simple symmetric random walk on integers started at the origin and let T be

the first time when the random walk visits the state 1 (it is well-known that T < ∞ a.s.).

Then X is a martingale, XT = 1 a.s. but X0 = 0 a.s., hence the expectations do not match.

If (Xn) is a positive supermartingale, then for any finite stopping time T , almost sure conver-

gence of XT∧n to XT and Fatou’s lemma imply that E[XT ] ≤ E[X0]. We give more conveniently

applicable conditions in the theorem below (the conditions hold for X if and only if they hold for

its negative, which is convenient to apply to martingales to get the conclusion E[XT ] = E[X0]).

Theorem 8: Optional stopping theorem - an extension

Let (Ω,F ,F•,P) be a filtered probability space and let T be a finite stopping time for F•.
If X = (Xn)n≥0 is a F•-sub-martingale. Then E[XT ] ≤ E[X0] if any one of the following

conditions are met.

(1) {XT∧n}n≥1 is uniformly integrable.

(2) {XT∧n}n≥1 is either (a) uniformly bounded or (b) dominated by an integrable ran-

dom variable or (c) bounded in L2.

(3) T is uniformly bounded.

(4) The differences {Xn+1−Xn} are uniformly bounded by a constant, and E[T ] <∞.
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PROOF. Since T is finite,XT∧n
a.s.→ XT . Hence,XT

L1

→ XT if and only if {XT∧n} is uniformly in-

tegrable. Convergence in L1 implies convergence of expectations. This proves the first statement.

Each of the three conditions in the second statement is sufficient for uniform integrability,

hence the second follows from the first.

If T ≤ N a.s. then |XT∧n| ≤ |X0|+. . .+|XN |which is an integrable random variable. Therefore,

the sequence {XT∧n}n≥1 is dominated and hence uniformly integrable.

If |Xn+1−Xn| ≤ b a.s. for all n, then |Xn| ≤ |X0|+nb. Hence |XT∧n| ≤ |X0|+ bT . As |X0|+ bT

is integrable, the domination condition holds and thus {XT∧n} is uniformly integrable. �

Although the conditions given here may be worth remembering, it is much better practise to

always write E[XT∧n] ≤ E[X0] and then think of ways in which to let n → ∞ and get E[XT ] ≤
E[X0]. While uniform integrability is necessary and sufficient, it is hard to check, but there may

be other situation-specific ways to interchange limit and expectation.

Needless to say, we just stated the result for super-martingales. From this, the reverse in-

equality holds for sub-martingales (by applying the above to −X) and hence equality holds for

martingales.

In Theorem 7 we think of stopping a process at a stopping time. There is a variant where we

sample the process at an increasing sequence of stopping times and the question is whether the

observed process retains the martingale/super-martingale property. This can be thought of as a

non-trivial extension of the trivial statement that if (Xn)n is a super-martingale w.r.t. (Fn)n, then

for any n0 ≤ n1 ≤ n2 ≤ . . ., the process (Xnk)k is a super-martingale w.r.t. (Fnk)k.

Theorem 9: Optional sampling theorem

Let (Ω,F ,F•,P) be a filtered probability space and let X = (Xn)n≥0 be a F•-super-

martingale. Let Tn, n ≥ 0 be bounded stopping times for F• such that T0 ≤ T1 ≤ T2 ≤ . . .

Then, (XTk)k≥0 is a super-martingale with respect to the filtration (FTk)k≥0.

If we only assume that T0 ≤ T1 ≤ T3 ≤ . . . a.s., then the conclusion remains valid if we

assume that the given filtration is complete.

The condition of boundedness of the stopping times can be replaced by the condition that

{XTk∧n}n≥0 is uniformly integrable for any k. The reasons are exactly the same as those that went

into the proof of Theorem 8.

PROOF. Since X is adapted to F•, it follows that XTk is FTk -measurable. Further, if |Tk| ≤ Nk

w.p.1. for a fixed numberNk, then |XTk | ≤ |X0|+ . . .+ |XNk |which shows the integrability ofXTk .

The theorem will be proved if we show that if S ≤ T ≤ N where S, T are stopping times and N is
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a fixed number, then

E[XT

∣∣∣∣∣∣ FS ] ≤ XS a.s.(6)

SinceXS and E[XT

∣∣∣∣∣∣ FS ] are both FS-measurable, (6) follows if we show that E[(XT −XS)1A] ≤ 0

for every A ∈ FS .

Now fix any A ∈ FS and define Hk = 1S+1≤k≤T1A. This is the indicator of the event A∩ {S ≤
k−1}∩{T ≥ k}. SinceA ∈ FS we see thatA∩{S ≤ k−1} ∈ Fk−1 while {T ≥ k} = {T ≤ k−1}c ∈
Fk−1. Thus, H is predictable. In words, this is the betting scheme where we bet 1 rupee on each

game from time S+1 to time T , but only ifA happens (which we know by time S). By the gambling

lemma, we conclude that {(H.X)n}n≥1 is a super-martingale. But (H.X)n = (XT∧n − XS∧n)1A.

Put n = N and get E[(XT −XS)1A] ≤ 0 since (H.X)0 = 0. Thus (6) is proved. �

An alternate proof of Theorem 9 is outlined below.

SECOND PROOF OF THEOREM 9. As in the first proof, it suffices to prove (6).

First assume that S ≤ T ≤ S+ 1 a.s. Let A ∈ FS . On the event {S = T}we have XT −XS = 0.

Therefore, ∫
A

(XT −XS)dP =

∫
A∩{T=S+1}

(XS+1 −XS)dP

=
N−1∑
k=0

∫
A∩{S=k}∩{T=k+1}

(Xk+1 −Xk)dP.(7)

For fixed k, we see thatA∩{S = k} ∈ Fk sinceA ∈ FS and {T = k+1} = {T ≤ k}c∩{S = k} ∈ Fk
because T ≤ S + 1. Therefore, A∩{S = k}∩ {T = k+ 1} ∈ Fk and the super-martingale property

of X implies that
∫
B(Xk+1 − Xk)dP ≤ 0 for any B ∈ Fk. Thus, each term in (7) is non-positive.

Hence
∫
AXSdP ≥

∫
AXTdP for every A ∈ FT . This just means that E[XS

∣∣∣∣∣∣ FT ] ≤ XT . This

completes the proof assuming S ≤ T ≤ S + 1.

In general, since S ≤ T ≤ N , let S0 = S, S1 = T ∧(S+1), S2 = T ∧(S+2), . . . , SN = T ∧(S+N)

so that each Sk is a stopping time, SN = T , and for each k we have Sk ≤ Sk+1 ≤ Sk+1 a.s.Deduce

from the previous case that E[XT

∣∣∣∣∣∣ FS ] ≤ XS a.s. �

We end this section by giving an example to show that optional sampling theorems can fail if

the stopping times are not bounded.

Example 17

Let ξi be i.i.d. Ber±(1/2) random variables and let Xn = ξ1 + . . .+ ξn (by definition X0 = 0).

Then X is a martingale. Let T1 = min{n ≥ 1 : Xn = 1}.
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A theorem of Pólya asserts that T1 < ∞ w.p.1. But XT1 = 1 a.s. while X0 = 0. Hence

E[XT1 ] 6= E[X0], violating the optional stopping property (for bounded stopping times we

would have had E[XT ] = E[X0]). In gambling terminology, if you play till you make a

profit of 1 rupee and stop, then your expected profit is 1 (an not zero as optional stopping

theorem asserts).

If Tj = min{n ≥ 0 : Xn = j} for j = 1, 2, 3, . . ., then it again follows from Pólya’s theorem

that Tj <∞ a.s. and hence XTj = j a.s. Clearly T0 < T1 < T2 < . . . but XT0 , XT1 , XT2 , . . . is

not a super-martingale (in fact, being increasing it is a sub-martingale!).

This example shows that applying optional sampling theorems blindly without checking con-

ditions can cause trouble. But the boundedness assumption is by no means essential. Indeed, if

the above example is tweaked a little, optional sampling is restored.

Example 18

In the previous example, let −A < 0 < B be integers and let T = min{n ≥ 0 : Xn =

−A or Xn = B}. Then T is an unbounded stopping time. In gambling terminology, the

gambler has capital A and the game is stopped when he/she makes a profit of B rupees or

the gambler goes bankrupt. If we set B = 1 we are in a situation similar to before, but with

the somewhat more realistic assumption that the gambler has finite capital.

By the optional sampling theorem E[XT∧n] = 0. By a simple argument (or Pólya’s theorem)

one can prove that T <∞w.p.1. Therefore,XT∧n
a.s.→ XT as n→∞. Further, |XT∧n| ≤ B+A

from which by DCT it follows that E[XT∧n]→ E[XT ]. Therefore, E[XT ] = 0. In other words

optional stopping property is restored.

6. Wald’s identities

If X0, X1, . . . are i.i.d. random variables with finite mean, and T is an N-valued random vari-

able independent of Xis, then E[ST ] = E[X1]E[T ]. To see this, write ST =
∑

nXn1T≥n and take

expectations to get

E[ST ] =
∞∑
n=0

E[Xn1T≥n] = E[X1]
∞∑
n=0

1T≥n = E[X1]E[T ].

The application of Fubini’s theorem to interchange of Expectation and sum in the first equality is

justified by first working out the same kind of expression with |Xn| in place of Xn.

Motivated by applications in statistics, Wald worked out conditions under which T could be

allowed to depend on the sequence (Xn). These are known as Wald’s identities. We give two of

them.
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Theorem 10: Wald’s first identity

Let Xn be i.i.d. with finite expectation. Let T be a stopping time for the natural filtration of

(Xn) with E[T ] <∞. Then E[ST ] = E[X1]E[T ].

Theorem 11: Wald’s second identity

Let Xn be i.i.d. with zero mean and finite variance σ2. Let T be a stopping time for the

natural filtration of (Xn) with E[T ] <∞. Then E[S2
T ] = σ2E[T ].

PROOF OF WALD’S FIRST IDENTITY. As Sn − nE[X1] is a martingale, hence E[ST∧n − (T ∧
n)E[X1]] = 0 by optional stopping theorem. Write this as E[ST∧n] = E[T ∧ n]E[X1]. By MCT,

the right side converges to E[T ]E[X1]. On the left side, ST∧n
a.s.→ ST , and ST∧n is dominated by

Y =
∑∞

k=0 |Xk|1T≥k. As {T ≥ k} = ({T ≤ k − 1})c ∈ Fk−1 and Xk is independent of Fk−1,

E[|Xk|1T≥k] = E[E[|Xk|1T≥k
∣∣∣∣∣∣ Fk−1]] = E[1T≥kE[Xk]] = E[|Xk|]P{T ≥ k}.

Summing over k shows that E[Y ] = E[|X1|]E[T ]. �

The application of optional stopping here could be avoided easily. The same argument that

showed E[Y ] = E[|X1|]E[T ] also shows that E[ST ] = E[X1]E[T ]. Applying Fubini’s now requires

us to have already shown that E[Y ] <∞.

PROOF OF WALD’S SECOND IDENTITY. We try to mimic the previous proof, replacing Sn by

the martingale S2
n−nσ2. Thus, E[S2

T∧n] = σ2E[T ∧n]. By MCT, the right side converges to σ2E[T ].

Now ST∧n
a.s.→ ST . If we show that ST∧n converges in L2, the limit must be ST again, and hence

E[S2
T∧n]→ E[S2

T ], completing the proof. To show the required convergence in L2, observe that for

m < n

E[|ST∧n − ST∧m|2] = E

( n∑
k=m+1

Xk1T≥k

)2


=
n∑

k=m+1

E[X2
k1T≥k] + 2

∑
m+1≤k<`≤n

E[XkX`1T≥`].

For k < `,

E[XkX`1T≥`] = E[Xk1T≥`E[X`

∣∣∣∣∣∣ F`−1]] = 0

while

E[X2
k1T≥k] = E[1T≥kE[X2

k

∣∣∣∣∣∣ Fk−1]] = E[X2
1 ]P{T ≥ k}.
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Thus, E[|ST∧n − ST∧m|2] = E[X1]2
∑n

k=m+1 P{T ≥ k}, which goes to zero as m,n → ∞ (as

E[T ] < ∞). This shows that ST∧n is Cauchy in L2, and hence convergent. This completes the

proof. �

7. Applications of the optional stopping theorem

7.1. Gambler’s ruin problem. Let Sn = ξ1 + . . . + ξn be simple symmetric random walks,

where ξi are i.i.d. Ber±(1/2). Fix −a < 0 < b. What is the probability that S hits b before −a? With

T = T−a ∧ Tb where Tx = min{n ≥ 0 : Xn = x}we know that T <∞ a.s.1 and hence E[XT∧n] = 0

for all n. Since |XT∧n| ≤ a+ b, we can let n→∞ and use DCT to conclude that E[XT ] = 0. Hence,

if α = P{XT = b} then 1− α = P{XT = −a} and

0 = E[XT ] = αb− (1− α)a

which gives α = a
a+b .

Exercise 10

Let ξi be i.i.d. with ξ1 = +1 w.p. p and ξ1 = −1 w.p. q = 1− p. Let Xn = ξ1 + . . .+ ξn. Find

the probability that X hits B before −A (for A,B > 0, of course).

One can get more information about the time T as follows. Recall that {S2
n−n} is a martingale,

hence E[S2
T∧n− (T ∧ n)] = 0 for all n. To interchange expectation with limit as n→∞, we rewrite

this as E[S2
T∧n] = E[T ∧ n]. The left side converges to E[S2

T ] by DCT (as |ST∧n| ≤ a + b) and the

right side converges to E[T ] (by MCT). Hence

E[T ] = E[S2
T ] = (−a)2 b

a+ b
+ b2

a

a+ b
= ab.

In particular, when a = b, we get b2, which makes sense in view of the fundamental fact that a

random walk moves distance
√
t in time t.

7.2. Waiting times for patterns in coin tossing. Let ξ1, ξ2, . . . be i.i.d. Ber(1/2) variables (fair

coin tosses). Let τ1011 = min{n ≥ 1 : (ξn−3, . . . , ξn) = (1, 0, 1, 1)} and similarly define τε for any

patter ε ∈ {0, 1}k for some k. Clearly these are stopping times for the filtration Fn = σ{ξ1, . . . , ξn}.
We would like to understand the distribution or the mean of these stopping times.

Clearly τ1 and τ0 are Geometric random variables with mean 2. Things are less simple for

other patterns. Since this is written out in many places and was explained in class and is given as

1If you don’t know this, here is a simple argument - Divide the coin tosses into disjoint blocks of length ` = a+ b,

and observe that with probability 2−`, all tosses in a block are heads. Hence, there is some block which has all heads. If

the random walk is not to the left of −a at the beginning of this block, then it will be to the right of b at the end of the

block.
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exercise to write out a proper proof, will skip the explanation here. The final answer depends on

the overlaps in the pattern. If ε = (ε1, . . . , εk), then

E[τε] =

k∑
j=1

2j1(ε1,...,εj)=(εk−j+1,...,εk).

In particular, E[τ11] = 6 while E[τ10] = 4. You may remember that the usual proof of this involves

setting up a gambling game where the kth gambler enters with 1 rupee in hand, just before the kth

toss, and bets successively on the kth toss being ε1 (at the same time the (k − i)th gambler, if still

in the game, is betting on it being εi+1). If instead, the kth gambler come with k rupees in hand,

one can find the second moment of τε and so on. If the kth gambler comes with eθk rupees, where

θ is sufficiently small, then the moment generating function of τε can also be found.

Aside from the proof of this claim that uses optional stopping theorem, what is the reason

for different waiting times for different patterns of the same length? This can be understood

qualitatively in terms of the waiting time paradox.

The waiting time “paradox”: If buses come regularly with inter-arrival times of one hour, but a

person who has no watch goes at random to the bus stop, her expected waiting time is 30 minutes.

However, if inter-arrival times are random with equal chance of being 90 minutes or 30 minutes

(so one hour on average still), then the expected waiting time jumps to 37.5 minutes! The reason

is that the person is 3 times more likely to have entered in a 90 minute interval than in a 30 minute

interval.

What does this have to do with the waiting times in patterns. The “buses” 10 and 11 are

equally frequent (chance 1/4 at any (n− 1, n) slot), but 10 is more regularly spaced than 11. In fact

11 buses can crowd together as in the string 11111 which has 4 occurrences of 11. But to get four

10 buses we need at least 8 tosses. Thus, the waiting time for the less regular bus is more!

8. Random walks on graphs

Let G = (V,E) be a graph with a countable vertex set V . We shall always assume that each

vertex has finite degree and that the graph is connected. Simple random walk on G (usually

written SRW) is a markov chain X = (Xn)n≥0 with transition probabilities pu,v = 1

deg(u)
for

v ∼ u, and pu,v = 0 if v is not adjacent to u. Usually we fix X0 to be some vertex w (in which case

we write Pw, Ew to indicate that).

Recall that a function f : V 7→ R is said to be harmonic at a vertex u if 1

deg(u)

∑
v:v∼u f(v) =

f(u) (this is called the mean value property). We saw that if f if harmonic on the whole of V ,

then (f(Xn))n≥0 is a martingale. In such a situation, optional sampling theorem tells us that

(f(Xτ∧n))n≥0 is also a martingale for any stopping time τ . Here is an extension of this statement.
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Theorem 12

Let X be SRW on G. Let B be a proper subset of V and let τ denote the hitting time of B

by the random walk. Suppose f : V 7→ R is harmonic (or sub-harmonic) at all vertices of

V \B. Then, (f(Xτ∧n))n≥0 is a martingale (respectively, sub-martingale) with respect to the

filtration (Fτ∧n)n≥0.

Note that this is not obvious and does not follow from the earlier statement. If we define

Mn = f(Xn), then M may not a martingale, since f need not harmonic on B. Therefore, f(Xτ∧n)

is not got by stopping a martingale (in which case OST would have implied the theorem), it is just

that this stopped process is a martingale!

PROOF. Let f be harmonic and set Mn = f(Xτ∧n) and let Gn = Fτ∧n. We want to show

that E[Mn+1

∣∣∣∣∣∣ Gn] = Mn. Clearly Mn is Gn measurable (since Xτ∧n is). Let A ∈ Gn and let

A′ = A ∩ {τ ≤ n} and A′′ = A ∩ {τ > n}.
On A′ we have Mn+1 = Mn = f(Xτ ) and hence E[Mn+11A′ ] = E[Mn1A′ ].

On A′′, we have that Xn+1 is a uniformly chosen random neighbour of Xn (independent of all

the conditioning) and hence,

E[Mn+11A′′ ] = 1A′′
1

deg(Xn)

∑
v:v∼Xn

f(u) = 1A′′f(Xn)

where the last equality holds because Xn 6∈ B and f is harmonic there. But f(Xn) = Mn on A′′,

(since τ > n), and hence we see that E[Mn+11A′′ ] = E[Mn1A′′ ].

Adding the two we get E[Mn+11A] = E[Mn1A] for all A ∈ Gn, hence E[Mn+1

∣∣∣∣∣∣ Gn] = Mn. �

Remark 4: Reversible Markov chains

Can the discussions of this section be carried over to general Markov chains? Not quite, but

it can be to reversible Markov chains. Let X be a Markov chain on a countable state space S

with transition matrix P . We shall assume that the chain is irreducible. Recall that the chain

is said to be reversible if there is a π = (πi)i∈S on S (called the stationary measure) such that

π(i)pi,j = π(j)pj,i for all i, j ∈ S.

If the chain is reversible, we can make a graphGwith vertex set S and edges i ∼ j whenever

pi,j > 0 (reversibility forces pj,i > 0, hence the graph is undirected). For any i ∼ j, define

the conductance of the corresponding edge as Ci,j = π(i)pi,j . By reversibility, Cj,i = Ci,j ,

hence the conductance is associated to the edge, not the direction. Then the given Markov

chain is a random walk on this graph, except that the transitions are not uniform. They are
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given by

pi,j =


Ci,j
Ci,·

if j ∼ i,

0 otherwise

whereCi,· =
∑

k:k∼iCi,k. Conversely, for any graphG = (V,E) with specified conductances

on edges, if we define transition probabilities as above, we get a reversible Markov chain.

All the discussions in the section can be taken over to general reversible chains, with appro-

priate modifications. If a chain is not reversible, for example suppose there are two states

i, j such that pi,j > 0 but pj,i = 0, are quite different.

8.1. Discrete Dirichlet problem and gambler’s ruin. Let G = (V,E) be a connected graph

with vertex set V and edge set E and every vertex having finite degrees. Let X denote the simple

random walk on G. We consider two problems.

Gambler’s ruin problem: Let A,C be disjoint proper subsets of V . Find Px{τA < τC} for any

x ∈ V . Here τA is the hitting time of the set A by the SRW X .

Discrete Dirichlet problem: Let B be a proper subset of V . Fix a function ϕ : B 7→ R. Find a

function f : V 7→ R such that (a) f(x) = ϕ(x) for all x ∈ B, (b) f is harmonic on V \ B. This is a

system of linear equations, one for each v ∈ V \B, and in the variables f(x), x ∈ V \B.

These two problems are intimately related. To convey the main ideas without distractions, we

restrict ourselves to finite graphs now.

(1) Observe that the solution to the Dirichlet problem, if it exists, is unique. Indeed, if f, g are

two solutions, then h = f − g is harmonic on V \B and h = 0 on B. Now let x0 be a point

where h attains its maximum (here finiteness of the graph is used). If x0 6∈ B, then h(x0) is

the average of the values of h at the neighbours of x0, hence each of those values must be

equal to h(x0). Iterating this, we get a point x ∈ B such that h(x) = h(x0) (connectedness

of the graph is used here). Therefore, the maximum of h is zero. Similarly the minimum

is zero and we get f = g.

(2) Let f(x) = Px{τA < τB} in the gambler’s ruin problem. We claim that f is harmonic at

every x 6∈ B := A ∪ C. Indeed, for any x 6∈ B, condition on the first step of the Markov

chain to see that

f(x) = Ex[P{τA < τB
∣∣∣∣∣∣ X1}] = Ex[PX1{τA < τB}] =

1

deg(x)

∑
y:y∼x

f(y).
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Further, f is 1 on A and 0 on C. Hence f is just the solution to the discrete Dirichlet

problem with B = A ∪ C and ϕ = 1A. rst

(3) Conversely, suppose a set B is given and for every x ∈ B we solve the gambler’s ruin

problem with A = {x} and C = B \ {x}. Let µx(y) = Py{τx = τB} denote the solution.

Then, given any ϕ : B 7→ R, it is easy to see that f(·) =
∑

x∈B ϕ(x)µx(·) is a solution to

the discrete Dirichlet problem (linear combinations of harmonic functions is harmonic).

(4) The solution in the previous point may be rewritten as (with Mn = f(Xτ∧n))

f(y) =
∑
x∈B

ϕ(x)Py{τB = τx} =
∑
x∈B

ϕ(x)Py{Mτ = x} = Ey[Mτ ].

(5) Here is another way to see that the solution f to the Dirichlet problem must be given like

this. From Theorem 12 we know that Mn is a martingale. Hence E[f(Xτ∧n)] = E[f(X0)],

in particular, if X0 = v then Ev[f(Xτ∧n)] = f(v). Let n → ∞ and DCT (f(Xτ∧n) is of

course uniformly bounded) to conclude that f(v) = E[f(Xτ )] = E[Mτ ].

To summarize, we have shown the existence and uniqueness of the solution to the discrete Dirich-

let problem, and related it to the solution to the gambler’s ruin problem. This can be summarized

as follows.

Theorem 13

Let G = (V,E) be a finite connected graph and let B be a proper subset of vertices. Given

ϕ : B 7→ R, the unique solution to the discrete Dirichlet problem with boundary data ϕ is

given by f(x) = Ex[ϕ(Xτ )] whereX is the simple random walk onB and τ is its first hitting

time of the set B.

Electrical networks: With the above discussion, we have related the gambler’s ruin problem to the

Dirichlet problem, without being able to solve either of them! Indeed, in general it is hopeless to

expect an explicit solution. However, it is worth noting that the discrete Dirichlet problem arises

in a different area that looks unrelated, namely that of electrical networks (a more sophisticated

name is discrete potential theory). This will not bring any miracles, but the intuition from electrical

networks can be of use in studying random walks and vice versa. Now we describe the electrical

network formulation.

Imagine that G is an electric network where each edge is replaced by a unit resistor. The

vertices in A are connected to batteries and the voltages at these points are maintained at ϕ(x),

x ∈ A. Then, electric current flows through the network and at each vertex a voltage is estab-

lished. According to Kirchoff’s law, the voltages at the vertices are precisely the solution to the
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discrete Dirichlet problem. Here is an example where we use knowledge of reduction in electrical

networks to find the voltage at one vertex. This reduction is very special, and for general graphs

there is not much one can do.

Example 19

Let G be the tree shown in the picture below. It is a tree with one vertex of degree 3 which

we call the root O, and three leaves A,B,C. Let the distance (the number of edges between

the root and the leaf) to the three leaves be a, b, c respectively. What is the probability that a

simple random walk starting from O hits A before {B,C}?
As we have seen, the answer is given by f(O), where f : V 7→ R is a function that is

harmonic except at the leaves and f(A) = 1, f(B) = f(C) = 0. As discussed above, this

is the same problem in electrical networks (with each edge replaced by a unit resistor) of

finding the voltage function when batteries are connected so thatA is maintained at voltage

1 andB,C at voltage 0. In high school, we have seen ruled for resistors in series and parallel,

so this is the same problem as a graph with four verticesO′, A′, B′, C ′, whereO′A′, OB′, OC ′

have resistances a, b, c,, respectively. Then the effective resistance between A′ and {B′, C ′}
is a + 1

1
b
+ 1
c

, hence the effective current is the reciprocal of this. Therefore, the voltage at O′

is a−1

a−1+b−1+c−1 .

Exercise: Show this by solving for the harmonic function on the tree (without using this

network reduction business!).

Variational principles: Using the terminology of electrical networks will not really help solve any

problem. What do help are variational principles. Here is an easy exercise.
Exercise 11

Given a finite graphG and a proper subset of verticesB and a function ϕ : B 7→ R, consider

the functional L[f ] :=
∑

u∼v(f(u)− f(v))2 onH = {f : V 7→ R : f(x) = ϕ(x) for all x ∈ B}.
Then the unique minimizer of L on H is the solution to the discrete Dirichlet problem with

boundary data ϕ.
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To illustrate the point, we now go to infinite graphs G = (V,E) (again V is countable, each

vertex has finite degree and G is connected). Recall that simple random walk X on G is recurrent

if Pv{τ+
v < ∞} = 1 for some v (in which case it follows that Pw{τu < ∞} = 1 for all w 6= u ∈ V )

where τ+
v = min{n ≥ 1 : Xn = v} (observe the condition n ≥ 1, as opposed to n ≥ 0 in the

definition of τv). If not recurrent, it is called transient.

Again, fixing v and consider f(x) = Px{τv < ∞}. If the graph is recurrent, then f = 1

everywhere, whereas if it is transient, we may prove that f(x) → 0 as x → ∞ (i.e., given ε > 0,

there is a finite F ⊆ V such that |f(x)| < ε for all x 6∈ F ). This way, one may expect to prove a

theorem (this statement is not quite true as stated) that the graph is transient if and only if there

is a harmonic function f : V 7→ R such that f(v) = 1, f(x) → 0 as x → ∞ and f is harmonic on

V \ {v}. But this is still hard to use, because finding harmonic functions may be delicate. This is

where the variational principle is useful. We state the following theorem without proof2. For a

fixed v ∈ V , a cut-set is any collection of edges such that every infinite simple path starting from

v must use one of the edges in Π.

Theorem 14

Let G be an infinite connected network and let v be a fixed vertex. The following are equiv-

alent.

(1) SRW on G is transient.

(2) There exists W : E 7→ R+ such that
∑

e∈ΠW (e) ≥ 1 for every cut-set Π and∑
e∈EW (e)2 <∞.

To illustrate the usefulness of this theorem, let us prove Pólya’s theorem for random walks on

Zd. Let us fix the vertex 0 and consider the existence of a W as required in the theorem.

d = 1: Any pair of edges {[n, n+ 1], [−m− 1,−m]}where n,m > 0, is a cut-set. From that it is

easy to see that W ([n, n+ 1]) ≥ 1 for infintiely many n (in fact for all positive n or for all negative

n or both). But then
∑
W (e)2 =∞, showing that the random walk must be recurrent.

d = 2: For any n, let B(n) = {−n, . . . , n}2. Let Πn be the collection of edges that are in

B(n + 1) but not in B(n). There are 4(n + 1) edges in Π(n), and if the sum
∑

e∈Πn
W (e) ≥ 1,

then
∑

e∈Πn
W (e)2 ≥ 1

4(n+1) by Cauchy-Schwarz. As Πns are pairwise disjoint, this shows that∑
eW (e)2 =∞.

d ≥ 3. Define W (e) = 1
|e| where |e| is the Euclidean distance from the origin to the mid-

point of e. There are about nd−1 edges having |e| ∈ [n, n + 1], so the total sum of squares is like

2Chapter 2 of the book Probability on trees and networks by Lyons and Peres is an excellent resource for this subject.

Another important resource is the paper The extremal length of a network by R. J. Duffin.
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∑
n

1
nd−1 which is finite. But is the condition

∑
e∈ΠW (e) ≥ 1 satisfied? For cut-sets of the form

B(n+ 1) \B(n) where B(n) = {−n, . . . , n}d, this is clear. We leave the general case as an exercise.

The power of this theorem is in its robustness (as opposed to criteria such as
∑

n p
(n)
u,u <∞ that

we see in Markov chain class). If finitely many edges are added to the graph, it does not make a

difference to the existence of W (also for finitely many deletions, provided it does not disconnect

v from infinity) and hence to the question of recurrence or transience!

9. Maximal inequality

Kolmogorov’s proof of his famous inequality was perhaps the first proof using martingales,

although the term did not exist then!

Lemma 15: Kolmogorov’s maximal inequality

Let ξk be independent random variables with zero means and finite variances. Let Sn =

ξ1 + . . .+ ξn. Then,

P

{
max
k≤n
|Sk| ≥ t

}
≤ 1

t2
Var(Sn).

PROOF. We know that (Sk)k≥0 is a martingale and (S2
k)k≥0 is a sub-martingale. Let T =

min{k : |Sk| ≥ t} ∧ n (i.e., T is equal to n or to the first time S exits (−t, t), whichever is ear-

lier). Then T is a bounded stopping time and T ≤ n. By OST, {S2
T , S

2
n} is a sub-martingale and

thus E[S2
T ] ≤ E[S2

n]. By Chebyshev’s inequality,

P

{
max
k≤n
|Sk| ≥ t

}
= P{S2

T ≥ t2} ≤
1

t2
E[S2

T ] ≤ 1

t2
E[S2

n].

Thus the inequality follows. �

This is an amazing inequality that controls the supremum of the entire path S0, S1, . . . , Sn in

terms of the end-point alone! It takes a little thought to realize that the inequality E[S2
T ] ≤ E[S2

n]

is not a paradox. One way to understand it is to realize that if the path goes beyond (−t, t), then

there is a significant probability for the end point to be also large. This intuition is more clear in

certain precursors to Kolmogorov’s maximal inequality. In the following exercise you will prove

one such, for symmetric, but not necessarily integrable, random variables.
Exercise 12

Let ξk be independent symmetric random variables and let Sk = ξ1 + . . . + ξk. Then for

t > 0, we have

P

{
max
k≤n

Sk ≥ t
}
≤ 2P {Sn ≥ t} .
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Hint: Let T be the first time k when Sk ≥ t. Given everything up to time T = k, consider

the two possible future paths formed by (ξk+1, . . . , ξn) and (−ξk+1, . . . ,−ξn). If ST ≥ t, then

clearly for at least one of these two continuations, we must have Sn ≥ t. Can you make this

reasoning precise and deduce the inequality?

For a general super-martingale or sub-martingale, we can write similar inequalities that con-

trol the running maximum of the martingale in terms of the end-point.

Lemma 16: Doob’s inequalities

Let X be a super-martingale. Then for any t > 0 and any n ≥ 1,

(1) P
{

max
k≤n

Xk ≥ t
}
≤ 1

t {E[X0] + E[(Xn)−]},

(2) P
{

min
k≤n

Xk ≤ −t
}
≤ 1

tE[(Xn)−].

PROOF. Let T = min{k : Xk ≥ t} ∧ n. By OST {X0, XT } is a super-martingale and hence

E[XT ] ≤ E[X0]. But

E[XT ] = E[XT1XT≥t] + E[XT1XT<t]

= E[XT1XT≥t] + E[Xn1XT<t]

≥ E[XT1XT≥t]−E[(Xn)−]

since E[Xn1A] ≥ −E[(Xn)−] for any A. Thus, E[XT1XT≥t] ≤ E[X0] + E[(Xn)−]. Now use Cheby-

shev’s inequality to write P{XT ≥ t} ≤ 1
tE[XT1XT≥t] to get the first inequality.

For the second inequality, define T = min{k : Xk ≤ −t} ∧ n. By OST {(XT ), (Xn)} is a super-

martingale and hence E[XT ] ≥ E[Xn]. But

E[XT ] = E[XT1XT≤−t] + E[Xn1XT>−t]

≤ −tP{XT ≤ −t}+ E[(Xn)+].

Hence P{XT ≤ −t} ≤ 1
t {E[(Xn)+]−E[Xn]} = 1

tE[(Xn)−]. �

For convenience, let us write down the corresponding inequalities for sub-martingales (which

of course follow by applying Lemma 16 to −X): If X0, . . . , Xn is a sub-martingale, then for any

t > 0 we have

P{max
k≤n

Xk ≥ t} ≤
1

t
E[(Xn)+],(8)

P{min
k≤n

Xk ≤ −t} ≤
1

t
{−E[X0] + E[(Xn)+]} .(9)
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If ξi are independent with zero mean and finite variances and Sn = ξ1 + . . .+ ξn is the correspond-

ing random walk, then the above inequality when applied to the sub-martingale S2
k reduces to

Kolmogorov’s maximal inequality.

Maximal inequalities are useful in proving the Cauchy property of partial sums of a random

series with independent summands. Here is an exercise.
Exercise 13

Let ξn be independent random variables with zero means. Assume that
∑

n Var(ξn) < ∞.

Show that
∑

k ξk converges almost surely. [Extra: If interested, extend this to independent

ξks taking values in a separable Hilbert space H such that E[〈ξk, u〉] = 0 for all u ∈ H and

such that
∑

nE[‖ξn‖2] <∞.]

10. Doob’s up-crossing inequality

For a real sequence x0, x1, . . . , xn and any a < b, define the number of up-crossings of the

sequence over the interval [a, b] as the maximum number k for which there exist indices 0 ≤ i1 <

j1 < i2 < j2 < . . . < ik < jk ≤ n such that xir ≤ a and xjr ≥ b for all r = 1, 2, . . . , k. Intuitively it

is the number of times the sequence crosses the interval in the upward direction. Similarly we can

define the number of down-crossings of the sequence (same as the number of up-crossings of the

sequence (−xk)0≤k≤n over the interval [−b,−a]).

Lemma 17: Doob’s up-crossing inequality

Let X0, . . . , Xn be a sub-martingale. Let Un[a, b] denote the number of up-crossings of the

sequence X0, . . . , Xn over the interval [a, b]. Then,

E[Un[a, b]
∣∣∣∣∣∣ F0] ≤

E[(Xn − a)+

∣∣∣∣∣∣ F0]− (X0 − a)+

b− a
.

What is the importance of this inequality? It will be in showing the convergence of martingales

or super-martingales under some mild conditions. In continuous time, it will yield regularity of

paths of martingales (existence of right and left limits).

The basic point is that a real sequence (xn)n converges if and only if the number of up-crossings

of the sequence over any interval is finite. Indeed, if lim inf xn < a < b < lim supxn, then the

sequence has infinitely many up-crossings and down-crossings over [a, b]. Conversely, if limxn

exists, then the sequence is Cauchy and hence over any interval [a, b] with a < b, there can be only

finitely many up-crossings. In these statements the limit could be ±∞.
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PROOF. First assume that Xn ≥ 0 for all n and that a = 0. Let T0 = 0 and define the stopping

times

T1 := min{k ≥ T0 : Xk = 0}, T3 := min{k ≥ T2 : Xk = 0}, . . .

T2 := min{k ≥ T1 : Xk ≥ b}, T4 := min{k ≥ T3 : Xk ≥ b}, . . .

where the minimum of an empty set is defined to be n. Ti are strictly increasing up to a point

when Tk becomes equal to n and then the later ones are also equal to n. In what follows we only

need Tk for k ≤ n (thus all the sums are finite sums).

Xn −X0 =
∑
k≥0

X(T2k+1)−X(T2k) +
∑
k≥1

X(T2k)−X(T2k−1)

≥
∑
k≥0

(X(T2k+1)−X(T2k)) + bUn[0, b].

The last inequality is because for each k for which X(T2k) ≥ b, we get one up-crossing and the

corresponding increment X(T2k)−X(T2k−1) ≥ b.
Now, by the optional sampling theorem (since T2k+1 ≥ T2k are both bounded stopping times),

we see that

E[X(T2k+1)−X(T2k)
∣∣∣∣∣∣ F0] = E

[
E[X(T2k+1)−X(T2k)

∣∣∣∣∣∣ FT2k
]
∣∣∣∣∣∣ F0

]
≥ 0.

Therefore, E[Xn −X0

∣∣∣∣∣∣ F0] ≥ bE[Un[0, b]
∣∣∣∣∣∣ F0]. This gives the up-crossing inequality when a = 0

and Xn ≥ 0.

In the general situation, just apply the derived inequality to the sub-martingale (Xk − a)+

(which crosses [0, b− a] whenever X crosses [a, b]) to get

E[(Xn − a)+

∣∣∣∣∣∣ F0]− (X0 − a)+ ≥ (b− a)E[Un[a, b]
∣∣∣∣∣∣ F0]

which is what we claimed. �

The break up of Xn − X0 over up-crossing and down-crossings was okay, but how did the

expectations of increments over down-crossings become non-negative? There is a distinct sense of

something suspicious about this! The point is that X(T3)−X(T2), for example, is not always non-

negative. If X never goes below a after T2, then it can be positive too. Indeed, the sub-martingale

property somehow ensures that this positive part off sets the −(b− a) increment that would occur

if X(T3) did go below a.

We invoked OST in the proof. Optional sampling was in turn proved using the gambling

lemma. It is an instructive exercise to write out the proof of the up-crossing inequality directly

using the gambling lemma (start betting when below a, stop betting when reach above b, etc.).
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11. Convergence theorem for L2-bounded martingales

One of the fundamental results about martingales is that if it is uniformly integrable, then it

converges almost surely and in L1. The almost sure convergence holds under the weaker assump-

tion that the martingale is L1-bounded, i.e., supnE|Xn| < ∞. However, it is the L1 convergence,

in particular the convergence of expectations, that is most useful.

In this section, we give a proof of the convergence under the stronger assumption of L2-

boundedness. The conclusion is also strengthened to convergence in L2. In many applications,

this is sufficient, but we also prove the more general theorem in a later section.

Theorem 18: Square integrable martingales

Let X be a martingale on (Ω,F ,F•,P) such that supnE[X2
n] < ∞. Then there is an L2

random variable X∞ such that Xn → X∞ a.s. and in L2.

First, a basic observation about a square integrable martingale X . Assume E[X2
n] < ∞ for

each n (no need for a uniform bound). By the projection interpretation of conditional expectations,

Xn+1 −Xn is an orthogonal to L2(Ω,Fn,P). In particular, {Xk+1 −Xk}k≥0 is an orthogonal set in

L2(Ω,F ,P) and hence for any m > n, we have

E[(Xm −Xn)2] =
m−1∑
k=n

E[(Xk+1 −Xk)
2].(10)

PROOF OF THEOREM 18. Apply (10) with n = 0 and let m→∞ to see that
∞∑
k=0

E[(Xk+1 −Xk)
2] ≤ sup

m
E[(Xm −X0)2].

Under the L2-boundedness assumption, the series on the left converges. Hence, E[(Xm−Xn)2]→
0 as m,n → ∞ by using (10) again, since the right side is the tail of a convergent series. Thus,

{Xn} is a Cauchy sequence in L2 and hence there is some X∞ ∈ L2 such that Xn → X∞ in L2.

We now show almost sure convergence. Applying Doob’s maximal inequality to the sub-

martingale {|Xk −Xn|}k≥n, we get for any m > n,

P{ max
n≤k≤m

|Xk −Xn| ≥ ε} ≤
E[|Xm −Xn|]

ε
≤ 1

ε

√
E[(Xm −Xn)2].

As the latter goes to zero as m,n→∞, we see that

P{|Xk −Xj | ≥ 2ε for some k > j > n} → 0 as n→∞.

Let ε = 1
` and choose N` so that for n ≥ N`, the probability of the event on the left is less than 1

`2
.

By Borel-Cantelli lemma, almost surely, only finitely many of these events occur. Therefore, the
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sequence {Xn} is a Cauchy sequence, almost surely. Thus Xn
a.s.→ X ′∞ for some X ′∞. However, the

L2 limit is X∞, therefore X∞ = X ′∞ a.s. �

Can we deduce the martingale convergence theorem for L1-bounded martingales, by approx-

imating them with L2-bounded martingales? This is a tempting approach, but the naive way of

doing it will give the result only under additional restrictions.

Theorem 19: Convergence for uniformly integrable martingales with uniformly bounded

differences

Let X = (Xn)n≥0 be a uniformly integrable martingale. Assume that |Xn+1 −Xn| ≤ b a.s.,

for all n for some b < ∞. Then, Xn converges almost surely and in L1 to an integrable

random variable X∞.

PROOF. Fix a positive integer M and let τM = min{k : |Xk| ≥ M}. Then {X(τM ∧ n)}n≥0 is a

martingale. Further, |X(τM ∧ n)| ≤ M + b, since the jumps are bounded by b, and the martingale

is within [−M,M ] at time τM − 1. Thus, {X(τM ∧ n)} is an L2-bounded martingale and hence by

Theorem 18, there is some ZM ∈ L2 such that X(τM ∧ n)→ ZM a.s. and in L2, as n→∞.

Further, applying Doob’s maximal inequality, if C = supnE[|Xn|], then

P{τM <∞} = lim
n→∞

P{τM ≤ n} ≤
1

M
E[|Xn|] ≤

C

M
.

As τM ≤ τM+1, it follows that A = ∪M{τM = ∞} has probability 1. Further, on the event {τM =

∞}, it is clear that ZM ′ = ZM for all M ′ > M (in fact, X(τM ∧ n) = X(τM ′ ∧ n) = X(n) for all n).

Therefore, we may consistently define a random variable Z by setting it equal to ZM on the event

{τM = ∞}. It is then clear that Xn
a.s.→ Z on the event A. Since P(A) = 1, we have proved that

Xn
a.s.→ Z.

The integrability of Z follows by Fatou’s lemma and the remaining parts of the martingale

convergence theorem (that uniform integrability implies L1 convergence etc.) are general facts

that follow once we have almost sure convergence. �

12. Convergence theorem for super-martingales

In this and the next section, we present the general results on martingale convergence. Unlike

the square integrable case where we used only the maximal inequality, here the proofs use the

upcrossing inequality.
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Theorem 20: Super-martingale convergence theorem

Let X be a super-martingale on (Ω,F ,F•,P). Assume that supnE[(Xn)−] <∞.

(1) Then, Xn
a.s.→ X∞ for some integrable (hence finite) random variable X∞.

(2) In addition, Xn → X∞ in L1 if and only if {Xn} is uniformly integrable. If this

happens, we also have E[X∞
∣∣∣∣∣∣ Fn] ≤ Xn for each n.

In other words, when a super-martingale does not explode to−∞ (in the mild sense of E[(Xn)−]

being bounded), it must converge almost surely!

PROOF. Fix a < b. Let Dn[a, b] be the number of down-crossings of X0, . . . , Xn over [a, b].

By applying the up-crossing inequality to the sub-martingale −X and the interval [−b,−a], and

taking expectations, we get

E[Dn[a, b]] ≤ E[(Xn − b)−]−E[(X0 − b)−]

b− a

≤ 1

b− a
(E[(Xn)−] + |b|) ≤ 1

b− a
(M + |b|)

where M = supnE[(Xn)−]. Let D[a, b] be the number of down-crossings of the whole sequence

(Xn) over the interval [a, b]. Then Dn[a, b] ↑ D[a, b] and hence by MCT we see that E[D[a, b]] <∞.

In particular, D[a, b] <∞w.p.1.

Consequently, P{D[a, b] <∞ for all a < b, a, b ∈ Q} = 1. Thus, Xn converges w.p.1., and we

define X∞ as the limit (for ω in the zero probability set where the limit does not exist, define X∞
as 0). Thus Xn

a.s.→ X∞.

We observe that E[|Xn|] = E[Xn] + 2E[(Xn)−] ≤ E[X0] + 2M . By Fatou’s lemma, E[|X∞|] ≤
lim inf E[|Xn|] ≤ 2M + E[X0]. Thus X∞ is integrable.

This proves the first part. The second part is very general - whenever Xn
a.s.→ X , we have

L1 convergence if and only if {Xn} is uniformly integrable. Lastly, E[Xn+m

∣∣∣∣∣∣ Fn] ≤ Xn for any

n,m ≥ 1. Let m→∞ and use L1 convergence of Xn+m to X∞ to get E[X∞
∣∣∣∣∣∣ Fn] ≤ Xn.

This completes the proof. �

A direct corollary that is often used is

Corollary 21

A non-negative super-martingale converges almost surely to a finite random variable.

13. Convergence theorem for martingales

Now we deduce the consequences for martingales.
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Theorem 22: Martingale convergence theorem

Let X = (Xn)n≥0 be a martingale with respect to F•. Assume that X is L1-bounded.

(1) Then, Xn
a.s.→ X∞ for some integrable (in particular, finite) random variable X∞.

(2) In addition, Xn
L1

→ X∞ if and only if X is uniformly integrable. In this case,

E[X∞
∣∣∣∣∣∣ Fn] = Xn for all n.

(3) If X is Lp bounded for some p > 1, then X∞ ∈ Lp and Xn
Lp→ X∞.

Observe that for a martingale the condition of L1-boundedness, supnE[|Xn|] < ∞, is equiva-

lent to the weaker looking condition supnE[(Xn)−] < ∞, since E[|Xn|] − 2E[(Xn)−] = E[Xn] =

E[X0] is a constant.

PROOF. The first two parts of the proof are immediate since a martingale is also a super-

martingale. To conclude E[X∞
∣∣∣∣∣∣ Fn] = Xn, we apply the corresponding inequality in the super-

martingale convergence theorem to both X and to −X .

For the third part, if X is Lp bounded, then it is uniformly integrable and hence Xn → X∞

a.s. and in L1. To get Lp convergence, consider the non-negative sub-martingale {|Xn|} and let

X∗ = supn |Xn|. From Lemma 23 we conclude that X∗ ∈ Lp. Of course, X∗ dominates |Xn| and

|X∞|. Hence,

|Xn −X∞|p ≤ 2p−1(|Xn|p + |X∞|p) ≤ 2p(X∗)p

by the inequality |a + b|p ≤ 2p−1(|a|p + |b|p) by the convexity of x 7→ |x|p. Thus, |Xn −X∞|p
a.s.→ 0

and the sequence is dominated by 2p(X∗)p which is integrable. Dominated convergence theorem

shows that E[|Xn −X∞|p]→ 0. �

We used the following lemma in the last part of the above proof3. This lemma is similar in

spirit and in its use to maximal inequalities in analysis, such as the famous one of Hardy and

Littlewood.

3Arghydeep Chatterjee suggested the following argument that does not require this lemma to prove Lp-

convergence in Theorem 22. We already know that Xn → X∞ a.s. and in L1 and that Xn = E[X∞
∣∣∣∣∣∣ Fn]. From

|Xn|p
a.s.→ |X∞|p and Fatou’s lemma and the assumption of Lp-boundedness, we see that E[|X∞|p] < ∞. By

the conditional Jensen’s inequality, |Xn|p ≤ E[|X∞|p
∣∣∣∣∣∣ Fn], hence {|Xn|p} is a uniformly integrable sequence. As

|Xn − X∞|p ≤ 2p(|X|pn + |X∞|p), the sequence {|Xn − X∞|p} is also uniformly integrable. But |Xn − X∞|p
a.s.→ 0,

hence we also get E[|Xn −X∞|p]→ 0.
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Lemma 23: A maximal inequality

Let (Yn)n≥0 be an Lp-bounded non-negative sub-martingale. Then Y ∗ := supn Yn is in Lp

and in fact E[(Y ∗)p] ≤ Cp sup
n

E[Y p
n ] where Cp =

(
p
p−1

)p
.

PROOF. Let Y ∗n = maxk≤n Yk. Fix λ > 0 and let T = min{k ≥ 0 : Yk ≥ λ}. By the optional

sampling theorem, for any fixed n, the sequence of two random variables {YT∧n, Yn} is a sub-

martingale. Hence,
∫
A YndP ≥

∫
A YT∧ndP for any A ∈ FT∧n. Let A = {YT∧n ≥ λ} so that

E[Yn1A] ≥ E[YT∧n1YT∧n≥λ] ≥ λP{Y ∗n ≥ λ}. On the other hand, E[Yn1A] ≤ E[Yn1Y ∗≥λ] since

Y ∗n ≤ Y ∗. Thus, λP{Y ∗n > λ} ≤ E[Yn1Y ∗≥λ].

Let n→∞. Since Y ∗n ↑ Y ∗, we get

λP{Y ∗ > λ} ≤ lim sup
n→∞

λP{Y ∗n ≥ λ} ≤ lim sup
n→∞

E[Yn1Y ∗≥λ] = E[Y∞1Y ∗≥λ].

where Y∞ is the a.s. and L1 limit of Yn (exists, because {Yn} is Lp bounded and hence uniformly

integrable). To go from the tail bound to the bound on pth moment, we use the identity E[(Y ∗)p] =∫∞
0 pλp−1P{Y ∗ ≥ λ}dλ valid for any non-negative random variable in place of Y ∗. Using the tail

bound, we get

E[(Y ∗)p] ≤
∫ ∞

0
pλp−2E[Y∞1Y ∗≥λ]dλ ≤ E

[∫ ∞
0

pλp−2Y∞1Y ∗≥λdλ

]
(by Fubini’s)

=
p

p− 1
E[Y∞ · (Y ∗)p−1].

Let q be such that 1
q + 1

p = 1. By Hölder’s inequality, E[Y∞ · (Y ∗)p−1] ≤ E[Y p
∞]

1
pE[(Y ∗)q(p−1)]

1
q .

Since q(p − 1) = p, this gives us E[(Y ∗)p]
1− 1

q ≤ p
p−1E[Y p

∞]
1
p . Hence, E[(Y ∗)p] ≤ CpE[Y p

∞] with

Cp = (p/(1 − p))p. By virtue of Fatou’s lemma, E[Y p
∞] ≤ lim inf E[Y p

n ] ≤ supnE[Y p
n ]. Thus,

E[(Y ∗)p] ≤ Cp supnE[Y p
n ]. �

Alternately, from the inequality λP{Y ∗n > λ} ≤ E[Yn1Y ∗≥λ] we could have (by similar steps,

but without letting n → ∞) arrived at a bound of the form E[(Y ∗n )p] ≤ CpE[Y p
n ]. The right hand

side is bounded by Cp supnE[Y p
n ] while the left hand side increases to E[(Y ∗)p] by monotone con-

vergence theorem. This is another way to complete the proof.

One way to think of the martingale convergence theorem is that we have extended the mar-

tingale from the index set N to N ∪ {+∞} retaining the martingale property. Indeed, the given

martingale sequence is the Doob martingale given by the limit variable X∞ with respect to the

given filtration.

While almost sure convergence is remarkable, it is not strong enough to yield useful conclu-

sions. Convergence inL1 orLp for some p ≥ 1 are much more useful. In this context, it is important

to note that L1-bounded martingales do not necessarily converge in L1.

58



Example 20: Critical branching process

Consider a Galton-Watson tree (branching process) with mean off-spring distribution equal

to 1 (any non-degenerate distribution will do, eg., Poisson(1)). Then if Zn denotes the

number of individuals in the nth generation (we start with Z0 = 1), then Zn is a non-

negative martingale, and E[Zn] = 1, hence it is L1-bounded. But Z∞ = 0 (either recall this

fact from previous classes, or prove it from the martingale convergence theorem!). Thus

E[Zn] 6→ E[Z∞], showing that L1-convergence fails.

14. Reverse martingales

Let (Ω,F ,P) be a probability space. Let Fi, i ∈ I be sub-sigma algebras of F indexed by a

partially ordered set (I,≤) such that Fi ⊆ Fj whenever i ≤ j. Then, we may define a martingale

or a sub-martingale etc., with respect to this “filtration” (Fi)i∈I . For example, a martingale is a

collection of integrable random variables Xi indexed by i ∈ I such that Xi is Fi-measurable and

E[Xj

∣∣∣∣∣∣ Fi] = Xi whenever i ≤ j.
If the index set is −N = {0,−1,−2, . . .} with the usual order, we say that X is a reverse mar-

tingale or a reverse sub-martingale etc.

What is different about reverse martingales as compared to martingales is that our questions

will be about the behaviour as n→ −∞, towards the direction of decreasing information. It turns

out that the results are even cleaner than for martingales!

Theorem 24: Reverse martingale convergence theorem

LetX = (Xn)n≤0 be a reverse martingale. Then {Xn} is uniformly integrable. Further, there

exists a random variable X−∞ such that Xn → X−∞ almost surely and in L1.

PROOF. Since Xn = E[X0

∣∣∣∣∣∣ Fn] for all n, the uniform integrability follows from Exercise ??.

Let Un[a, b] be the number of down-crossings of Xn, Xn+1, . . . , X0 over [a, b]. The up-crossing

inequality (applied to Xn, . . . , X0 over [a, b]) gives E[Un[a, b]] ≤ 1
b−aE[(X0 − a)+]. Thus, the ex-

pected number of up-crossings U∞[a, b] by the full sequence (Xn)n≤0 has finite expectation, and

hence is finite w.p.1.

As before, w.p.1., the number of down-crossings over any interval with rational end-points is

finite. Hence, limn→−∞Xn exists almost surely. Call this X−∞. Uniform integrability shows that

convergence also takes place in L1. �

What about reverse super-martingales or reverse sub-martingales? Although we shall proba-

bly have no occasion to use this, here is the theorem which can be proved on the same lines.
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Theorem 25

Let (Xn)n≤0 be a reverse super-martingale. Assume that supnE[Xn] < ∞. Then {Xn} is

uniformly integrable and Xn converges almost surely and in L1 to some random variable

X−∞.

PROOF. Exercise. �

This covers almost all the general theory that we want to develop. The rest of the course will

consist in milking these theorems to get many interesting consequences.
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CHAPTER 3

Martingales: applications

1. Lévy’s forward and backward laws

Let X be an integrable random variable on a probability space (Ω,F ,P).

Question 1: If Fn, n ≥ 0, is an increasing sequence of sigma-algebras, then what happens to the

sequence E[X
∣∣∣∣∣∣ Fn] as n→∞?

Question 2: If Gn, n ≥ 0 is a decreasing sequence of sigma-algebras, then what happens to

E[X
∣∣∣∣∣∣ Gn] as n→∞.

Note that the question here is different from conditional MCT. The random variable is fixed

and the sigma-algebras are changing. A natural guess is that the limit might be E[X
∣∣∣∣∣∣ F∞] and

E[X
∣∣∣∣∣∣ G∞] respectively, whereF∞ = σ{

⋃
nFn} and G∞ =

⋂
n Gn. We shall prove that these guesses

are correct.

Forward case: The sequence Xn = E[X
∣∣∣∣∣∣ Fn] is a martingale because of the tower property

E[E[X
∣∣∣∣∣∣ Fn]

∣∣∣∣∣∣ Fm] = E[X
∣∣∣∣∣∣ Fm] for m < n. Recall that such martingales are called Doob mar-

tingales.

Being conditional expectations of a given X , the martingale is uniformly integrable and hence

Xn converges a.s.and in L1 to some X∞. We claim that X∞ = E[X
∣∣∣∣∣∣ F∞] a.s..

Indeed, Xn is F∞-measurable for each n and hence the limit X∞ is F∞-measurable (since the

convergence is almost sure, there is a null set issue which can be dealt with by completing the

sigma-algebras. Alternately, define X∞(ω) = limXn(ω) when the limit exists, and X∞(ω) = 0

when limXn(ω) does not exist. Then X∞ is F∞-measurable).

Define the measure µ and ν on F∞ by µ(A) =
∫
AXdP and ν(A) =

∫
AX∞dP for A ∈ F∞.

What we want to show is that µ(A) = ν(A) for all A ∈ F∞. If A ∈ Fm, then for any n > m, we

have ∫
A
XdP =

∫
A
XmP =

∫
A
XndP

n→∞−→
∫
A
X∞dP.
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The first inequality holds because Xm = E[X
∣∣∣∣∣∣ Fm] and the second equality holds because Xm =

E[Xn

∣∣∣∣∣∣ Fm] for n > m. The last convergence holds because Xn → X in L1. Comparing the first

and last quantities in the above display, we see that µ(A) = ν(A) for all A ∈
⋃
mFm.

Thus,
⋃
nFn is a π-system on which µ and ν agree. By the π − λ theorem, they agree of

F∞ = σ{
⋃
nFn}. This completes the proof that E[X

∣∣∣∣∣∣ Fn]
a.s., L1

−→ E[X
∣∣∣∣∣∣ F∞].

Backward case: Write X−n = E[X
∣∣∣∣∣∣ Gn] for n ∈ N. Then X is a reverse martingale w.r.t the

filtration G−n, n ∈ N. By the reverse martingale convergence theorem, we get that Xn converges

almost surely and in L1 to some X∞.

We claim that X∞ = E[X
∣∣∣∣∣∣ G∞]. Since X∞ is Gn measurable for every n (being the limit of

Xk, k ≥ n), it follows that X∞ is G∞-measurable. Let A ∈ G∞. Then A ∈ Gn for any n and hence∫
AXdP =

∫
AXndP which converges to

∫
AX∞dP . Thus,

∫
AXdP =

∫
AX∞dP for all A ∈ F∞.

2. Kolmogorov’s zero-one law

As a corollary of the forward law, we may prove Kolmogorov’s zero-one law.

Theorem 26: Kolmogorov’s zero-one law

Let ξn, n ≥ 1 be independent random variables and let T =
⋂
n σ{ξn, ξn+1, . . .} be the tail

sigma-algebra of this sequence. Then P(A) is 0 or 1 for every A ∈ T .

PROOF. Let Fn = σ{ξ1, . . . , ξn}. Then E[1A
∣∣∣∣∣∣ Fn] → E[1A

∣∣∣∣∣∣ F∞] in L1 and almost surely.

But F∞ = σ{ξ1, ξ2, . . .}. Thus if A ∈ T ⊆ F∞ then E[1A
∣∣∣∣∣∣ F∞] = 1A a.s. On the other hand,

A ∈ σ{ξn+1, ξn+2, . . .} from which it follws that A is independent of Fn and hence E[1A
∣∣∣∣∣∣ Fn] =

E[1A] = P(A). The conclusion is that 1A = P(A) a.s., which is possible if and only if P(A) equals

0 or 1. �

3. Strong law of large numbers

The strong law of large number under first moment condition is an easy consequence of the

reverse martingale theorem.

Theorem 27

Let ξn, n ≥ 1 be i.i.d. real-valued random variables with zero mean and let Sn = ξ1+. . .+ξn.

Then 1
nSn

a.s.→ 0.

PROOF. Let Gn = σ{Sn, Sn+1, . . .} = σ{Sn, ξn+1, ξn+2, . . .}, a decreasing sequence of sigma-

algebras. Hence M−n := E[ξ1

∣∣∣∣∣∣ Gn] is a reverse martingale and hence converges almost surely and

in L1 to some M−∞.
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But E[ξ1

∣∣∣∣∣∣ Gn] = 1
nSn (why?). Thus, 1

nSn → M−∞ almost surely and in L1. But the limit of
1
nSn is clearly a tail random variable of ξns and hence must be constant. Thus, M−∞ = E[M−∞] =

lim 1
nE[Sn] = 0. In conclusion, 1

nSn
a.s.→ 0. �

4. Critical branching process

Let Zn, n ≥ 0 be the generation sizes of a Galton-Watson tree with offspring distribution

p = (pk)k≥0. If m =
∑

k kpk is the mean, then Zn/mn is a martingale (we saw this earlier).

If m < 1, then P{Zn ≥ 1} ≤ E[Zn] = mn → 0 and hence, the branching process becomes

extinct w.p.1. For m = 1 this argument fails. We show using martingales that extinction happens

even in this cases.

Theorem 28

If m = 1 and p1 6= 1, then the branching process becomes extinct almost surely.

PROOF. If m = 1, then Zn is a non-negative martingale and hence converges almost surely to

a finite random variable Z∞. But Zn is integer-valued. Thus,

Z∞ = j ⇔ Zn = j for all n ≥ n0 for some n0.

But if j 6= 0 and p1 < 1, then it is easy to see that P{Zn = j for all n ≥ n0} = 0 (since conditional

on Fn−1, there is a positive probability of pj0 that Zn = 0). Thus, Zn = 0 eventually. �

In the supercritical case we know that there is a positive probability of survival. If you do not

know this, prove it using the second moment method as follows.
Exercise 14

By conditioning on Fn−1 (or by conditioning on F1), show that (1) E[Zn] = mn, (2) E[Z2
n] �

(1 + σ2)m2n. Deduce that P{Zn > 0} stays bounded away from zero. Conclude positive

probability of survival.

We also have the martingale Zn/mn. By the martingale convergence theoremW := limZn/m
n

exists, a.s. On the event of extinction, clearly W = 0. On the event of survival, is it necessarily the

case that W > 0 a.s.? If yes, this means that whenever the branching process survives, it does so

by growing exponentially, since Zn ∼ W mn. The answer is given by the famous Kesten-Stigum

theorem.

Theorem 29: Kesten-Stigum theorem

Assume that E[L] > 1 and that p1 6= 1. Then, W > 0 almost surely on the event of survival

if and only if E[L log+ L] <∞.
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We now prove a weaker form of this, that if E[L2] < ∞, then W > 0 on the event of survival

(this was in fact proved by Kolmogorov earlier).

KESTEN-STIGUM UNDER FINITE VARIANCE CONDITION. Assume σ2 = E[L2] < ∞. Then by

Exercise 14, Zn
mn is an L2 bounded martingale. Therefore it converges to W almost surely and in

L2. In particular, P(W = 0) < 1. However, by conditioning on the first generation, we see that

q = P{W = 0} satisfies the equation q = E[qL] (if the first generation has L children, in each of

the trees under these individuals, the corresponding Wi = 0 and these Wi are independent). But

the usual proof of the extinction theorem shows that there are only two solutions to the equation

q = E[qL], namely 1 and the extinction probability of the tree. Since we have see that q < 1, it must

be equal to the extinction probability. That is W > 0 a.s. on the event of survival. �

5. Pólya’s urn scheme

Initially the urn contain b black and w white balls. Let Bn be the number of black balls after n

steps. Then Wn = b+ w + n−Bn. We have seen that Xn := Bn/(Bn +Wn) is a martingale. Since

0 ≤ Xn ≤ 1, uniform integrability is obvious and Xn → X∞ almost surely and in L1. Since Xn are

bounded, the convergence is also in Lp for every p. In particular, E[Xk
n] → E[Xk

∞] as n → ∞ for

each k ≥ 1.

Theorem 30

X∞ bas Beta(b, w) distribution.

PROOF. Let Vk be the colour of the kth ball drawn. It takes values 1 (for black) and 0 (for

white). It is an easy exercise to check that

P{V1 = ε1, . . . , Vm = εm} =
b(b+ 1) . . . (b+ r − 1)w(w + 1) . . . (w + s− 1)

(b+ w)(b+ w + 1) . . . (b+ w + n− 1)

if r = ε1+. . .+εm and s = n−r. The key point is that the probability does not depend on the order

of εis. In other words, any permutation of (V1, . . . , Vn) has the same distribution as (V1, . . . , Vn), a

property called exchangeability.

From this, we see that for any 0 ≤ r ≤ n, we have

P{Xn =
b+ r

b+ w + n
} =

(
n

r

)
b(b+ 1) . . . (b+ r − 1)w(w + 1) . . . (w + (n− r)− 1)

(b+ w)(b+ w + 1) . . . (b+ w + n− 1)
.

In the simplest case of b = w = 1, the right hand side is 1
n+1 . That is, Xn takes the values r+1

n+2 ,

0 ≤ r ≤ n, with equal probabilities. Clearly then Xn
d→ Unif[0, 1]. Hence, X∞ ∼ Unif[0, 1]. In

general, we leave it as an exercise to show that X∞ has Beta(b, w) distribution. �

Here is a possibly clever way to avoid computations in the last step.
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Exercise 15

For each initial value of b, w, let µb,w be the distribution of X∞ when the urn starts with b

black and w white balls. Each µb,w is a probability measure on [0, 1].

(1) Show that µb,w = b
b+wµb+1,w + w

b+wµb,w+1.

(2) Check that Beta(b, w) distributions satisfy the above recursions.

(3) Assuming (b, w) 7→ µb,w is continuous, deduce that µb,w = Beta(b, w) is the only

solution to the recursion.

One can introduce many variants of Pólya’s urn scheme. For example, whenever a ball is

picked, we may add r balls of the same color and q balls of the opposite color. That changes the

behaviour of the urn greatly and in a typical case, the proportions of black balls converges to a

constant.

Here is a muti-color version which shares all the features of Pólya’s urn above.

Multi-color Pólya’s urn scheme: We have ` colors denoted 1, 2, . . . , `. Initially an urn contains

bk > 0 balls of color k (bk need not be integers). At each step of the process, a ball is drawn

uniformly at random from the urn, its color noted, and returned to the urn with another ball of

the same color. Let Bk(n) be the number of balls of kth color after n draws. Let ξn be the color of

the ball drawn in the nth draw.

Exercise 16

(1) Show that 1
n+b1+...+b`

(B1(n), . . . , B`(n)) converges almost surely (and in Lp for any

p) to some random vector (Q1, . . . , Q`).

(2) Show that ξ1, ξ2, . . . is an exchangeable sequence.

(3) For b1 = . . . = b` = 1, show that (Q1, . . . , Q`) has Dirichlet(1, 1, . . . , 1) distribution.

In general, it has Dirichlet(b1, . . . , b`) distribution.

This means that Q1 + . . .+Q` = 1 and (Q1, . . . , Q`−1) has density

Γ(b1 + . . .+ b`)

Γ(b1) . . .Γ(b`)
xb1−1

1 . . . x
b`−1−1
`−1 (1− x1 − . . .− x`−1)b`−1

on ∆ = {(x1, . . . , x`−1) : xi > 0 for all i and x1 + . . .+ x`−1 < 1}.

Blackwell-Macqueen urn scheme: Here is a generalization of Pólya’s urn scheme to infinitely

many colours. Start with the unit line segment [0, 1], each point of which is thought of as a distinct
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colour. Pick a uniform random variable V1, after which we add a line segment of length 1 that

has colour V1 (you may imagine that the new segment is attached to the old one at the point V1).

Now we have the original line segment and a new line segment, and we draw a point uniformly

at random from the union of the two line segments. If it falls in the original segment at location

V2, a new line segment of colour V2 is added and if it falls in the segment of colour V1, then a new

line segment of length 1 having colour V1 is added. The process continues.

If one considers the situation after the first step, the colour V1 is like the black in a Pólya’s urn

scheme with b = 1 = w. Hence the proportion of V1 converges almost surely to P1 ∼ unif[0, 1].

When the kth colour appears, it appears with a line segment of length 1 and the original line

segment has length 1. If we ignore all the points that fall in the other coloured segments that have

appeared before, then again we have a Pólya urn with b = w = 1. This leads to the following

conclusion: The proportions of the colours that appear, in the order of appearance, converges

almost surely to (P1, P2, . . .) where P1 = U1, P2 = (1 − U1)U2, P3 = (1 − U1)(1 − U2)U3, . . . where

Ui are i.i.d. uniform random variables on [0, 1].

The random vectorP has a distribution on the infinite simplex ∆ = {(p1, p2, . . .) : pi ≥ 0,
∑

i pi =

1} that is known as a GEM distribution (for Griffiths-Engel-McCloskey) and random vector P ↓ got

from P by ranking the co-ordinates in decreasing order is said to have Poisson-Dirichlet distribu-

tion (on the ordered simplex ∆↓ = {(p1, p2, . . .) : p1 ≥ p2 ≥ . . . ≥ 0 and
∑

i pi = 1}. If we allow

the initial stick to have length θ > 0 (the segments added still have length 1), then the resulting

distribution on ∆ and ∆↓ are called GEM(0, θ) and PD(0, θ) distributions.

6. Liouville’s theorem

Recall that a harmonic function on Z2 is a function f : Z2 → R such that f(x) = 1
4

∑
y:y∼x f(y)

for all x ∈ Z2.

Theorem 31: Liouville’s theorem

If f is a non-constant harmonic function on Z2, then sup f = +∞ and inf f = −∞.

PROOF. If not, by negating and/or adding a constant we may assume that f ≥ 0. Let Xn be

simple random walk on Z2. Then f(Xn) is a martingale. But a non-negative super-martingale

converges almost surely. Hence f(Xn) converges almost surely.

But Pólya’s theorem says that Xn visits every vertex of Z2 infinitely often w.p.1. This contra-

dicts the convergence of f(Xn) unless f is a constant. �

Observe that the proof shows that a non-constant super-harmonic function on Z2 cannot be

bounded below. The proof uses recurrence of the random walk. But in fact the same theorem

holds on Zd, d ≥ 3, although the simple random walk is transient there.
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For completeness, here is a quick proof of Pólya’s theorem in two dimensions.
Exercise 17

Let Sn be simple symmetric random walk on Z2 started at (0, 0).

(1) Show that P{S2n = (0, 0)} = 1
42n

∑n
k=0

(2n)!
k!2(n−k)!2

and that this expression reduces

to
(

1
22n

(
2n
n

))2
.

(2) Use Stirling’s formula to show that
∑

nP{S2n = (0, 0)} =∞.

(3) Conclude that P{Sn = (0, 0) i.o.} = 1.

The question of existence of bounded or positive harmonic functions on a graph (or in the

continuous setting) is important. Here are two things that we may cover if we get time.

I There are no bounded harmonic functions on Zd (Blackwell).

I Let µ be a probability measure on R and let f be a harmonic function for the random walk

with step distribution µ. This just means that f is continuous and
∫
R f(x+a)dµ(x) = f(a).

Is f necessarily constant? We shall discuss this later (under the heading “Choquet-Deny

theorem”).

To prove Blackwell’s theorem, we first prove a lemma for general Markov chains. Let P =

(pi,j)i,j∈S be a Markov transition matrix on a countable state space S. A function f : S → R is said

to be P -harmonic if f(i) =
∑

j∈S pi,jf(j) for all i ∈ S. If X = (Xn)n≥0 is a Markov chain having

transition P , then the P -harmonicity of f can be equivalently stated as E[f(Xn+1)
∣∣∣∣∣∣X0, . . . , Xn] =

f(Xn). In other words, (f(Xn))n is a martingale.

Lemma 32

In the above setting, assume that for any i, j ∈ S, there is a coupling (Xn, Yn) such that

individually X and Y are Markov chains with transition matrix P and initial states i, j

respectively, and such that τ = min{n : Xn = Yn} <∞ a.s. Then, any bounded P -harmonic

function on S is constant.

PROOF. Fix i, j ∈ S and a coupling (Xn, Yn) as assumed. If we define Zn = Xn for n ≥ τ and

Zn = Yn for n ≤ τ , then Xn, Zn) is also a coupling with the same coupling time τ , but Xn = Zn for

all n ≥ τ (the two chains stick together at time τ ).

Let f be a P -harmonic function such that |f | ≤M . As already observed, f(Xn) and f(Zn) are

both martingales and hence E[f(Xn)−f(Zn)] = f(i)−f(j) for any i, j ∈ S. As f(Xn)−f(Zn) = 0

if n ≥ τ , we deduce that |f(i)− f(j)| ≤ 2MP{τ > n} → 0 as n→∞. This shows that f(i) = f(j)

for any i, j, hence fmust be constant. �
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Harmonic function on a graph is the same as the P -harmonic function where P is the transition

for simple random walk on the graph. Observe that a P -harmonic function is also Q-harmonic if

Q = (P + I)/2. The transition matrix Q is a lazy version of P , wherein at each step it stays put with

probability 1/2 and when it moves, it moves according to P .

Theorem 33: Blackwell: No bounded harmonic functions on Zd

If f : Zd → R is bounded and harmonic, then f is constant.

PROOF. Let P be the transition matrix for the lazy version of simple symmetric random walk

on Zd. Then f is P -harmonic. By Lemma 32, it suffices to show that for any x, y ∈ Zd, we can

couple the chains starting at x, y so that they meet eventually. This is achieved by as follows.

Let X0 = x and Y0 = y. Here is how the steps are coupled at time n. Pick U ∼ Unif{1, . . . , d}
and ξ, η ∼ Unif{0, 1}, all independent and independent of the chains up to time n.

(1) If U = i and Xn(i) = Yn(i), then let (Xn+1, Yn+1) − (Xn, Yn) be equal to 0 if ξ = 0 and

equal to (ei, ei) if ξ = 1, η = 0 and equal to (−ei,−ei) if ξ = 1, η = 1.

(2) If U = i and Xn(i) < Yn(i), then let (Xn+1, Yn+1)− (Xn, Yn) be equal to (ei, 0) if ξ = 0 and

equal to (0,−ei) if ξ = 1.

(3) If U = i and Xn(i) > Yn(i), then let (Xn+1, Yn+1) − (Xn, Yn) be equal to (−ei, 0) if ξ = 0

and equal to (0, ei) if ξ = 1.

We leave it as an exercise to check thatX and Y are lazy simple symmetric random walks. Further,

for any co-ordinate i, Xn(i)− Yn(i) is a lazy simple symmetric random walk in 1-dimension (with

lazyness probability 1− 1
2d ) that gets absorbed at 0. Hence it will eventually get absorbed, in other

words Xn(i) = Yn(i) for large enough n. This completes the proof of coupling. �

7. Hewitt-Savage zero-one law

There are many zero-one laws in probability, asserting that a whole class of events are trivial.

For a sequence of random variables, here are three important classes of such events.

Below, ξn, n ≥ 1, are random variables on a common probability space (Ω,F ,P) and taking

values in (X,F). Then ξ = (ξn)n≥1 is a random variable taking values in (XN,F⊗N). These

definitions can be extended to two sided-sequences (ξn)n∈Z easily.

(1) The tail sigma-algebra is defined as T = ∩nTn where Tn = σ{ξn, ξn+1, . . .}.

(2) The exchangeable sigma-algebra S is the sigma-algebra of those events that are invariant

under finite permutations.
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More precisely, let G be the sub-group (under composition) of all bijections π : N→ N
such that π(n) = n for all but finitely many n. It is clear how G acts on XN:

π((ωn)) = (ωπ(n)).

Then

S := {ξ−1(A) : A ∈ F⊗N and π(A) = A for all π ∈ G}.

IfGn is the sub-group of π ∈ G such that π(k) = k for every k > n and Sn := {ξ−1(A) : A ∈
F⊗N and π(A) = A for all π ∈ Gn}, then Sn are sigma-algebras that decrease to S.

(3) The translation-invariant sigma-algebra I is the sigma-algebra of all events invariant under

translations.

More precisely, let θn : XN → XN be the translation map [θn(ω)]k = ωn+k. Then,

I = {A ∈ F⊗N : θn(A) = A for all n ∈ N} (these are events invariant under the action of

the semi-group N).

Kolmogorov’s zero-one law asserts that under and product measure µ1 ⊗ µ2 ⊗ . . ., the tail sigma-

algebra is trivial. Ergodicity is the statement that I is trivial and it is true for i.i.d. product mea-

sures µ⊗N. The exchangeable sigma-algebra is also trivial under i.i.d. product measure, which is

the result we prove in this section. First an example.

Example 21

The event A = {ω ∈ RN : limωn = 0} is an invariant event. In fact, every tail event is an

invariant event. But the converse is not true. For example,

A = {ω ∈ RN : lim
n→∞

(ω1 + . . .+ ωn) exists and is at most 0}

is an invariant event but not a tail event. This is because ω = (−1, 1
2 ,

1
4 ,

1
8 , . . .) belongs to A

and so does every finite permutation of ω as the sum does not change. But changing the

first co-ordinate to 0 gives ω′ = (0, 1
2 ,

1
4 ,

1
8 , . . .), which is not in A.

Theorem 34: Hewitt-Savage 0-1 law

Let µ be a probability measure on (X,F). Then the invariant sigma-algebra S is trivial

under the product measure µ⊗N.

In terms of random variables, we may state this as follows: Let ξn be i.i.d. random variables

taking values in X . Let f : XN 7→ R be a measurable function such that f ◦ π = f for all π ∈ G.

Then, f(ξ1, ξ2, . . .) is almost surely a constant.

We give a proof using reverse martingale theorem. There are also more direct proofs.
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PROOF. For any integrable Y (that is measurable w.r.tF⊗N), the sequence E[Y
∣∣∣∣∣∣ Sn] is a reverse

martingale and hence E[Y
∣∣∣∣∣∣ Sn]

a.s., L1

−→ E[Y
∣∣∣∣∣∣ S].

Now fix k ≥ 1 and letϕ : Xk → R be a bounded measurable function. Take Y = ϕ(X1, . . . , Xk).

We claim that

E[ϕ(X1, . . . , Xk)
∣∣∣∣∣∣ Sn] =

1

n(n− 1) . . . (n− k + 1)

∑
1≤i1,...,ik≤n

distinct

ϕ(Xi1 , . . . , Xik).

To see this, observe that by symmetry (since Sn does no distinguish betweenX1, . . . , Xn), we have

E[ϕ(Xi1 , . . . , Xik)
∣∣∣∣∣∣ Sn] is the same for all distinct i1, . . . , ik ≤ n. When you add all these up, we

get

E

 ∑
1≤i1,...,ik≤n

distinct

ϕ(Xi1 , . . . , Xik)
∣∣∣Sn

 =
∑

1≤i1,...,ik≤n
distinct

ϕ(Xi1 , . . . , Xik)

since the latter is clearly Sn-measurable. There are n(n − 1) . . . (n − k + 1) terms on the left, each

of which is equal to E[ϕ(X1, . . . , Xk)
∣∣∣∣∣∣ Sn]. This proves the claim.

Together with the reverse martingale theorem, we have shown that
1

n(n− 1) . . . (n− k + 1)

∑
1≤i1,...,ik≤n

distinct

ϕ(Xi1 , . . . , Xik)
a.s., L1

−→ E[ϕ(X1, . . . , Xk)
∣∣∣∣∣∣ S].

The number of summands on the left in which X1 participates is k(n− 1)(n− 2) . . . (n− k + 1). If

|ϕ| ≤Mϕ, then the total contribution of all terms containing X1 is at most

Mϕ
k(n− 1)(n− 2) . . . (n− k + 1)

n(n− 1)(n− 2) . . . (n− k + 1)
→ 0

as n → ∞. Thus, the limit is a function of X2, X3, . . .. By a similar reasoning, the limit is a tail-

random variable for the sequence X1, X2, . . .. By Kolmogorov’s zero-one law it must be a constant

(then the constant must be its expectation). Hence,

E[ϕ(X1, . . . , Xk)
∣∣∣∣∣∣ S] = E[ϕ(X1, . . . , Xk)].

As this is true for every bounded measurable ϕ, we see that S is independent of σ{X1, . . . , Xk}. As

this is true for every k, S is independent of σ{X1, X2, . . .}. But S ⊆ σ{X1, X2, . . .} and therefore S
is independent of itself. This implies that for any A ∈ S we must have P(A) = P(A ∩A) = P(A)2

which implies that P(A) equals 0 or 1. �

8. Exchangeable random variables

Let ξn, n ≥ 1, be any sequence of random variables. Recall that this means that

(ξπ(1), ξπ(2), . . .)
d
= (ξ1, ξ2, . . .)
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for any bijection (permutation) π : N 7→ N that fixes all but finitely many elements. Since distri-

bution of infinitely many random variables is nothing but the collection of all finite dimensional

distributions, this is equivalent to saying that

(ξi1 , . . . , ξin)
d
= (ξ1, . . . , ξn)

for any n ≥ 1 and any distinct i1, . . . , in.

We have seen an example of an exchangeable sequence in Pólya’s urn scheme, namely the

successive colours drawn.

Example 22

If ξn are i.i.d., then they are exchangeable. More generally, consider finitely many probabil-

ity measures µ1, . . . , µk on some (Ω,F) and let p1, . . . , pk be positive numbers that add up

to 1. Pick L ∈ {1, . . . , k} with probabilities p1, . . . , pk, and conditional on L, pick an i.i.d.

sequence ξ1, ξ2, . . . from µL. Then (unconditionally) ξis are exchangeable but not indepen-

dent.

The above example essentially covers everything, according to a fundamental theorem of de

Finetti! Before stating it, let us recall the exchangeable sigma-algebra S of the collection of all sets

in the product sigma-algebra F⊗N that are invariant under finite permutations of co-ordinates.

Let us also define Sn as the collection of all events invariant under the permutations of the first n

co-ordinates. The S = ∩nSn.

Theorem 35: de Finetti

Let ξ1, ξ2, . . . be an exchangeable sequence of random variables taking values in (X,F).

Then, they are i.i.d. conditional on S. By this we mean that

E
[
ϕ1(ξ1) . . . ϕk(ξk)

∣∣∣∣∣∣ S] =
k∏
j=1

E[ϕj(ξ1)
∣∣∣∣∣∣ S]

for any k ≥ 1 and any bounded measurable ϕj : X 7→ R.

If the situation is nice enough that a regular conditional probability given S exists, then the

statement is equivalent to saying that the conditional distribution is (almost surely) a product of

identical probability distributions on F .

Before proving this, let us prove a lemma very similar to the one we used in the proof of the

Hewitt-Savage zero one law.
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Lemma 36

Let ξ1, ξ2, . . . be an exchangeable sequence taking values in (X,F). Fix k ≥ 1 and any

bounded measurable ψ : Xk 7→ R. Then, as n→∞
1

nk

∑
1≤i1,...,ik≤n

ψ(ξi1 , . . . , ξik)
a.s.→ E

[
ψ(ξ1, . . . , ξk)

∣∣∣∣∣∣ S] .
PROOF. We claim that

E
[
ψ(ξ1, . . . , ξk)

∣∣∣∣∣∣ Sn] =
1

n(n− 1) . . . (n− k + 1)

′∑
i1,...,ik≤n

ψ(ξi1 , . . . , ξik)(11)

where
∑′

i1,...,ik≤n denotes summation over distinct i1, . . . , ik ≤ n. The reason is that the right hand

side is clearly in Sn (since it is a symmetric function of ξ1, . . . , ξn). Further, if Z = g(ξ1, . . . , ξn)

where g is a symmetric measurable bounded function from Xn to R, then for any permutation π

of [n],

E[Zψ(ξ1, . . . , ξk)] = E[g(ξπ(1), . . . , ξπ(n))ψ(ξπ(1), . . . , ξπ(k))]

= E[g(ξ1, . . . , ξn)ψ(ξπ(1), . . . , ξπ(k))]

where the first line used the exchangeability of ξis and the second used the symmetry of g. By such

symmetric functions generate the sigma-algebra Sn, hence this shows that E[ψ(ξπ(1), . . . , ξπ(k))
∣∣∣∣∣∣ Sn]

is the same for all permutations π of [n]. Therefore the expectation of the right hand side of (11) is

also the same.

Now, by Lévy’s backward law (or reverse martingale theorem) we know that E[ϕ(ξ1, . . . , ξk)
∣∣∣∣∣∣ Sn]

converges to E[ϕ(ξ1, . . . , ξk)
∣∣∣∣∣∣ S]. On the right hand side, we may replace n(n − 1) . . . (n − k + 1)

by nk (the ratio goes to 1 as n→∞) and extend the sum to all i1, . . . , ik since the number of terms

with at least two equal indices is of order nk−1 and its contribution is at most ‖ψ‖sup (thus the

contribution gets washed away when divided by nk). �

Now we prove de Finetti’s theorem.

PROOF OF DE FINETTI’S THEOREM. By the lemma applied toψ(x1, . . . , xk) = ϕ1(x1) . . . ϕk(xk),
1

nk

∑
i1,...,ik≤n

ϕ1(ξi1) . . . ϕk(ξik)
a.s.→ E

[
ϕ1(X1) . . . ϕk(Xk)

∣∣∣∣∣∣ S] .
On the other hand, the left hand side factors into a product of 1

n

∑n
i=1 ϕ`(xi) over ` = 1, 2, . . . , k,

and again by the Lemma the `th factor converges almost surely to E[ϕ`(ξ1)
∣∣∣∣∣∣ S]. This proves the

theorem. �

There are many alternate ways to state the thorem of de Finetti. One is to say that every

exchangeable measure is a convex combination of i.i.d. product measures. Another way is this:
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If (ξn)n is an exchangeable sequence of random variables taking values in a Polish space X ,

then there exists a Borel measurable function f : [0, 1]× [0, 1] 7→ X such that

(ξ1, ξ2, ξ3, . . .)
d
= (f(V, V1), f(V, V2), f(V, V3), . . .)

where V, V1, V2, . . . are i.i.d.uniform[0, 1] random variables. Here V represents the common infor-

mation contained in S, and conditional on that, the variables are i.i.d.

8.1. About the exchangeable sigma algebra. SupposeXi are i.i.d. By the Hewitt-Savage zero-

one law, the exchangeable sigma algebra S is trivial. What is it in the case of a general exchange-

able sequence (Xn)n? To get an idea, first consider the case where Xns take values in a finite set

A. Then, by the lemma above, 1
n

∑n
k=1 1Xk=a converges almost surely to some θ(a) for each a ∈ A.

Then θ is a random probability vector on A. Further, for any fixed n, it is clear that Sn is precisely

the sigma algebra generated by 1
n

∑n
k=1 1Xk=a, a ∈ A. This suggests that the exchangeable sigma-

algebra S must be just the sigma-algebra generated by θ (i.e., by θ(a), a ∈ A). To fill up with a

precise statement

This also gives a way to think of de Finetti’s theorem (in fact this was implicit in the proof).

Think of an exchangeable sequence of random variables taking values in a finite setA. Then when

we condition on Sn, we know the number of times each a ∈ A appears among X1, . . . , Xn. In

other words, we know the multi-set {X1, . . . , Xn}. By exchangeablity, the conditional distribution

of (X1, . . . , Xn) is uniform distribution on all sequences in An that are consistent with these fre-

quencies. Put another way, from the multi-set {X1, . . . , Xn}, sample n times without replacement,

and place the elements in the order that they are sampled. If we fix a k and consider X1, . . . , Xk,

then for large n sampling without replacement and sampling with replacement are essentially the

same, which is the statement that X1, . . . , Xk, given Sn, are approximately i.i.d.

9. Absolute continuity and singularity of product measures

Consider a sequence of independent random variables Xn (they may take values in different

spaces). We are told that either (1) Xn ∼ µn for each n or (2) Xn ∼ νn for each n.Here µn and νn

are given probability distributions. From one realization of the sequence (X1, X2, . . .), can we tell

whether the first situation happened or the second?

In measure theory terms, the question may be formulated as follows.

Question: Let µn, νn be probability measures on (Ωn,Gn). Let Ω = ×nΩn, F = ⊗nGn and µ = ⊗nµn
and ν = ⊗νn. Then, µ, ν are probability measures on (Ω,F). Assume that νn � µn for each n. Can

we say whether (1) ν � µ, (2) ν ⊥ µ or (3) neither of the previous two options?
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Let us consider a concrete example where direct calculations settle the above question. It also

serves to show that both ν ⊥ µ and ν � µ are possibilities.

Example 23

Let µn = unif[0, 1] and νn = unif[0, 1+δn]. Then, ν[0, 1]N =
∏
n

1
1+δn

. Thus, if
∏
n(1+δn) =∞,

then µ[0, 1]N = 1 while ν[0, 1]N = 0. Hence, µ ⊥ ν.

On the other hand, if
∏
n(1 + δn) <∞, then we claim that ν � µ. To see this, pick Un, Vn be

i.i.d. unif[0, 1]. Define Xn = (1 + δn)Un ∼ νn. Further, set

Yn =

Xn if Xn ≤ 1,

Vn if Xn > 1.

Check that Vn are i.i.d with uniform distribution on [0, 1]. In short, (X1, X2, . . .) ∼ ν and

(Y1, Y2, . . .) ∼ µ. Now,

P{Xn = Yn for all n} = P{Xn ≤ (1 + δn)−1 for all n} =
∞∏
n=1

1

1 + δn

which is positive by assumption. Thus, there is a way to construct X ∼ µ and Y ∼ ν such

that X = Y with positive probability. Then we cannot possibly have µ ⊥ ν (in itself this is

not enough to say that ν � µ).

We used the special properties of uniform distribution to settle the above example. In general

it is not that easy, but Kakutani provided a complete answer.

Theorem 37: Kakutani’s theorem

Let µn, νn be probability measures on (Ωn,Fn) and assume that µn � νn with Radon-

Nikodym theorem fn Let µ = ⊗nµn and ν = ⊗nνn, probability measures on Ω = ×nΩn

with the product sigma algebra. Let an =
∫

Ωn

√
fndνn. Then,f(x) :=

∞∏
k=1

fk(xk) converges

ν-almost surely

(1) If
∞∏
k=1

ak > 0, then µ� ν and and dµ(x) = f(x) dν(x).

(2) If
∞∏
k=1

ak = 0, then µ ⊥ ν.

First we prove a general lemma about product martingales.
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Lemma 38

Let ξn ≥ 0 be independent random variables with mean 1 and let Xn = ξ1ξ2 . . . ξn be the

corresponding product martingale. Let an = E[
√
ξn] and let X∞ be the almost sure limit of

Xns. Then there are two possibilities.

(1)
∏
n
an > 0. In this case, {Xn} is uniformly integrable, E[X∞] = 1. If ξn > 0 a.s. for

all n, then X∞ > 0 a.s.

(2)
∏
n
an = 0. In this case, {Xn} is not uniformly integrable and X∞ = 0 a.s.

Observe that ak ≤
√

E[ξk] = 1 for all k. Hence the partial products
∏n
j=1 aj are decreasing in

n and have a limit in [0, 1], which is what we mean by
∏
n
an.

PROOF OF LEMMA 38. Let Yn =
∏n
j=1

ξj√
aj

. Then Xn and Yn are both martingales (w.r.t. Fn =

σ{ξ1, . . . , ξn}) and are related as Xn = Y 2
n a

2
1 . . . a

2
n. As they are non-negative and have mean 1, we

also know that Xn
a.s.→ X∞ and Yn

a.s.→ Y∞ where X∞ and Y∞ are integrable (hence finite almost

surely).

(1) Suppose
∏
n
an > 0. Then E[Y 2

n ] = 1
a1...an

is uniformly bounded. As an L2-bounded

martingale, Yn → Y∞ in L2. In particular, Y 2
n converges to Y 2

∞ almost surely and in

L1, which implies that {Y 2
n } must be uniformly integrable. But Xn ≤ Y 2

n (as aj ≤ 1

for all j), which means that {Xn} is uniformly integrable. In particular, we also have

E[X∞] = limE[Xn] = 1. In particular, P{X∞ > 0} > 0. But if ξns are strictly positive,

then the event {X∞ > 0} is a tail event of (ξn)n, hence by Kolmogorov’s zero one law it

must have probability 1.

(2) Suppose
∏
n
an = 0. Observe that X∞ = Y 2

∞
∏
j
a2
j and Y∞ is a finite random variable.

Hence X∞ = 0 a.s.. �

PROOF OF KAKUTANI’S THEOREM. Define ξn(ω) = fn(ωn) for ω ∈ Ω. Under the measure ν,

the ξn are independent random variables with mean 1. Let Gn = σ{ξ1, . . . , ξn}. Now form the

product martingales (w.r.t. ν): Xn = ξ1 . . . ξn and Yn =
∏n
j=1

ξj√
aj

as in the proof of Lemma 38.

If
∏
n
an > 0, then {Xn} is uniformly integrable and E[X∞] = 1 by that Lemma. We also know

that E[X∞
∣∣∣∣∣∣ Gk] = Xk for any k by the martingale convergence theorem (for u.i. martingales).

Define the measure θ on (Ω,G) by dθ(ω) = X∞(ω)dν(ω). Then if A ∈ Gk for some k, we have

θ(A) =

∫
A
X∞dν =

∫
A
Xkdν = µ(A).
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Thus µ and θ are two probability measures that agree on the π-system ∪kGk. Hence they agree on

the generated sigma algebra F . That is µ has Radon-Nikodym derivative X∞ w.r.t. ν.

If
∏
n
an = 0, then by Lemma 38, we see that X∞ = 0 a.s.[ν]. We claim that Xn → +∞ a.s.[µ].

Granting the claim, the sets {limXn = 0} and {limXn =∞} provide a separation that proves that

µ ⊥ ν.

To prove the claim, we first show that 1√
Xn

is a µ-supermartingale. To see this, let A ∈ Gn, and

write A = B × Ωn+1 × . . . for some B ∈ F1 ⊗ . . .⊗Fn. Then,∫
A

1√
Xn+1

dµ =

∫
Ω1×...×Ωn+1

1B(ω1, . . . , ωn)√
f1(ω1) . . .

√
fn+1(ωn+1)

n+1∏
k=1

fk(ωk) dν1(ω1) . . . dνn+1(ωn+1)

=

∫
Ω1×...×Ωn

1B(ω1, . . . , ωn)√
f1(ω1) . . .

√
fn(ωn)

n∏
k=1

fk(ωk) dν1(ω1) . . . dνn(ωn)×
∫

Ωn+1

√
fn+1dνn+1

=

∫
A

1√
Xn

dµ×E[
√
ξn+1].

The second factor is bounded by E[ξn+1] = 1, hence we see that 1√
Xn

is a µ-supermartingale. As a

non-negative supermartingale, it converges a.s.[µ], say to a random variable Z. By Fatou’s lemma,

Eµ[Z] ≤ lim inf Eµ[1/
√
Xn] = lim inf Eν [

√
Xn] = lim inf

n∏
k=1

E[
√
ξk] =

∞∏
k=1

ak

which is assumed to be zero. Hence Z = 0 a.s[µ], which means that Xn → +∞ a.s. [µ]. �

There is a more general question, which we did not cover in class. Proofs can be found in most

books having a chapter on martingales.

Question’. Let µ, ν be probability measures on (Ω,F). Suppose F1 ⊆ F2 ⊆ . . . are sub sigma-

algebras of F such that σ{∪nFn} = F . Let µn = µ
∣∣
Fn and νn = ν

∣∣
Fn be the restrictions of µ and ν

to Fn. Assume that νn � µ. Is ν � µ. If not are there conditions?

This subsumes the question of product measures by taking Ω = ×nΩn andFn = σ{Π1, . . . ,Πn},
the sigma algebra generated by the first n projections. The answer for this question is as follows.

Let Xn be the Radon-Nikodym derivative of µn w.r.t. νn. Then Xn is a ν-martingale and

converges to some X∞ a.s.[ν]. Then µ = X∞dν + 1X∞=∞µ gives the decomposition of µ into a

part absolutely continuous to ν and a part singular to ν.

10. The Haar basis and almost sure convergence

Consider L2[0, 1] with respect to the Lebesgue measure. Abstract Hilbert space theory says

that L2 is a Hilbert space, it has an orthonormal basis, and that for any orthonormal basis {ϕn}
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and any f ∈ L2, we have

f
L2

=
∑
n

〈f, ϕn〉ϕn

which means that the L2-norm of the difference between the left side and the nth partial sum on

the right side converges to zero as n→∞.

But since L2 consists of functions, it is possible to ask for convergence in other senses. In

general, there is no almost-sure convergence in the above series.

Theorem 39

Let Hn,k, n ≥ 1, 0 ≤ k ≤ 2n − 1 be the Haar basis for L2. Then, for any f ∈ L2, the

convergence holds almost surely.

PROOF. On the probability space ([0, 1],B, λ), define the random variables

Xn(t) =
∑
m≤n

∑
k≤2m−1

〈f,Hm,k〉Hm,k(t).

We claim thatXn is a martingale. Indeed, it is easy to see that ifFn := σ{Hn,0, . . . ,Hn,2n−1} (which

is the same as the sigma algebra generated by the intervals [k/2n, (k + 1)/2n), 0 ≤ k ≤ 2n − 1),

then Xn = E[f
∣∣∣∣∣∣ Fn]. Thus, {Xn} is the Doob-martingale of f with respect to the filtration F·.

Further, E[X2
n] =

∑
m≤n

∑
k≤2m−1 |〈f,Hm,k〉|2 ≤ ‖f‖22. Hence {Xn} is an L2-bounded martin-

gale. It converges almost surely and in L2. But in L2 it converges to f . Hence Xn
a.s.→ f . �

11. Karlin-McGregor formula

Consider n independent simple random walks on Z, each going up with probability p and

down with probability q = 1 − p at each step. If they start at locations a1, . . . , an and time 0, the

probability that they are at locations b1, . . . , bn at time t (in some order) is∑
σ∈Sn

n∏
i=1

Pai,bσ(i)
(t)(12)

where Pa,b(t) is the probability that a simple random walk started at location a at time 0 is at

location b at time t. Explicitly,

Pa,b(t) =

(
t

t+b−a
2

)
p
t+b−a

2 q
t−b+a

2(13)

where, for x a positive integer,
(
x
y

)
is interpreted as zero unless y is an integer and 0 ≤ y ≤ x. If in-

stead we specify which random walk should end where, then we get only one term corresponding

to the specified permutation.

Here is a different question. In the same setting, what is the probability that none of the

random walks hit each other in the meantime? This is a much harder question, but there is an
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amazing explicit answer that turns out to be deep and important (we cannot explain the latter

here). It holds in somewhat greater generality.

Definition 4

Let µ0, µ1, . . . be probability distributions on Z. A random walk on Z with step distributions

(µk)k≥0 is a sequence of random variables {S0, S1, . . .} such that Sk+1 − Sk ∼ µk for k ≥ 0.

If S0 = a w.p.1., we say that the random walk starts at a.

We say that the skip-free condition is satisfied if for independent random walks S(1), . . . , S(n)

started at a1 < . . . < an, if whenever S(i)(t) > S(j) for some t, then there must be an s ≤ t such that

S(i)(s) = S(j)(s). Note that the skip-free condition depends only on the step-distributions and the

initial states. Two cases where it is satisfied are:

(1) µk(−1) = 0 for all k.

(2) µk(0) = 0 for all k and a1, . . . , an are all even or all odd.

We introduce the notation for the transition probabilities

Pa,b(s, t) = P{St = b
∣∣∣∣∣∣ Ss = a}

which can be written in terms of the µks. Note that Pa,b(s, t) depends on a, b only through b − a,

and in the special case when µk does not depend on k (time-homogeneity), it depends on s, t only

through t− s. When µk(+1) = p and µk(−1) = q, this reduces to (13).

Theorem 40: Karlin–McGregor formula

Consider independent random walks S(1), . . . , S(n) with common step distributions (µk)k≥0

and started at a1 < . . . < an. Assume that the skip-free condition is satisfied. Then, the

probability that they end up at locations b1 < . . . < bn at time t without any two of them

intersecting up to that time, is equal to∑
σ∈Sn

sgn(σ)

n∏
i=1

Pai,bσ(i)
(0, t) = det

[
Pai,bj (0, t)

]
1≤i,j≤n .

PROOF. Denote that random walks as S(1), . . . , S(n), where S(j)
0 = j. For any σ ∈ Sn, consider

Mσ(s) =

n∏
i=1

P
{
S(j)(t) = bσ(j) for each j

∣∣∣∣∣∣ Fs} = E

 n∏
j=1

1S(j) = bσ(j)

∣∣∣∣∣∣ Fs

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where Fs = σ{S(j)(r) : 0 ≤ r ≤ s, 1 ≤ j ≤ n} is the natural filtration. Clearly Mσ is an F•
martingale, and hence so is

M(s) :=
∑
σ∈Ss

sgn(σ)Mσ(s) = E

[
det
(
PS(j)(s),bk

(s, t)
)

1≤j,k≤n

]
.

Let τ = inf{s : S(j)(s) = S(k)(s) for some j 6= k} be the first time two of the random walks meet.

The optional stopping theorem gives E[M(τ ∧ t)] = E[M(0)].

(1) M(0) is precisely the quantity on the right side of the statement of the theorem.

(2) M(τ∧t) = 0 if τ ≤ t (if S(j)(s) = S(i)(s), then the jth and ith rows of
(
PS(j)(s),bk

(s, t)
)

1≤j,k≤n
are equal). But if τ > t, then M(τ ∧ t) = M(t) =

∑
σ sgn(σ)

∏n
i=1 1S(j)(t)=bσ(j)

, since

Pa,b(t, t) = δa,b. Thus, E[M(τ ∧ t)] = P{τ > t, {S(1)(t), . . . , S(p)(t)} = {b1, . . . , bm}}.

Thus we arrive at the identity∑
σ

sgn(σ)P{{S(j)(t) = bσ(j) for each j, no intersection up to time t} = det
[
Pai,bj (0, t)

]
1≤i,j≤n .

If the transitions are such that two paths cannot cross each other without touching, then only the

term when σ is the identity permutation survives on the left and we arrive at

P{{S(j)(t) = bj for each j, no intersection up to time t} = det
[
Pai,bj (0, t)

]
1≤i,j≤n .

That was the claim. �

The Karlin-McGregor formula can be used to solve many counting problems such as the fol-

lowing.

A problem of counting lattice paths: On Z2, an oriented lattice path is one of the form . . . ,uk,uk+1 . . .

such that uk+1 − uk is (1, 0) or (0, 1).

Proposition 41

Let (ai, bi), (ci, di) ∈ Z2 for ≤ i ≤ n, and assume that ai + bi = 0 and ci + di = L for all i and

that a1 < . . . < an and c1 < . . . < cn. The number of packets of non-intersecting oriented

lattice paths that lead from (ai, bi) to (ci, di), i ≤ n, is

det

[(
L

j + dj − i− bi

)]
i,j≤n

.

This follows directly from Karlin-McGregor, just rotate the lattice by 45◦ so that the starting

points are on one vertical line and the ending points are on a parallel vertical line. After this

rotation, lattice paths become simple random walk paths.
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A generalization of the ballot problem: Suppose there are p candidates C1, . . . , Cp in an election

who get N1, . . . , Np votes respectively. As the votes are counted one by one, what is the chance

that throughout the counting process, the true order of the candidates is maintained?

We may take N1 ≥ N2 ≥ . . . ≥ Np without loss of generality. The question is to find the chance

that throughout the counting, C1 leads, then C2, then C3 etc. When p = 2, this is the famous ballot

problem, for which the answer (usually got by the reflection principle) is N1−N2+1
N1+1 . The answer to

the general question is

det

[
Nj !

(Nj + i− j)!

]
1≤i,j≤p

(14)

and can be derived from the Karlin-McGregor formula, though the derivation is a little less obvi-

ous (try first!).

PROOF. Consider random walk with Geo(r) steps, where 0 < r < 1. Here Geo(r) takes the

value k with probability (1− r)kr, for k ≥ 0. Consider p independent random walks X(k) started

at −k, for 1 ≤ k ≤ p. We claim that

P
{
X(k)(T ) = Nk − k for each k and they do not intersect ever

∣∣∣∣∣∣ X(k)(T ) = Nk − k for each k
}

= lim
Tr=1,r↓0

det
[
(P−j,Nk−k(T ))j,k≤p

]
∏p
k=1 P−k,Nk−k(T )

.

This is because, as r → 0 and rT → 1, with probability converging to 1, all the jumps are of size

at most 1 and no two random walks jump at the same time. That alloww us to apply the Karlin-

McGregor formula (for fixed r > 0, skip-free condition is violated). By writing out the negative

binomial coefficient or general Poisson convergence of rare events, it follows that

lim
Tr=1,r↓0

Pa,b(T ) = P{Pois(1) = b− a} =
e−1

(b− a)!
.

This leads to the simplification

lim
Tr=1,r↓0

det
[
(P−j,Nk−k(T ))j,k≤p

]
∏p
k=1 P−k,Nk−k(T )

=

det

[(
e−1

(Nk+j−k)!

)
j,k≤p

]
∏p
k=1

e−1

Nk!

= det

[
Nj !

(Nj + i− j)!

]
1≤i,j≤p

,

the expression that appears in (14).

But what does this have to do with the ballot problem? When all jumps happen at different

times, conditional on then event X(k)(T ) = Nk − k, the walk X(k) jumps a total of Nk times.

Further, the the N1 + . . . + Np jumps occur in a uniform random order, just as they should to

correspond to counting votes at random. Lastly, the ballot problem asked for weak inequalities,

hence we converted to strict inequality by starting X(k) at −k. �
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Remark 5

Karlin-McGregor formula can be stated for skip-free random walks in continuous time (and

even continuous space, if sample paths are continuous, for example for Brownian motions),

with essentially the same proof, except that we need optional stopping theorem for con-

tinuous time martingales. If we did that, the proof above can be stated more naturally

by considering independent Poisson processes (which is essentially the scaling limit of the

random walks with Geometric steps, as r → 0 and rT → 1).

12. Kahane’s multiplicative cascade

A dyadic interval in [0, 1] is one of the form In,k = [k2−n, (k + 1)2−n] for some n ≥ 0, 0 ≤ k ≤
2n − 1. The interesting property of these intervals is that for any two of them, either one contains

the other or the two have disjoint interiors. It is best to view this via the regular binary tree T that

has root ∅ and where every vertex has two children.

We may index the vertices with the dyadic intervals In,k. The root vertex is indexed by

I0,0 = [0, 1] and the vertex indexed by vertex In,k has two children, namely In+1,2k (left-child)

and In+1,2k+1 (right child), the two dyadic intervals of the next generation that are contained in it.

Now let W,Wn,k, n ≥ 0, 0 ≤ k ≤ 2n − 1, be i.i.d. strictly positive random variables with a

distribution µ. We construct a sequence of random measures as follows: dM0(x) = dx and for

n ≥ 0 we set dMn+1(x) = gn+1(x)dMn(x), where gn+1(x) = gn(x)Wn+1,k if x ∈ In+1,k. In other

words, dMn(x) = fn(x)dx where (g0(x) = 1 and k0 = 0 by definition)

fn(x) =
n∏
j=0

gj(x) =
n∏

m=0

Wm,km if x ∈ In,kn ⊆ In−1,kn−1 ⊆ . . . ⊆ I1,k0 ⊆ I0,0.

Theorem 42: Kahane

The sequence of random measures Mn converge almost surely to a random measure M on

[0, 1]. Further, if E[W log2W ] < 1, then M 6= 0 a.s. and M is almost surely a singular

measure with no atoms.

Of course, the convergence here is in the Lévy metric on the space of probability measures on

the line.

PROOF OF CONVERGENCE OF MEASURES. Fix x ∈ [0, 1]. As it is a product of positive unit

mean independent random variables, fn(x) is a positive martingale and hence converges a.s. Tak-

ing intersection over x ∈ Q ∩ [0, 1], we see that fn(x)
a.s.→ f(x) for all x ∈ Q ∩ [0, 1], almost surely,

for some f : Q ∩ [0, 1]→ R+.
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FIGURE 1. Figures of the densities f7 and f10 whenW = etZ−
1
2
t2 whereZ ∼ N(0, 1)

and t = 1
2 . It can be believed that the limit measure M is singular (note the mark-

ings on the Y-axis)

For the same reason, Mn[0, x] is a martingale, as

E[Mn+1[0, x]
∣∣∣∣∣∣ Fn] = E

[∫
[0,x]

fn+1(t)dt
∣∣∣∣∣∣ Fn]

=

∫
[0,x]

E[fn+1(t)
∣∣∣∣∣∣ Fn]dt

=

∫
[0,x]

fn(t)dt

= Mn[0, x].

Therefore, Mn[0, x]is also a martingale for each x. Again taking intersection over x ∈ Q∩ [0, 1], we

see that Mn[0, x] → G(x) for all x ∈ Q ∩ [0, 1] a.s., for some function G : Q ∩ [0, 1] → R+. Then

Ḡ(x) = inf{G(u) : u > x} defines a CDF of a measure on [0, 1], which we call M . It is now clear

that Mn →M , a.s. �

For the remaining properties, to simplify the proofs we shall make the assumption that 2E[W 2] <

1. This is a stronger assumption, as x log2 x ≤ 2x2 for all x > 0. The proof under the assumption

that E[W log2W ] < 1 is along similar lines, but more involved.

STRICT POSITIVITY OF THE LIMITING MEASURE UNDER THE STRONGER ASSUMPTION. By con-

ditioning on W0,0, we see that

Mn[0, 1]
d
= W (M ′n[0, 1] +M ′′n [0, 1])

where W,M ′n,M ′′n are independent. Hence, bn = E[Mn[0, 1]2] satisfies the recursion

bn+1 = E[W 2]E[M ′n[0, 1]2 +M ′′n [0, 1]2 + 2M ′n[0, 1]M ′′n [0, 1]]

= E[W 2](2E[Mn[0, 1]2 + 2E[M ′n[0, 1]]2)

= 2E[W 2](1 + bn)
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because E[Mn[0, 1]] = 1 by the martingale property. Writing β = 2E[W 2] and repeating, we see

that

bn = β + β2 + . . .+ βn−1 + βnb0

which converges to 1/(1 − β) if β < 1. Thus, the martingale Mn[0, 1] is L2-bounded and hence

converges in L1. Thus E[M [0, 1]] = 1, showing that P{M [0, 1] > 0} > 0. As the event M [0, 1] > 0

is clearly a tail event of the Wn,ks, it follows that M [0, 1] > 0 a.s. �

CONTINUITY PROPERTIES OF THE LIMITING MEASURE. �
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CHAPTER 4

Probability measures on metric spaces

In basic probability we largely study real-valued random variables or at most Rd-valued ran-

dom variables. From the point of view of applications of probability, it is clear that there are more

complex random objects. For example, consider the graph of the daily value of the rupee versus

the dollar over a calendar year. For each year we get a different graph, and in some ways, the

ups and downs appear to be random. While one can consider it as a vector of length 365, it may

be more meaningful to think of it as defined at each time point. Hence we need the notion of a

random function. There are situations where one may also want the notion of a discontinuous

random function or random functions on the plane (eg., random surfaces), or random measures

(eg., the length measure of the zero set of a random function from R2 to R) or the set of locations

of an epidemic, etc.

Probabilists have found that all applications of interest so far can be captured by allowing ran-

dom variables to take values in a general complete and separable metric space. The distribution

of such a random variables is a probability measure on the metric space. A key part of the theory

is the notion of weak convergence of measures on such spaces. In this section, we summarize

(mostly without proofs), the basic facts1.

Let (X, d) be a complete and separable metric space. Let BX denote the Borel sigma-algebra of

X and let P(X) denote the set of all probability measures on (X,BX). For µ, ν ∈ P(X), define

d(µ, ν) = inf{r > 0 : µ(Ar) + r ≥ ν(A) and ν(Ar) + r ≥ µ(A) for all A ∈ BX}

where Ar =
⋃
x∈AB(x, r) is the r-neighbourhood of A (it is an open set, hence measurable).

Lemma 43: Prohorov metric

d defines a metric on P(X).

Observe that x 7→ δx is an isometry from X to P(X), hence using the same letter d for the

metric can be excused. If d(µn, µ) → 0 for µn, µ ∈ P(X), we say that µn converges in distribution

to µ and write µn
d→ µ.

1Billingsley’s book

em Convergence of probability measures or K. R. Parthasarathy’s Probability measures on metric spaces are excellent

sources to know more. Of course, Kallenberg’s book has everything succinctly.
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Lemma 44: Portmanteau theorem

For µn, µ ∈ P(X), the following are equivalent.

(1) µn
d→ µ.

(2)
∫
fdµn →

∫
fdµ for all f ∈ Cb(X).

(3) lim infn→∞ µn(G) ≥ µ(G) for all open G ⊆ X .

(4) lim supn→∞ µn(F ) ≤ µ(F ) for all closed F ⊆ X .

(5) limn→∞ µn(A) = µ(A) for all A ∈ BX satisfying µ(∂A) = 0.

Except for the use of distribution functions (which is not available on general metric spaces),

the similarity to the situation in R is readily seen. The Prohorov metric also agrees with the Lévy-

Prohorov distance that we had defined, except that the class of sets over which the infimum is

taken was only right-closed intervals (in general metric spaces, many books take infimum only

over closed sets).

Following the usual definition in metric spaces, a subset A ⊆ P(X) is said to be relatively

compact (or precompact) if every subsequence has a convergent subsequence. This is the same as

saying that Ā is compact in (P(X), d). The fundamental theorem is a characterization of relatively

compact sets (analogous to Helly’s theorem for probability measures on R).

Definition 5: Tightness

We say that A ⊆ P(X) is tight if, for any ε > 0, there is a compact Kε ⊆ X such that

µ(Kε) ≥ 1− ε for all µ ∈ A.

Theorem 45: Prokhorov’s theorem

A subset A ⊆ P(X) is relatively compact if and only if it is tight.

Corollary 46

If (X, d) is compact, then (P(X), d) is also compact. In general for any complete, separable

(X, d), the metric space (P(X), d) is also complete and separable.

That completes all we want to know in general. When it comes to a specific metric space, a

key thing is to be able to check tightness of a subset of measures, which involves understanding

compact subsets on the metric space itself. We work out a couple of examples below and write out

the conditions for checking tightness. But before that let us indicate another exceedingly useful

approach to showing convergence in distribution that avoids having to know all this machinery.
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Lemma 47

Let µn, µ belong to P(X). Suppose Xn, X are X-valued random variables on some proba-

bility space (Ω,F ,P) such that P ◦ X−1
n = µn, P ◦ X−1 = µ and Xn → X a.s.[P]. Then,

µn
d→ µ

Skorokhod showed the converse, that whenever µn
d→ µ, there is a probability space and

random variables Xn, X having these distributions such that Xn
d→ X . However, the useful part

is the above direction, although the proof is trivial!

PROOF. Let f ∈ Cb(X). Then f(Xn)
a.s.→ f(X) and these are bounded real-valued random

variables. Hence by the dominated convergence theorem E[f(Xn)] → E[f(X)] as n → ∞. But

E[f(Xn)] =
∫
fdµn and E[f(X)] =

∫
fdµ, hence µn

d→ µ. �

Observe that almost sure convergence also makes it trivial to say that for any continuous

function ϕ : X 7→ R, we have ϕ(Xn) → ϕ(X) almost surely and hence also in distribution.

Thus, various “features” of µn also converge in distribution to the corresponding feature of µ (i.e.,

µn ◦ ϕ−1 d→ µ ◦ ϕ−1, as probability measures on R).

Example 24

Let X = RN. This is a complete and separable metric space with the metric d(x, y) =∑
n 2−n(1 ∧ |xn − yn|) for x = (x1, x2, . . .) and y = (y1, y2, . . .).

Example 25

Let X = C[0, 1] with the sup-norm metric. Arzela-Ascoli theorem tell us that K ⊆ C[0, 1]

is compact if and only if it is closed and there is an M < ∞ such that |f(0)| ≤ M for all

f ∈ K and for each ε > 0 there is a δ > 0 such that |f(x)− f(y)| ≤ ε for any x, y ∈ [0, 1] with

|x− y| ≤ δ and for any f ∈ K. The last condition of equicontinuity is the crucial one.
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CHAPTER 5

Brownian motion

1. Definition of Brownian motion and Wiener measure

Definition 6: Brownian motion

A collection of random variables W = (Wt)t≥0 defined on a common probability space

(Ω,F ,P) and satisfying the following properties.

(1) For any n ≥ 1 and any 0 = t0 < t1 < . . . < tn, the random variables Wtk −Wtk−1
,

1 ≤ k ≤ n, are independent.

(2) For any s < t the distribution of Wt −Ws is N(0, t− s). Also, W0 = 0, a.s.

(3) For a.e. ω ∈ Ω, the function t 7→Wt(ω) is continuous.

That such a collection of random variables exists requires proof. But first, why such a defini-

tion? We give some semi-historical and semi-motivational explanation in this section.

Einstein and the physical Brownian motion: In 1820s, the botanist Brown observed under water

under a microscope and noticed certain particles buzzing about in an erratic manner. There was

no explanation of this phenomenon till about 1905 when Einstein and Smoluchowski (indepen-

dently of each other) came up with an explanation using statistical mechanics. More precisely,

in Einstein’s paper, he predicted that a small particle suspended in a liquid undergoes a random

motion of a specific kind, and tentatively remarked that this could be the same motion that Brown

observed.

We give a very cut-and dried (and half-understood) summary of the idea. Imagine a spherical

particle inside water. The particle is assumed to be small in size but observable under a micro-

scope, and hence much larger than the size of water molecules (which at the time of Einstein, was

not yet universally accepted). According to the kinetic theory, at any temperature above absolute

zero, molecules of water are in constant motion, colliding with each other, changing their direc-

tion, etc. (rather, it is this motion of molecules that defines the temperature). Now the suspended

particle gets hit by agitating water molecules and hence gets pushed around. Each collision affects

the particle very slightly (since it is much larger), but the number of collisions in a second (say), is

very high. Hence, the total displacement of the particle in an interval of time is a sum of a large
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number of random and mutually independent small displacements. Then, letting Wt denote the

displacement of the x-coordinate of the particle, we have the following conclusions.

(1) The displacements in two disjoint intervals of time are independent. This is the first

condition in the definition of Brownian motion.

(2) The displacement in a given interval (provided it is long enough that the number of col-

lisions with water molecules is large) must have Gaussian distribution. This is a conse-

quence of the central limit theorem.

(3) If the liquid is homogeneous and isotropic and kept at constant temperature, then the

displacement in a given interval of time must have zero mean and variance that depends

only on the length of the time interval, say σ2
t for an interval of length t.

From the first and third conclusion, σ2
t+s = σ2

t +σ2
s , which means that σ2

t = D · t for some constant

D. If we set D = 1, we get the first two defining properties of Brownian motion. In his paper,

Einstein wrote a formula for D in terms of the size of the suspended particle, the ambient tem-

perature, some properties of the liquid (or water) and the Avogadro number N . All of these can

be measured except N . By measuring the displacement of a particle over a unit interval of time

many times, we can estimate E[W 2
1 ]. Since D = E[W 2

1 ], this gives D and hence N . This was Ein-

stein’s proposal to calculate the Avogadro number by macroscopic observations and apparently

this evidence convinced everyone of the reality of atoms.

Wiener and the mathematical Brownian motion: After the advent of measure theory in the

first few years after 1900, mainly due to Borel and Lebesgue, mathematicians were aware of the

Lebesgue measure and the Lebesgue integral on Rn. The notion of abstract measure was also

developed by Fréchet before 1915. Many analysts, particularly Gateaux, Lévy and Daniell and

Wiener, pursued the question as to whether a theory of integration could be developed over in-

finite dimensional space1. One can always put an abstract measure on any space, but they were

looking for something natural.

What is the difficulty? Consider an infinite dimensional Hilbert space such as `2, the space of

square summable infinite sequences. Is there a translation invariant Borel measure on `2? Con-

sider the unit ball B. There are infinitely many pairwise disjoint balls of radius 1 inside
√

2B (for

1In 1924 or so, Wiener himself realized that dimension is irrelevant in measure theory. Indeed, in probability theory

class we have see that once Lebesgue measure on [0, 1] is constructed, one can just push it forward by appropriate maps

to get all measures of interest such as Lebesgue measure on [0, 1]n and even product uniform measure on [0, 1]N. All

these spaces are the same in measure theory, in sharp contrast to their distinctness in topology. Therefore, today no one

talks of integration in infinite dimension anymore (I think!). We just think that Wiener measure is interesting.
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example, take unit balls centered around each co-ordinate vector ei, i ≥ 1). Thus, if µ(B) > 0,

then by translation invariance, all these balls have the same measure and hence µ(
√

2B) must be

infinite! This precludes the existence of any natural measure such as Lebesgue measure.

What else can one do? One of the things that was tried essentially amounted to thinking of

a function f : [0, 1] → R as an infinite vector f = (ft)t∈[0,1]. In analogy with Rn, where we have

product measures, we can consider a product measure⊗tµ on R[0,1] (the space of all functions from

[0, 1] to R) endowed with the product sigma-algebra. But this is very poor as a measure space as

we have discussed in probability class. For example, the space C[0, 1] is not a measurable subset

of R[0,1], since sets in the product sigma-algebra are determined by countably many co-ordinates.

Norbert Wiener took inspiration from Einstein’s theory to ask for the independence of incre-

ments of f rather than of independence of the values of f (which is what product measure does).

And then, he showed that it is possible to put a Borel measure on C[0,∞) such that the increments

are independent across disjoint intervals. This is why, his 1923 paper that introduced Brownian

motion is titled Differential space, emphasizing that independence is at the level of differences of

the function values.

2. The space of continuous functions

It is most appropriate to think of Brownian motion as a C[0,∞)-valued random variable.

Hence we recall the topology and measure structure on this space.

IfX is a metric space, letCd(X) be the space of continuous functions fromX to Rd. If d = 1, we

just write C(X). Of particular interest to us are C[0,∞), C[0, 1]. When discussing d-dimensional

Brownian motion, we shall need Cd[0,∞) and Cd[0, 1].

On C[0, 1], define the norm ‖f‖sup = max{|f(t)| : t ∈ [0, 1]} and the metric d(f, g) = ‖f−g‖sup.

It is a fact that C[0, 1] is complete under this metric and hence, it is a Banach space. Obviously

the sup-norm can be defined for C[0, T ] for any T < ∞, but not for C[0,∞), as the latter contains

unbounded functions. The metric on C[0,∞) is defined by

d(f, g) =
∞∑
n=1

1

2n
‖f − g‖sup[0,n]

1 + ‖f − g‖sup[0,n]
.

The metric is irrelevant, what matters is the topology and the fact that the topology is metrizable.

In fact, many other metrics such as d̃(f, g) =
∑∞

n=1
1
n2 min{1, ‖f − g‖sup[0,n]} induces the same

topology on C[0,∞). In this topology, fn → f if fn converges to f uniformly on all compact sets

of R+ = [0,∞). For t ∈ [0,∞), define the projection map Πt : C[0,∞) → R by Πt(f) = f(t). The

topology on C[0,∞) can also be described as the smallest topology in which all the projections are

continuous (exercise!).
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Once the topology is defined, we have the Borel σ-algebra B(C[0,∞)) which is, by definition,

the smallest sigma-algebra containing all open sets. Alternately, we may say that the Borel σ-

algebra is generated by the collection of projection maps. Sets of the form (Πt1 , . . . ,Πtn)−1(B) for

n ≥ 1 and t1 < . . . < tn and B ∈ B(Rn), are called (finite dimensional) cylinder sets. Cylinder sets

form a π-system that generate the Borel sigma-algebra. Thus, by the π−λ theorem, any two Borel

probability measures that agree on cylinder sets agree on the entire Borel σ-algebra B(C[0,∞)).

All these considerations apply if we restrict our attention to C[0, 1].

Definition 7: Wiener measure

Wiener measure is the Borel probability measure µ on C[0,∞) such that for any n ≥ 1 and

any t1 < . . . < tn, the measure µ ◦ (Πt1 , . . . ,Πtn)−1 (a Borel probability measure on Rn)

is the multivariate Gaussian distribution with zero means and covariance matrix equal to

(ti ∧ tj)1≤i,j≤n.

It is not yet proved that Wiener measure exists. But if it exists, it must be unique, since any

two such measures agree on all cylinder sets. In fact, Wiener measure and Brownian motion are

two sides of the same coin, related to each other in the same way as a Gaussian random variable

and the Gaussian measure are. In other words, Wiener measure is the distribution of Brownian

motion, if it exists.

Exercise 18

(1) Suppose µ is the Wiener measure. Then, the collection of random variables

(Πt)t∈R+ defined on the probability space (C[0,∞),B(C[0,∞)), µ) is a Brownian

motion.

(2) Suppose W is a Brownian motion on a probability space (Ω,F ,P), then define the

map T : Ω→ C[0,∞) by

T (ω) =

W·(ω) if t 7→Wt(ω) is continuous,

0 otherwise.

Then the push-forward measure µ := P ◦ T−1 is the Wiener measure.

Remark 6

At first one might think it more natural to consider the space of all functions, R[0,1], endowed

with the cylinder sigma-algebra (the one generated by the projections Πt(f) = f(t)). But

the only events that are measurable in this sigma-algebra are those that are functions of
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countably many co-ordinates. In particular, sets such as C[0, 1] are not measurable subsets.

In all of probability, when we talk of stochastic processes, it is usually on a space of functions

with some continuity properties. Although C[0,∞) is restrictive for some purposes (eg.,

point processes, or events that happen in a time instant), in this course this will suffice for

us. More generally one works with the space of right continuous functions having left limits

(RCLL).

However, some books start by considering a measure on this space with the finite dimen-

sional distributions of Brownian motion (such a measure exists by Kolmogorov consistency)

and then show that that the outer measure of C[0, 1] is 1. From there, it becomes possible to

get the measure to sit onC[0, 1] to get Brownian motion. I feel that this involves unnecessary

technical digressions than the proof we give in the next section.

3. Chaining method and the first construction of Brownian motion

We want to construct random variables Wt, indexed by t ∈ R+, that are jointly Gaussian and

such that E[Wt] = 0 and E[WtWs] = t ∧ s. Here is the sketch of how it is done by the so called

chaining method of Kolmogorov and Centsov.

(1) LetD ⊆ [0, 1] be a countable dense set. Because of countability, we know how to construct

Wt, t ∈ D, on some probability space (Ω,F ,P), having a joint Gaussian distribution with

zero means and covariance t ∧ s.

(2) We show that for P− a.e. ω, the function t 7→ Wt(ω) is uniformly continuous. This is the

key step.

(3) By standard real analysis, this means that for each such ω, the function t 7→Wt(ω) extends

to a continuous function on [0, 1].

(4) Since limits of Gaussians are Gaussian, the resulting Wt, t ∈ [0, 1], have joint Gaussian

distribution with the prescribed covariances.

Actually our construction will give more information about the continuity properties of Brownian

motion. We start with some basic real analysis issues.

Let D ⊆ [0, 1] be a countable dense set and let f : [0, 1] 7→ R be given. We say that f ex-

tends continuously to [0, 1] if there exists F ∈ C[0, 1] such that F
∣∣∣∣∣∣
D = f . Clearly, a necessary

condition for this to be possible is that f be uniformly continuous on D to start with. It is also suf-

ficient. Indeed, a uniformly continuous function maps Cauchy sequences to Cauchy sequences,

and hence, if tn ∈ D and tn → t ∈ [0, 1], then (tn)n is Cauchy and hence (f(tn))n is Cauchy and
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hence lim f(tn) exists. Clearly, the limit is independent of the sequence (tn)n. Hence, we may

define F (t) = lim
D3s→t

f(s) and check that it is the required extension.

But we would like to prove a more quantitative version of this statement. Recall that the

modulus of continuity of a function f : [0, 1]→ R is defined aswf (δ) = sup{|f(t)−f(s)| : |t−s| ≤ δ}.
Clearly, f is continuous if and only if wf (δ) ↓ 0 as δ ↓ 0. The rate at which wf (δ) decays to 0

quantifies the level of continuity of f . For example, if f is Lipschitz, then wf (δ) ≤ Cfδ and if f

is Hölder(α) for some 0 < α ≤ 1, then wf (δ) ≤ Cfδ
α. For example, tα is Hölder(α) (and not any

better) on [0, 1].

Henceforth, we fix the countable dense set to be the set of dyadic rationals, i.e., D =
⋃
nDn

where Dn = {k2−n : 0 ≤ k ≤ 2n}.

Lemma 48: Kolmogorov-Centsov

Let f : [0, 1]→ R. Let Define ∆n(f) = max{|f(k+1
2n )− f( k

2n )| : 0 ≤ k ≤ 2n− 1}. Assume that∑
n ∆n(f) < ∞. Then, f extends to a continuous function on [0, 1] (we continue to denote

it by f ) and wf (δ) ≤ 10
∑

n≥mδ ∆n(f) where mδ = blog2(1/δ)c.

Assuming the lemma, we return to the construction of Brownian motion.

CONSTRUCTION OF BROWNIAN MOTION. First construct Wt, t ∈ D, that are jointly Gaussian

with zero means and covariance t∧ s. Then, W (k+1
2n )−W ( k

2n ), 0 ≤ k ≤ 2n− 1, are i.i.d. N(0, 2−n).

Hence, by the tail estimate of the Gaussian distribution,

P

{
∆n(f) ≥ 2

√
n√
2n

}
≤ 2nP

{
|ξ| ≥ 2

√
n
}
≤ 2n exp

{
−1

2
(4n)

}
≤ 2−n.

By the Borel-Cantelli lemma, it follows that ∆n ≤ 2
√
n√
2n

for all n ≥ N for some random variable N

that is finite w.p.1. If N(ω) < ∞, then we can se a large constant C(ω) to take care of ∆n(W•(ω))

for n ≤ N(ω) and write

∆n(W•(ω)) ≤ C(ω)

√
n√
2n

for all n ≥ 1

for a random variable C that is finite w.p.1.

Fix any ω such that C(ω) < ∞. Then, by the lemma, we see that (Wt(ω))t∈D extends continu-

ously to a function (Wt(ω))t∈[0,1] and that the extension has modulus of continuity

w(δ) ≤
∑
n≥mδ

√
n√
2n
≤ 10C(ω)

√
mδ√
2mδ

≤ C ′(ω)

√
δ log

1

δ

using mδ = blog2(1/δ)c. This shows that w.p.1., the extended function t 7→ Wt is not only uni-

formly continuous but has modulus of continuity O(
√
δ
√

log(1/δ)).
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It remains to check that the extended function has joint Gaussian distribution with the desired

covariances. If 0 ≤ t1 < . . . < tm ≤ 1, then find ti,n ∈ D that converge to ti, for 1 ≤ i ≤ m. Then

(Wt1,n,...,Wtm,n
)
a.s.→ (Wt1 , . . . ,Wtm). But (Wt1,n,...,Wtm,n

) has joint Gaussian distribution. Hence,

after taking limits, we see that (Wt1 , . . . ,Wtm) has joint Gaussian distribution. In addition, the

covariances converge, hence

E[Wt1Wt2 ] = lim
n→∞

E[Wt1,nWt2,n ] = lim
n→∞

t1,n ∧ t2,n = t1 ∧ t2.

Thus,Wt, t ∈ [0, 1] is the standard Brownian motion (indexed by [0, 1], extension to [0,∞) is simple

and will be shown later). �

It only remains to prove the lemma.

PROOF OF LEMMA 48. A function on D and its extension to [0, 1] have the same modulus of

continuity. Hence, it suffices to show that |f(t)− f(s)| ≤ 10
∑

n≥mδ ∆n(f) for t, s ∈ D, |t− s| ≤ δ.

Let 0 < t−s ≤ δ, s, t ∈ D. We write I = [s, t] as a union of dyadic intervals using the following

greedy algorithm. First we pick the largest dyadic interval (by this we mean an interval of the

form [k2−n, (k + 1)2−n] for some n, k). contained in [s, t]. Call it, I1 and observe that |I1| = 2−m

where 2−m ≤ t − s ≤ 4.2−m. Then inside I \ I1, pick the largest possible dyadic interval I2. Then

pick the largest possible dyadic interval in I \ (I1 ∪ I2) and so on. Since t, s ∈ Dn for some n and

hence, in a finite number of steps we end up with the empty set, i.e., we arrive at I = I1tI2t. . .tIq
for some positive integer q.

A little thought shows that for the lengths of Ij are non-increasing in j and that for any n ≥ m,

at most two of the intervals I1, . . . , Iq can have length 2−n. Write the intervals from left to right

and express f(t)− f(s) as a sum of the increments of f over these intervals to see that

|f(t)− f(s)| ≤ 2
∑
n≥m

∆n(f).

Since 2−m ≤ t− s, we see that m ≥ log2
1
t−s ≥ mδ and hence the conclusion in the statement of the

lemma follows. �

We put together the conclusions in the following theorem and extend the index set to R+.

Theorem 49

Standard Brownian motion W = (Wt)t∈[0,∞) exists. Further, for any ε > 0 and any T < ∞,

w.p.1., the sample paths t 7→Wt are uniformly Hölder
(

1
2 − ε

)
on [0, T ].

PROOF. We used countably many i.i.d. standard Gaussians to construct standard Brownian

motion on [0, 1]. By using countably many such independent collections, we can construct (say

on ([0, 1],B, λ)) a collection of independent Brownian motions W (k) = (W k(t))t∈[0,1]. Then for
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0 ≤ t <∞, define

W (t) =

m−1∑
k=1

W (k)(1) +W (m)(t−m)

if m ≤ t < m + 1 for m ∈ N. In words, we just append the Brownian motions successively to the

previous ones.

We leave it for you to check that W is indeed a standard Brownian motion. Each W (k) has

modulus of continuity O(
√
δ
√

log 1
δ ) which is of course O(δ

1
2
−ε) for any ε > 0. For finite T , only

finitely many wW [0,T ](δ) ≤ 2 max{wW (k)[0,1](δ) : k ≤ T + 1}. Hence, Hölder continuity holds on

compact intervals. �

4. Some insights from the proof

The proof of the construction can be used to extract valuable consequences.

Existence of continuous Gaussian processes with given covariance. Suppose K : [0, 1] ×
[0, 1] 7→ R is a postive semi-definite kernel. Do there exists random variables Xt, t ∈ [0, 1] having

joint Gaussian distribution with zero means and covariance E[XtXs] = K(t, s)? It is not difficult

to see that continuity of K is a necessary condition (why?).

To get a sufficient condition, we may follow the same construction as before, and construct Xt,

t ∈ D, having the prescribed joint distributions. How do we estimate ∆n?

Set h(δ)2 = max{K(t, t) + K(s, s) − 2K(t, s) : 0 ≤ t, s ≤ 1, |t − s| ≤ δ} (to understand what

is happening, observe that if (Xt, Xs) has the prescribed bivariate Gaussian distribution, then

E[(Xt −Xs)
2] = K(t, t) +K(s, s)− 2K(t, s)). Then, each of X(k + 12n)−X( k

2n ) is Gaussian with

standard deviation less than or equal to h(2−n). By a union bound and the standard estimate for

the Gaussian tail, we see that ∆n ≤
√

10(1 + δ)
√
nh(2−n), with probability 1 − 2−n (observe that

even though there is independence of increments in the Brownian case, we did not really use it in

this step). Then the same steps as before show that X extends to a continuous function on [0, 1]

provided
∑

n

√
nh(2−n) <∞.

In the case of Brownian motion, we had h(δ) =
√
δ. If h(δ) ≤ Cδp for any positive p, then∑

n

√
nh(2−n) <∞. In fact, it suffices if h(δ) ≤ (log(1/δ))p for a sufficiently large p.

Beyond Gaussians. Now suppose for every k ≥ 1 and every 0 ≤ t1 < t2 < . . . < tk ≤ 1, we

are given a probability distribution µt1,...,tk on Rn (in the Gaussian case it was enough to specify the

means and covariances, but not in general). The question is whether there exist random variables

Xt, t ∈ [0, 1], such that (X(t1), . . . , X(tk)) has distribution µt1,...,tk for every k and every t1 < . . . <

tk and such that t 7→ X(t) is continuous a.s.? We shall of course need the consistency of the finite

dimensional distributions, but that is not enough.
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From the consistency, we can construct Xt, t ∈ D, as before. It remains to estimate ∆n. The

Gaussian distribution was used when we invoked the tail bound P{Z > t} ≤ e−t
2/2. Now that

we do not have that, assume that E[(Xt −Xs)
α] ≤ C|t − s|1+β for some positive numbers C,α, β

and for all t, s ∈ [0, 1]. Observe that by E[|Xt −Xs|α] we mean the quantity
∫
R2 |x− y|αdµt,s(x, y).

Then, it follows that

P

{
|X(

k + 1

2n
)−X(

k

2n
)| ≥ un

}
≤ u−αn E[|X(

k + 1

2n
)−X(

k

2n
)|α] ≤ u−αn 2−n(1+β).

by the usual Chebyshev idea. Taking union over 0 ≤ k ≤ 2n − 1, we see that

P{∆n ≥ un} ≤ Cu−αn 2−nβ.

which is summable if un = 2−γn for some 0 < γ < β
α . Therefore, we get a process with continuous

sample paths having modulus of continuity given by the series∑
n≥log2(1/|t−s|)

un � 2−γ log2(1/|t−s|) = |t− s|γ .

The paths are Hölder continuous for any exponent smaller than β/α. This is the original form of

the Kolmogorov-Centsov theorem.

Exercise 19

Deduce that Brownian motion is Hölder continuous with any exponent less than 1
2 .

The method of proof clearly cannot give any Hölder exponent larger than 1/2. In fact by a

little analysis, it is easy to see that Brownian motion is not uniformly Hölder of any exponent

larger than 1/2. We outline this in the exercise below. Later we shall show a much stronger fact,

that Brownian motion has no Hölder points of exponent greater than 1/2.
Exercise 20

If Z ∼ N(0, 1), check that P{|Z| < ε} ≤ ε and hence deduce that P{∆n(W ) ≤ C2−nα} is

summable for α > 1
2 and C < ∞. Deduce that Brownian motion on [0, 1] is not uniformly

Hölder(α) for any α > 1
2 , almost surely.

5. Lévy’s construction of Brownian motion

Our first construction involved first defining Wt, t ∈ D, having the specified covariances, and

then proving uniform continuity of the resulting function. For constructing Wt, t ∈ D, we showed

in general that a countable collection of Gaussians with specified covariances can be constructed

by choosing appropriate linear combinations of i.i.d. standard Gaussians.
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In the following construction, due to Lévy and Cisielski, the special form of the Brownian

covariance is exploited to make this construction very explicitly2.

Lévy’s construction of Brownian motion: As before, we construct it on time interval [0, 1]. Let ξn,k,

k, n ≥ 0 be i.i.d. standard Gaussians. Let F0(t) = ξ0t. For n ≥ 1, define the random functions Fn
by

Fn(t) =

ξn,k2
− 1

2
(n+1) if 0 ≤ k ≤ 2n − 1 is odd,

0 if 0 ≤ k ≤ 2n − 1 is even,

and such that Fn is linear on each dyadic interval [ k2n ,
k+1
2n ]. Then define

Wn = F0 + F1 + . . .+ Fn.

In Figure 5, you may see the first few steps of the construction.

We claim that ‖Fn‖sup ≤ 10
√
n√
2n

with probability ≥ 1 − 1
2n . This is because Fn attains its

maximum at k2−n for some odd k, and by definition, these values are independent Gaussians

with mean zero and variance 1/2n+1. The usual estimate for the maximum of Gaussians gives the

claim.

From this, it follows that
∑

n ‖Fn‖sup <∞ a.s.Therefore, w.p.1., the series
∑∞

n=0 Fn converges

uniformly on [0, 1] and defines a random continuous function W . Further, at any dyadic rational

t ∈ Dm, since Fn(t) = 0 for n > m, the series defining W (t) is a finite sum of independent

Gaussians. From this, we see that W (t), t ∈ D are jointly Gaussian.

We leave it as an exercise to check that E[W (t)W (s)] = t ∧ s (for t, s ∈ D). Since W is already

continuous, and limits of Gaussians are Gaussian, conclude that the Gaussianity and covariance

formulas are valid for all t, s ∈ [0, 1]. Thus, W is standard Brownian motion on [0, 1].

Remark 7

Let In,k = [ k2n ,
k+1
2n ] for 0 ≤ k ≤ 2n − 1 and n ≥ 0. Define Hn,k : [0, 1]→ R by

Hn,k(x) =


+2−n/2 if x ∈ [ k2n ,

k+ 1
2

2n ),

−2−n/2 if x ∈ [
k+ 1

2
2n , k+1

2n ],

0 otherwise.

2If the following description appears too brief, consult the book of Mörter and Peres where it is explained

beautifully.
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FIGURE 1. The first few steps in Lévy’s construction. On the left are the functions

Fn and on the right are the functions F0 + . . .+ Fn, for 0 ≤ n ≤ 4.

Then, together with the constant function 1, the collection Hn,k, 0 ≤ k ≤ 2n− 1, 0 ≤ n, form

an orthonormal basis for L2[0, 1]. It is easy to see that

Fn+1(t) =

2n−1∑
k=0

ξn+1,k

∫ t

0
Hn,k(u)du.

Thus, the above construction gives the following “formula” for Brownian motion:

W (t) = ξ0

∫ t

0
1(u)du+

∞∑
n=0

2n−1∑
k=0

ξn+1,k

∫ t

0
Hn,k(u)du.

99



6. Series constructions of Brownian motion

Let us do some formal (i.e., non-rigorous) manipulations that sheds a light on the construction

of Brownian motion. We start with the idea of “differential space” as Wiener termed it: If W is

Brownian motion, the differentials dW (t), 0 ≤ t ≤ 1, are i.i.d. Gaussians (we can’t say with what

variance, because this is a formal statement without meaning!). Now take any orthonormal basis

{ϕn} for L2[0, 1]. We know that ∑
n

〈f, ϕn〉〈g, ϕn〉 = 〈f, g〉(15)

for any f, g ∈ L2[0, 1]. If we set f = δt and g = δs, then formally we get
∑

n ϕn(t)ϕn(s) = 〈δt, δs〉,
which is precisely the covariance structure we want for dW (t). This suggests that we construct

dW by setting dW (t) =
∑

nXnϕn(t), where Xn are i.i.d. N(0, 1) (because when we compute

E[dW (t)dW (s)], all terms with m 6= n vanish and we get
∑

n ϕn(t)ϕn(s). If so, since we want

W (0) = 0, we must have

W (t) =
∑
n

Xn

∫ t

0
ϕn(u)du(16)

where Xn are i.i.d. standard Gaussians.

Now we can forget the means of derivation and consider the series on the right hand side

of (16). If we can show that the series converges uniformly over t ∈ [0, 1] (with probability 1),

then the resulting random function is continuous (since t 7→
∫ t

0 ϕn is), and W (t)s will be jointly

Gaussian with zero means. To compute their covariances, write
∫ t

0 ϕn = 〈ϕn,1[0,t]〉 and hence by

taking limits of covariances of partial sums, we see that

E[W (t)W (s)] =
∑
m,n

E[XmXn]〈ϕn,1[0,t]〉〈ϕm,1[0,s]〉 =
∑
n

〈ϕn,1[0,t]〉〈ϕn,1[0,s]〉

= 〈1[0,t],1[0,s]〉 = t ∧ s.

In the first equality in the second line, we used (15).

This gives many new constructions (or new representations) of Brownian motion! The only

remaining point is to show the uniform convergence. I do not know for what bases one gets

uniform convergence, but here are a few important examples.

Haar basis: Consider the Haar basis, 1, H0,0, H1,0, H1,1, H2,0, . . . ,H2,3, . . .. In this case, it makes

sense to index our i.i.d. Gaussian coefficients as X,X0, X1,0, X1,1, X2,0, . . . , X2,3, . . .. The random

function
2n−1∑
k=0

Xn,k

∫ t

0
Hn,k(u)du
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is precisely what was called Fn+1(t) in the previous section (see Remark 7). And it was shown that

the series actually converges uniformly and has the correlations of the Brownian motion. What

is special and helps here is that if t is a dyadic rational, then the series for W (t) has only finitely

many non-zero terms.

Trigonometric basis: 1,
√

2 cos(2πnt),
√

2 sin(2πnt), n ≥ 1, form an orthonormal basis3 for L2[0, 1].

In this case, the series form (16) becomes

W (t) = X0t+
√

2
∞∑
n=1

1

2πn
[Xn sin(2πnt) + Yn(1− cos(2πnt))]

where Xn, Yn are i.i.d. standard Gaussian random variables. In this case it is possible (but not

trivial at all) to show that the series converges uniformly with probability 1, and that the resulting

random function is Brownian motion.

Another trigonometric basis: The functions
√

2 cos[π(n + 1
2)t], n ≥ 0, form an orthonormal basis

of L2[0, 1]. The series (16) then becomes

W (t) =
√

2
∑
n≥0

Xn
sin[π(n+ 1

2)t]

π(n+ 1
2)

.(17)

Again, it can be shown that the series converges uniformly with probability 1, and gives back

Brownian motion. This particular expansion is known as the Karhunen-Loeve expansion (it is an

expansion first introduced by D. D. Kosambi. The orthonormal basis here are the eigenfunctions

of the integral operator on L2[0, 1] with kernel K(t, s) = t ∧ s).

Complex Brownian motion: By complex-valued Brownian motion we mean WC = W (t) + iW ′(t)

where W,W ′ are i.i.d. Brownian motions on [0, 1]. In the formal manipulation that we gave at the

beginning of the section, if we allow complex valued functions and complex scalars, we end up

with complex Brownian motion. In other words, the analogue of (16) is

WC(t) =
∑
n

Zn

∫ t

0
ϕn(u)du

where {ϕn} is an orthonormal basis of L2[0, 1] (now complex-valued functions) and Zn are i.i.d.

standard complex Gaussians (meaning that Re(Zn) and Im(Zn) are i.i.d. N(0, 1)).

3You may have seen this in Fourier analysis class as an immediate consequence of Fejér’s theorem. If not, consider

the span of all these functions, and apply Stone-Weierstrass theorem to show that the span is dense in C[0, 1] with the

sup-norm metric and hence in L2[0, 1] with the L2 metric.
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Again, this may or may not be true for general orthonormal basis. We take the particular case

of complex exponentials {en : n ∈ Z}, where en(t) = e2πint. Then the series becomes

WC(t) = Z0t+
∑
n6=0

Zn
2πin

e2πint.

The series converges uniformly (the proof of this assertion is nontrivial) with probability 1 and

gives complex Brownian motion.

6.1. Ideas of proofs. In the last three examples, we did not present proofs. There are two

stages: First prove that the series converges uniformly on [0, 1] with probability 1. Then show

that the resulting random function has the right correlations. The first step is similar in all three

examples, so let us consider the last one.

Lemma 50

The series
∑

n
Zn

2πine
2πint converges uniformly over t ∈ [0, 1], with probability 1.

If Zn/n was absolutely summable with probability 1, then we would be done, but that is

false! The main idea is to use cancellation between terms effectively by breaking the sum into

appropriately large blocks. Another point worth noting is that for fixed t, the series converges

almost surely, by Khinchine-Kolmogorov theorems on sums of independent random variables.

One can adapt their proof to Hilbert-space valued random variables and show that the series

converges in L2[0, 1], with probability 1. The difficulty here is in getting uniform convergence.

PROOF OF LEMMA 50. For n ≥ 1 define

Fn(t) =

2n∑
k=2n−1+1

Zk
k
e2πikt.

We aim to show that
∑

n ‖Fn‖sup < ∞ with probability 1, which of course implies that
∑

n Fn

converges uniformly. That implies that the sum over n ≥ 1 of Zn
n e

2πint converges uniformly with

probability 1.

To control ‖Fn‖sup, write M = 2n−1 + 1 and N = 2n and observe that

|Fn(t)|2 =
N−M−1∑
r=M−N+1

e2πirt
∑

k:M≤k,k+r≤N

ZkZk+r

k(k + r)

≤ 1

M2

N−M−1∑
r=M−N+1

∣∣∣ ∑
M≤k,k+r≤N

ZkZk+r

∣∣∣
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and hence writing ‖Fn‖ for the sup-norm of Fn on [0, 1], we have

E[‖Fn‖2] ≤ 1

M2

N−M−1∑
r=M−N+1

E

∣∣∣ ∑
M≤k,k+r≤N

ZkZk+r

∣∣∣
 .

Observe that E[ZkZ`] = 2δk,`. Therefore, for r = 0, the summand is E[
∑N

k=M |Zk|2] = 2(N −
M + 1). For r 6= 0, we bound the summand by the square root of

E

∣∣∣ ∑
M≤k,k+r≤N

ZkZk+r

∣∣∣2
 = E

 ∑
M≤k,k+r≤N

∑
M≤`,`+r≤N

ZkZk+rZ`Z`+r

 = 2(N −M + 1)

because all terms with k 6= ` vanish. This shows that

E[‖Fn‖2] ≤ 1

M2

{
2(N −M + 1) + 2(N −M)

√
2(N −M + 1)

}
≤ 5

N
3
2

M2
≤ 20

2
n
2

.

Therefore E[‖Fn‖] ≤ 5× 2−n/4 which is summable, showing that
∑

n ‖Fn‖ < ∞ w.p.1. Hence the

series converges uniformly with probability 1. �

The proofs of uniform convergence is similar in the other cases.

7. Basic properties of Brownian motion

We have given two constructions of Brownian motion (and outlined one more). However, in

our further study of Brownian motion, we would not like to use the specifics of this construction,

but only the defining properties of Brownian motion. To this end, let us recall that standard Brow-

nian motion is a collection of random variables W = (Wt)t∈[0,∞) on a probability space (Ω,F ,P)

such that

(1) t 7→Wt(ω) is continuous for P-a.e. ω,

(2) Increments over disjoint intervals are independent,

(3) Wt −Ws ∼ N(0, t− s) for any s < t.

Equivalently, we may define W as a C[0,∞)-values random variable such that Wt, t ≥ 0, are

jointly Gaussian with mean zero and covariance E[WtWs] = t ∧ s.

Symmetries of Brownian motion: Let W be standard Brownian motion and let µW denote the

Wiener measure. By a symmetry, we mean a transformation T : C[0,∞) → C[0,∞) such that

µW ◦ T−1 = µW or in the language of random variables, T (W )
d
= W . Brownian motion has many

symmetries, some of which we mention now.
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I (Reflection symmetry). T (f) = −f . That is, if Xt = −Wt, then X is standard Brownian

motion. To see this, observe that X is continuous w.p.1., Xt are jointly Gaussian and

Xt−Xs = −(Wt−Ws) hasN(0, t−s) distribution by the symmetry of mean zero Gaussian

distribution.

I (Space-time scaling symmetry). Let α > 0 and define [T (f)](t) = 1√
α
f(αt). That is, if

Xt = 1√
α
Wαt, then X is a standard Brownian motion.

I (Time-reversal symmetry) Let W be standard Brownian motion on [0, 1]. Define X(t) =

W (1− t)−W (1) for 0 ≤ t ≤ 1. Then X is standard Brownian motion on [0, 1].

I (Time-inversion symmetry). Define Xt = tW1/t for t ∈ (0,∞). Then Xt are jointly Gauss-

ian, continuous in t w.p.1., and for s < t we have

E[XtXs] = tsE

[
W

(
1

t

)
W

(
1

s

)]
= ts

1

t
= s.

Thus, (Xs)s∈(0,infty) has the same distribution as (Ws)s∈(0,∞). In particular, if MX
δ =

sup0<s≤δXs andMW
δ = sup0<s≤δWs, then (MX

1/k)k≥1 has the same distribution as (MW
1/k)k≥1.

But limk→∞M
W
1/k = 0 w.p.1., and hence limk→∞M

X
1/k = 0 w.p.1. But that precisely means

that limt→0+X(t) = 0 w.p.1. The upshot is that if we set X0 = 0, then X is standard

Brownian motion.

I (Time-shift symmetry). Let t0 ≥ 0 and define [Tf ](t) = f(t + t0) − f(t0). That is, if

Xt = Wt+t0−Wt0 , thenX is standard Brownian motion. Joint Gaussianity and continuity

are clear. As for covariances, for s < t we get

E[XtXs] = E[Ws+t0Wt+t0 ]−E[Wt0Wt+t0 ]−E[Ws+t0Wt0 ] + E[Wt0Wt0 ]

= (s+ t0)− t0 − t0 + t0

= s.

Thus X is a standard Brownian motion. Whether the time-shift invariance holds at ran-

dom times t0 is an important question that we shall ask later.

8. Other processes from Brownian motion

Having constructed Brownian motion, we can use it to define various other processes with

behaviour modified in many ways.

Brownian motion started at any location: If W is standard Brownian motion and x ∈ R, the

process X defined by Xt = x+Wt for t ≥ 0, is called Brownian motion started at x.
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Brownian motion with drift and scaling: Let µ ∈ R and σ2 > 0. Then define Xt = µt+ σWt. This

process X is called Brownian motion with drift µ and scale σ. More generally, we can consider the

process t 7→ f(t) + σWt for some fixed function f as a noisy version of f (especially if σ is small).

Brownian motion moves very randomly, these processes have a deterministic motion on which a

layer of randomness is added.

Multi-dimensional Brownian motion: Brownian motion in Rd, started at x ∈ Rd, is defined as the

stochastic process W = (W (t))t≥0 where W (t) are Rd-valued random variables,(a) W (0) = x a.s.,

(b) for any t1 < . . . < tk, the incrementsW (t1),W (t2)−W (t1),. . .W (tk)−W (tk−1) are independent,

(c) for any s < t the distribution of W (t) −W (s) is d-dimensional Gaussian with zero mean and

covariance matrix (t− s)Id, and (d) t 7→W (t) is continuous with probability 1.

The existence of such a process need not be proved from scratch. Since we know that standard

one-dimensional Brownian motion exists, we can find a probability space on which we have i.i.d.

copies W (k), k ≥ 1, of standard Brownian motion. Then define W (t) = x+ (W (1)(t), . . . ,W (d)(t)).

It is easy to check that this satisfies the properties stated above.

It is also worth noting that if we fix any orthonormal basis v1, . . . , vd of Rd and define W (t) =

x + W (1)(t)v1 + . . . + W (d)(t)vd, this also gives d-dimensional Brownian motion (check the prop-

erties!). Taking x = 0, this shows that standard Brownian motion W on Rd is invariant under

orthogonal transformations, i.e., if X(t) = PW (t) where P is a d × d orthogonal matrix, then

X
d
= W .

Ornstein-Uhlenbeck process: Is it possible to define Brownian motion indexed by R instead

of [0,∞). An obvious thing is to take two independent standard Brownian motions and set

X(t) = W1(t) for t ≥ 0 and X(t) = W2(−t), then X may be called a two-sided Brownian mo-

tion. Somehow, it is not satisfactory, since the location 0 plays a special role (the variance of X(t)

increases on either side of it).

A better model is to set X(t) = e−
1
2
tW (et) for t ∈ R. Then X is called Ornstein-Uhlenbeck

process. It is a continuous process and Xt, t ∈ R are jointly Gaussian with zero means and co-

variances E[XtXs] = e−
1
2

(s+t)E[W (es)W (et)] = e−
1
2
|s−t|. Note that X does not have independent

increments property. However, it has the interesting property of stationarity or shift-invariance: Fix

t0 ∈ R and define Y (t) = X(t0 + t). Then, check that Y has the same distribution of X (you may

use space-time scale invariance of W ). In other words, for the process X the origin is not a special

time-point, it is just like any other point.
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FIGURE 2. Top row left: Brownian motion run for time 10. Top row right: The

same after a time-space scaling to time interval [0, 1]. Middle row left: A Brownian

bridge. Middle row right: An Ornstein-Uhlenbeck sample path. Bottom row left:

Brownian motion with linear drift 2t. Bottom row right: Wt +
√

2t. Take note of the

markings on both axes.

Brownian bridge: Brownian bridge is the continuous Gaussian processX = (X(t))t∈[0,1] such that

E[XtXs] = s(1 − t) for 0 ≤ s < t ≤ 1. Observe that X(0) = X(1) = 0 w.p.1. It arises in many

situations, but for now we simply motivate it as a possible model for a random surface in 1 + 1

dimensions (the graph ofX is to be thought of as a surface) that is pinned down at both endpoints.

The existence of Brownian bride is easy t prove. Let W be a standard Brownian motion on

[0, 1] and set X(t) = W (t) − tW (1) for 0 ≤ t ≤ 1. Check that X has the defining properties of

Brownian bridge. This representation is also useful in working with Brownian bridge.

There is a third description of Brownian bridge. Consider standard Brownian motion W =

(W (t))t∈[0,1] on some (Ω,F ,P). Let G = σ{W (1)}. Then, a regular conditional distribution of

106



W given G exists. We may write it as µ(A, x), where A ∈ B(C[0, 1]) and x ∈ R (so µ(·, x) is a

probability measure that indicated the distribution of W given that W (1) = x). It can be checked

that the conditional distributions are continuous in x. In fact, there is one measure µ0 on C[0, 1]

such that µ(A, x) = µ0{g : t 7→ g(t) + tx is in A}. This is given in the homework and will be left as

exercise.

Diffusions: Recall the physical motivation for Brownian motion as a particle in a fluid that is

being bombarded on all sides by the molecules of the fluid. The mathematical definition that we

have given assumes that the fluid is homogeneous (i.e., it is similar everywhere) and the motion is

isotropic (there is no preferred direction of motion). If one imagines motion in a non-homogeneous

medium, one arrives at the following kind of stochastic process.

For each x ∈ Rd, letm(x) ∈ Rd and Σx be a positive definite d×dmatrix. We want a Rd-valued

stochastic process X = (X(t))t≥0 that has continuous sample paths, independent increments over

disjoint intervals of time and such that conditional on X(s), s ≤ t, for small h, the distribution

of X(t+ h)−X(t) is approximately Gaussian with mean vector hm(X(t)) and covariance matrix

hΣX(t). This last statement has to be interpreted in a suitable sense of h → 0. Such a process is

called a diffusion.

If m(x) = 0 and Σx = Id, then we get back Brownian motion. If m(x) = m (a constant) and

Σx = Σ (a constant matrix), then we can get such a process as X(t) = tm+ Σ
1
2W (t) where W is a

standard d-dimensional Brownian motion. But more generally, it is not easy to show that such a

process exists4 and we shall not be able to touch upon this topic in this course.

9. Plan for the rest of the course

So far we have defined and constructed Brownian motion, and seen the most basic symmetries

of it. We shall study the following aspects which cover only a small fraction (but reasonable

enough for a first course) of things one could study about Brownian motion.

I Continuity properties of Brownian motion. The modulus of continuity is O(
√
δ log(1/δ)) and

hence it is Hölder(1
2 −ε) for any ε > 0. We shall see that W is nowhere Hölder(1

2 +ε) for any ε > 0.

IMarkov property and martingales in Brownian motion. Brownian motion will be shown to have

Markov and strong Markov property. We shall extract many martingales out of it. All this will be

used to get substantial information about the maximum of a Brownian motion, the zero set, the

4One will have to either develop stochastic calculus first or a theory of general Markov processes and some exis-

tence theorems for Elliptic partial differential equations.
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time to exit a given set, recurrence and transience, etc. If time permits, we shall see the relationship

between multi-dimensional Brownian motion and harmonic functions and the Dirichlet problem.

I Brownian motion as a limiting object. We shall see that random walks converge to Brownian

motion (Donsker’s theorem). We shall use the connection between random walks and Brownian

motion to deduce results about each from results about the other (eg., law of iterated logarithm,

some arc-sine laws). If time permits we relate the difference between empirical distribution of an

i.i.d. sample and the true distribution to a Brownian bridge.

I There are many other aspects we may not have time for. Some of them are the ideas of Wiener

integral with respect to Brownian motion, Cameron-Martin formula, Hausdorff dimensions of

random fractal sets coming from Brownian motion, stochastic Calculus . . .

10. Further continuity properties of Brownian motion

Let W denote standard Brownian motion in [0, 1]. We have see that W is Hölder(1
2 − ε) for any

ε > 0 with probability 1. We shall show in this section that it is nowhere Hölder(1
2 + ε) for any

ε > 0, in particular, the paths are nowhere differentiable.

If f : [0, 1]→ R and 0 < α ≤ 1, we say that t is a Hölder(α) point for f if

lim sup
h↓0

f(t+ h)− f(t)

hα
<∞.

If the lim sup on the left is less than or equal to c, then we say that t is a Hölder(α; c) point (then

it is also a Hölder(α; c′) point for any c′ > c). Observe that if f is differentiable at t, then t is a

Hölder(1) point.

Theorem 51: Paley, Wiener, Zygmund

With probability 1, the following statements hold.

(1) Standard Brownian motion is nowhere differentiable.

(2) Standard Brownian motion is nowhere Hölder(α) for any α > 1
2 .

(3) If c < 0.3, then Brownian motion has no Hölder(1
2 ; c) points.

These statements are increasingly stronger, hence it suffices to prove the last one. The usual

proof given in all books for the first two statements is a very elegant one due to Dvoretsky, Erdös

and Kakutani. As far as I can see, that method cannot prove the third. I went back to the original

proof of Paley, Wiener and Zygmund, and found that their proof, also very elegant, in fact gives

the third statement! However, historically, it appears that such a statement only appeared much
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later in a paper of Dvoretsky, who proved the even stronger statement that Hölder(1
2 ; c) points

exist if and only if c > 1. I am a little confused but anyway...

PROOF OF NOWHERE DIFFERENTIABILITY DUE TO DVORETKSY, ERDÖS AND KAKUTANI. If f is

differentiable at t, then |f(s) − f(t)| ≤ C|s − t| for some C < ∞ and for all s ∈ [0, 1]. Then,

|f(s) − f(u)| ≤ C(|s − t| + |u − t|) for all s, u ∈ [0, 1]. In particular, for any n ≥ 0 and any

0 ≤ k ≤ 2n − 1, this holds when we take s = k2−n and u = (k + 1)2−n. In particular, if ` is such

that [`2−n, (` + 1)2−n] 3 t, then this holds for k = ` + j, j = 1, 2, 3, or for k = `− j, j = 1, 2, 3 (if t

is too close to 1, `+ 3 may be greater than 2n − 1 and if t is too close to 0, `− 3 may be less than 0,

hence we consider both possibilities). For such k, we get∣∣∣f (k + 1

2n

)
− f

(
k

2n

) ∣∣∣ ≤ C 10

2n
(18)

since k2−n and (k + 1)2−n are all within distance 5.2−n of t. Thus, if we define

A = {f : f is differentiable at some t ∈ [0, 1]},

An,C = {f : (18) holds for at least three consecutive k in 0, 1, . . . , 2n − 1},

then what we have shown is that A ⊆
∞⋃
C=1

∞⋂
n=1
An,C .

We show for each fixedC that P{W ∈ An,C} → 0 as n→∞. This implies5 that P{W ∈ A} = 0.

To show this,

P{W ∈ An} =
2n−3∑
`=0

P{(18) holds for f = W for k = `, `+ 1, `+ 2}

≤ (2n − 2)

(
P

{
|ξ| ≤ 10C√

2n

})3

≤ (2n − 2)

(
1√
2π

10C√
2n

)3

≤ 103C3 1√
2n
.

This proves the nowhere differentiability of Brownian motion. �

By considering several increments in place of three, one can show thatW has no Hölder(1
2 +ε)

points.

Hölder(1
2 ; c) points: Next we adapt the original proof of Paley, Wiener and Zygmund to show that

there are no Hölder(1
2 ; c) points if c is small. For convenience of notation, let ∆f(I) = f(b)− f(a)

5One issue: Is A a Borel subset of C[0, 1]?! It is, but we don’t bother to prove it. Instead, let us always work with

the completion of Wiener measure. In other words, if A1 ⊆ A0 ⊆ A2 and A1 and A2 are Borel and P{W ∈ A1} =

P{W ∈ A2}, then the same is deemed to be the value of P{W ∈ A0}.
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for f : [0, 1] 7→ R and I = [a, b] a subinterval of [0, 1]. Also, let In,k = [k2−n, (k + 1)2−n] for n ≥ 0

and 0 ≤ k ≤ 2n − 1.

A BRANCHING PROCESS PROOF DUE TO PALEY, WIENER AND ZYGMUND. Let t is a Hölder(1
2 ; c)

point, then there exists M <∞ such that |f(s)− f(t)| ≤ c
√
|s− t| for all s ∈ [t− 2−M , t+ 2−M ]. In

particular, if n ≥M and In,k is the dyadic interval containing t, then

|∆f(I)| ≤ c
{√

(k + 1)2−n − t+
√
t− k2−n

}
≤
√

2c√
2n
.(19)

In the last inequality we used the elementary fact that if 0 ≤ x ≤ a, then
√
x+
√
a− x ≤

√
2a.

The collection of dyadic intervals carries a natural tree structure with I0,0 being the root vertex

and by declaring In+1,` as a child of In,k if In+1,` ⊆ In,k. This is a tree where each vertex has two

children. Let us declare a dyadic interval In,k to be alive if it satisfies ∆f(In,k) ≤ c
√

2/
√

2n. Thus,

if t is a Hölder(1
2 ; c) point, then for some M , the tree beyond generation M has an infinite chain of

descendents that are all alive (namely the dyadic intervals containing the point t).

The process of vertices alive is a Branching process that we shall prove will become extinct

with probability 1. To do this, let Fn = {∆W (In,k) : 0 ≤ k ≤ 2n − 1} so that these sigma-algebras

are increasing. Whether an interval In,k is alive or not is an event in Fn. Condition on Fn−1

and consider any live individual I in the (n − 1)st generation. It has two children J, J ′ in the nth

generation. Conditional onFn−1, we know the sum ∆W (J)+∆W (J ′) = ∆W (I). From Exercise 10

we can write ∆W (J) = 1
2∆W (I) + ξ√

2n+1
and ∆W (J ′) = 1

2∆W (I) − ξ√
2n+1

where ξ ∼ N(0, 1) is

independent of Fn−1. Now, J is alive if and only if |∆W (J)| ≤ c
√

2√
2n

. This means that ξ must lie

in an interval of length 4c centered at
√

2n−1∆W (I). By Exercise 10, irrespective of the value of

∆W (I), this probability is at most 4c/
√

2π.

In summary, the expected number of offsprings of I is at most λ = 8c/
√

2π. If c′ < 1, then

the number of descendants of an interval IM,k in the generation M + j is exactly λj . Thus the

expected total number of live individuals live in the M + j generation is 2Mλj which goes to zero

as j →∞, provided λ < 1. Hence, for c <
√

2π
8 = 0.313 . . ., the branching process goes extinct with

probability 1.

Since this is true for every M , taking a countable union over positive integer M , it follows that

for any c < 0.31, with probability 1, Brownian motion has no Hölder(1
2 ; c) points. �

We used two simple facts about Gaussian distribution in the proof. They are left as exercises.
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Exercise 21

Let X,Y be i.i.d. N(0, 1). Then, the conditional distribution of (X,Y ) given X + Y = t is

the same as the (unconditional) distribution of (1
2 t+ 1√

2
ξ, 1

2 t−
1√
2
ξ) where ξ ∼ N(0, 1).

Exercise 22

If ξ ∼ N(0, 1), then sup
a∈R

P{ξ ∈ [a− t, a+ t]} ≤ 2t√
2π

.

11. Summary of continuity properties

Let W be standard Brownian motion on [0, 1]. First and foremost is the point that E[|Wt −
Ws|2] = |t − s| from which we see that Wt+h −Wt should behave like

√
h, typically. A summary

of the basic continuity results is as follows.

(1) Almost surely lim sup
h↓0

max
t∈[0,1]

|Wt−Ws|√
h log(1/h)

<∞. We showed this (and if you follow our proof

closely, you will see that the left hand side can be shown to be ≤ 10 w.p.1.).

We did not show Paul Lévy’s sharp result that in fact

max
t∈[0,1]

lim sup
h↓0

|Wt −Ws|√
h log(1/h)

=
√

2 a.s.

(2) Almost surely W has no Hölder(1
2 ; c) points for c sufficiently small. As a consequence, it

is nowhere Hölder(1
2 + ε) and in particular, nowhere differentiable.

We showed this. We did not show the results of Dvoretzky (and Kahane?) that the

sharp constant is 1. That is, for c < 1, there do not exist Hölder(1
2 ; c) points while for

c > 1, they do exist.

(3) We shall show later that at a fixed point, the continuity is faster than
√
h and slower than√

h log(1/h). This is the celebrated law of iterated logarithm which asserts that for any

fixed t ≥ 0,

lim sup
h↓0

W (t+ h)−W (t)√
2h log log(1/h)

= 1 a.s.

In fact the set of limit points of W (t+h)−W (t)√
2h log log(1/h)

as h ↓ 0 is almost surely equal to [−1, 1].

12. Blumenthal’s zero-one law

We move towards the Markov property of Brownian motion and its consequences. To give a

quick preview, standard Brownian motion turns out to be a strong Markov process, and we shall

find many martingales hidden in it. These, together with optional sampling theorems applied to
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certain stopping times will allow us to study very fine properties of Brownian motion in depth.

But as may be expected, certain technical matters will crop up. We start with one such.

Let W be a standard Brownian motion in 1-dimension, defined on some (Ω,F ,P). Let Ft :=

σ{Ws : s ≤ t} be the associated natural filtration. Define τ = inf{t : W (t) ≥ 1} and let τ ′ =

inf{t : W (t) > 1}. It is easy to see that τ is a stopping time for the natural filtration but τ ′ is not

(just find two paths that agree up to τ but that have different values for τ ′).

We would like τ ′ to also be a stopping time. This can be done by enlarging the filtration to

F+
t :=

⋂
s>t
Fs. The filtration F+

• is called the right-continuous version of F• because
⋂
s>t
F+
s = F+

t

for every t ≥ 0 or in other words (F+
• )+ = F+

• . It is easy to see that τ ′ is indeed a stopping time

with respect to F+
• , since the event {τ ′ ≤ t} ∈ Fs for each s > t.

Needless to say, τ remains a stopping time upon enlarging the filtration. What can go wrong

with enlargement are Markov properties or martingale properties. For example, for any twe know

that W (·+ t)−W (t) is independent of Ft. Does it remain true that W (·+ t)−W (t) is independent

of F+
t ? If not, it is easy to imagine that the enlargement causes more difficulties than it solves.

The first and foremost task is to check that the enlargement is trivial - it adds only P-null sets.

This is indeed true.

Lemma 52: Blumenthal’s zero-one law

If A ∈ F+
0 , then P(A) equals 0 or 1.

PROOF. We know that W T := W (T + ·) −W (T ) is independent of (Wt)0≤t≤T , for any T > 0.

As T ↓ 0, the sigma-algebra generated by (Wt)0≤t≤T decreases to F+
0 . Further, σ(∪T>0σ(W T )) =

σ(W ), since WT → 0 (to be more precise, because W (t) = limT↓0W
T (t)). Therefore, σ(W ) is

independent of F+
0 . But F+

0 ⊆ σ(W ), hence F+
0 is independent of itself. Hence any A ∈ F+

0 must

have probability 0 or 1. �

In this proof, we used the following simple fact (observe that we could have worked with a

sequence Tn decreasing to 0).
Exercise 23

Let F1 ⊆ F2 ⊆ . . . and G1 ⊇ G2 ⊇ . . . be sub-sigma algebras of F in (Ω,F ,P). If Fn is

independent of Gn for each n, then σ (
⋃
nFn) is independent of

⋂
n Gn.
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Remark 8

In the lectures, I indicated further enlargement by including all P-null sets in each Ft. More

precisely, let F∞ = σ{W} = σ{
⋃
t≥0Ft} and let

N = {A ⊆ Ω : A ⊆ B for some B ∈ F∞ with P(B) = 0}.

Then defineF+
t = σ{F+

t ∪N}. This is the completed, right-continuous filtration. All results

stated below for the right-continuous filtration also hold for the completed right-continuous

filtration.

13. Markov and strong Markov properties

Let W be a standard d-dimensional Brownian motion on a probability space (Ω,F ,P). Let F•
be the natural filtration generated by W and let F+

• be the right-continuous filtration defined by

F+
t =

⋂
s>tFs.

Here is a naive way to state the Markov and strong Markov properties.

I (Markov property). Fix T and define B(t) = W (T + t) −W (T ) for t ≥ 0. Then, B is a

standard Brownian motion that is independent of F+
t .

I (Strong Martov property). Fix an F+
• -stopping time τ and define B(t) = W (t+ τ)−W (τ)

for t ≥ 0. Then B is a standard Brownian motion independent of F+
τ . Recall that F+

τ =

{A ∈ F : A ∩ {τ ≤ t} ∈ Ft}.

We have already proved the Markov property when the filtration F• is used. By Blumenthal’s

zero-one law, F+
t is got from Ft by augmenting some P-null sets. Hence, independence of B from

FT is equivalent to independence of B from F+
T . Strong Markov property is slightly less obvious.

PROOF OF STRONG MARKOV PROPERTY. For simplicity we use the notation of 1-dimension.

First assume that τ takes countably many values s0, s1, s2, . . . for some δ > 0. Fix any A ∈ Fτ , any

n ≥ 1 and t1, . . . , tn ≥ 0, and any u1 . . . , un ∈ R. Let E be the event that B(tj) ≤ uj for 1 ≤ j ≤ n.

Then,

P{E ∩A} =

∞∑
m=0

P{E ∩A ∩ {τ = sm}}

= P {{B(sm + tj)−B(sm) ≤ uj for j ≤ n} ∩A ∩ {τ = sm}} .

For fixed m, by Markov property and the fact that A ∩ {τ = sm} ∈ F+
m, the mth summand above

is equal to

P{W (tj) ≤ uj for j ≤ n}P{A ∩ {τ = sm}}.
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Adding up and using P(A) =
∑

mP{A ∩ {τ = sm}} gives the identity P{E ∩ A} = P{W (tj) ≤
uj for j ≤ n}P{A}. This shows that B is independent of F+

τ and that B has the same distribution

as W .

Now consider a general stopping time τ . For ` ≥ 1 define τ` = 2−`d2`τe. Then τ` is a stopping

time, τ ≤ τ` ≤ τ + 2−`. Thus τ` ↓ τ . Let V = (W (τ + t1), . . . ,W (τ + tn)) and V` = (W (τ` +

t1), . . . ,W (τ` + tn)) so that by continuity of Brownian motion, we have V`
a.s.→ V . Thus, for most

choices of u1, . . . , un (we need uj to be a continuity point of V (j)) we get

P{{V (j) ≤ uj for j ≤ n} ∩A} = lim
`→∞

P{{V`(j) ≤ uj for j ≤ n} ∩A}

= lim
`→∞

P{W (tj) ≤ uj for j ≤ n}P{A}

where the last line used the strong Markov property for stopping times τ` that takes countably

many values. �

For our purposes this is sufficient. Observe that Markov property can be stated as saying that

the conditional distribution of W (T + t), t ≥ 0, given F+
T is the same as that of Brownian motion

started at the pointW (T ). Similarly, strong Markov property says that the conditional distribution

of W (τ + t) given F+
τ .

This is a better way of stating these properties. In case of Brownian motion, because of symme-

tries (W +x is the same as Brownian motion conditioned on starting at x). In general, we consider

a family of probability measure Px, x ∈ R, on C[0,∞) such that Px{f : f(0) = x} = 1. This family

is said to have (time-homogeneous) Markov property if:

Fix any x ∈ Rd and let X = (Xt)t≥0 ∼ Px. Then, conditional on F+
T , the process (X(T + t))t≥0

has the same distribution as PX(T ). Strong Markov property is stated in a similar way.

Example 26

Let Px be the distribution of (x+Wt + t)t for x ≥ 0 and the distribution of (x+Wt − t)t≥0

for x < 0. Then Px does not have Markov property.

Example 27

Let Px be the distribution of x + W for x 6= 0 and let P0 = δ0 be the Dirac measure at

the constant function zero. Then, P satisfies Markov property but not the strong Markov

property.

Indeed, if x = 0, then conditional on FT , the distribution of the future path (W (T + t))t≥0

is degenerate at zero. If x 6= 0, ignoring the zero probability event WT = 0, we see that the
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future pathW (T +t) is that of Brownian motion stated atW (T ) (does not work ifW (T ) = 0

but zero probability events may be ignored).

But if τ = min{t : Wt = 0}, then the conditional distribution of (W (τ+t))t≥0 is the standard

Brownian motion, which is not the same as PW (τ) = P0.

14. Zero set of Brownian motion

Let W be standard 1-dimensional Brownian motion and let Z = {t : Wt = 0}. Clearly Z is a

random closed set of R+.

Theorem 53

Z has no isolated points, w.p.1.

PROOF. For q ∈ Q+, let τq = min{s > t : W (s) = 0}. By SMP, W (τq + t)−W (τq) = W (τq + t)

is a standard Brownian motion. In particular, it has infinitely many zeros on any positive time

interval [0, ε). Hence, τq is an accumulation point (from the right) of Z, w.p.1. Take intersection

over q ∈ Q+ to see that w.p.1., every τq, q ∈ Q, is an accumulation point of Z.

Now, a zero z ∈ Z is not of the form τq is and only if z is an accumulation point of Z from the

left! Thus, all zeros of W are accumulation points. �

15. Reflection principle

Let W be standard 1-dimensional Brownian motion. For a > 0 define the running maximum

Mt := max
0≤s≤t

Ws and the first passage time τa := min{t ≥ 0 : W (t) ≥ a}. These are closely intercon-

nected, since Mt ≥ a if and only if τa ≤ t.
Many questions can be asked: What is the distribution of M , of τa? Let T∗ be the (unique) time

in [0, 1] such that W (T∗) = max
s≤1

W (s). What is the distribution of T∗?

We shall answer all these questions. A basic tool is the reflection principle, a direct conse-

quence of the strong Markov property.

Lemma 54: Reflection principle

Let W be standard 1-dimensional Brownian motion. Fix a > 0 and define

B(t) =

W (t) if t ≤ τa,

2W (τa)−W (t) if t > τa.

Then, B is a standard Brownian motion.
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PROOF. Let X = (Wt)t≤τa , Y = (Wt+τa − a)t≥0 and Z = −Y . Then Y d
= Z, X is independent

of Y (by strong Markov property) and hence X is independent of Z. Hence (X,Y )
d
= (X,Z).

Concatenating X with Y gives W while concatenating X with Z gives B. Thus B d
= W . �

Distribution of the running maximum: Let a > 0 and t > 0. Let W be a standard Brownian

motion and let B be related to it as in the reflection principle. Then,

{Mt > a} = {Mt > a,Wt > a} t {Mt > a,Wt < a}

= {Wt > a} t {Bt > a}.

Therefore, P{Mt > a} = 2P{Wt > a} = 2Φ̄(a/
√
t) where Φ̄(x) =

∫∞
x

1√
2π
e−

1
2
u2
du is the tail of the

standard normal distribution. Differentiating, we get the density of Mt to be

fMt(a) = − d

dt
P{Mt > a} =

2√
2π
√
t
e−

1
2t
a2
.

Another way to say this is that for each fixed twe haveMt
d
= |Wt|, since P{|Wt| > a} = 2P{Wt > a}

for any a ≥ 0.

Distribution of the first passage times: As τa ≤ t if and only if Mt ≥ a, we get P{τa ≤ t} =

2Φ̄(a/
√
t). The density of τa is

fτa(t) =
d

dt
P{τa ≤ t} =

a
√

2π t
3
2

e−
1
2t
a2
.

The density approaches zero at t = 0 and decayse like t−3/2 as t→∞. Thus the tail is quite heavy.

Exercise 24

Deduce that E[τa] =∞. In fact E[τpa ] <∞ if and only if p < 1
2 .

Joint distribution of the Brownian motion and its running maximum: Fix a > 0 and −∞ < b < a.

Then, by the definition of B in terms of W ,

{Mt > a and Wt < b} = {Bt > 2a− b}.

Since B is standard Brownian motion, we get P{Mt > a and Wt < b} = Φ̄((2a− b)/
√
t). Thus,

f(Mt,Wt)(a, b) = − d2

da db
Φ̄((2a− b)/

√
t) =

2(2a− b)
√

2π t
3
2

e−
1
2t

(2a−b)2
.

Some distributional identities: The process (|Wt|)t≥0 is called reflected Brownian motion. We

have the following distributional identities.
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FIGURE 3. Densities of first passage time τa

I Mt
d
= |Wt| for each t. We already saw this.

I Mt − Wt
d
= |Wt| for each t. This can be computed from the joint intensity, but here is a

computation-free proof6. The process Xs = Wt−s − Wt for 0 ≤ s ≤ t is a standard Brownian

motion. Observe that MX
t = MW

t −Wt. Hence, the distributional identity follows!

Do these equalities in distribution extend to those of the processes? The first one does not,

since M is an increasing process while |W | is not. But it is a non-trivial theorem of Lévy that the

second one does, i.e.,M−W d
= |W |. The key point is thatM−W is a Markov process. Once that is

checked, the equality in distribution at fixed times easily extends to equality of finite dimensional

distributions. Since both processes are continuous, this implies equality in distribution of the two

processes.

Local times - a digression: Further, consider a probability space with two standard Brownian

motions W, W̃ related such that MW −W = W̃ . Then, the process MW is related to W̃ in a special

way. Being an increasing function,MW may be thought of as the distribution function of a random

measure. Observe that MW is constant on any interval (s, t) where W̃ has no zeros. This means

that the random measure defined by MW is supported on the zero set of W̃ . It is called the local

time of W̃ , a clock that ticks only when the Brownian motion is at zero.

This is not entirely satisfactory. What we would like is to define a local time for the Brownian

motion that we started with, in a canonical way. This is possible. Indeed, it can be shown that

Lt(0) := lim
ε↓0

1

2ε
Leb{s ≤ t : |Ws| ≤ ε}

exists and defined the local time at 0. It is also possible to define Lt(x) for t > 0 and x ∈ R,

simultaneously. But we shall not touch upon this matter in this course.

6Thanks to Arun Selvan for the nice proof!
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16. Arcsine laws

Let T ∗ = arg max
0≤t≤1

Wt be the location of the global maximum of Brownian motion in unit time.

As all the values of local maxima are distinct, T ∗ is well-defined. Also, define L := max{t ≤
1 : Wt = 0} be the time of last return to the origin.

Let us also recall the arc-sine distribution that has CDF 2
π arcsin(

√
t) and density 1

π
√
t(1−t)

, for

0 < t < 1.

Theorem 55: Lévy

T ∗ and L have the arcsine distribution.

PROOF. (1) Fix t ∈ (0, 1). Then T ∗ ≤ t if and only if max
0≤s≤t

Ws ≥ max
t≤s≤1

Ws which is

equivalent to max
0≤s≤t

Ws −Wt ≥ max
t≤s≤1

Ws −Wt.

If W̃s−t := Ws−Wt for t ≤ s ≤ 1, then W̃ is a standard Brownian motion (run for time

1− t) that is independent of (Ws)s≤t. Thus, putting everything together, we arrive at

P{T ∗ ≥ t} = P{Mt ≥ M̃1−t}.

Because Mt
d
= |Wt|, we may write Mt =

√
t|X| and M̃1−t =

√
1− t|Y | where X,Y are

i.i.d. standard Gaussians. Thus,

P{T ∗ ≥ t} = P{
√
t|X| ≥

√
1− t|Y |} = P

{∣∣∣Y
X

∣∣∣ ≤ √
t√

1− t

}
.

It is an easy exercise that Y/X has standard Cauchy distribution and hence the last prob-

ability is equal to 2
π arctan(

√
t/
√

1− t) which is equal to 2
π arcsin(

√
t). This shows that T ∗

has arcsine distribution.

(2) L ≥ t if and only if W hits zero somewhere in [t, 1]. Let W̃s = Wt+s −Wt for 0 ≤ s ≤ 1− t
which is a Brownian motion independent of Ft.
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Now, W hits zero in [t, 1] if and only if M̃1−t ≥ |Wt| (if Wt < 0) or min
s≤1−t

W̃s ≤ −|Wt|
(if Wt > 0). Clearly either one has the same probability. Hence we arrive at

P{L ≥ t} = P{M̃1−t ≥ |Wt|}.

But we may write M̃1−t =
√

1− t|X| and |Wt| =
√
t|Y | where X,Y are i.i.d. standard

Gaussians. Hence we return to the same calculation as for T ∗ and deduce that L must

have arcsine distribution. �

Lévy proved a third arcsine law. This is for {t ≤ 1 : Wt > 0}, the proportion of time spent by

the Brownian motion in the positive half-line. We shall prove this later.

Proof of Lévy’s third arcsine law by chaos expansion:

Let γ be the standard Gaussian measure on R. Applying Gram-Schmidt (without normalizing)

procedure to 1, x, x2, . . . in L2(γ), we get a sequence of monic polynomials H0(x), H1(x), . . . that

are orthogonal in L2(γ). Clearly Hn has degree n. These are known as Hermite polynomials and we

can describe them explicitly in multiple ways:

(1) Hn(x) = (−1)ne
1
2
x2 dn

dxn e
− 1

2
x2

. This is clearly monic and has degree n. Hence it suffices to

check that they are orthogonal in L2(γ), which follows by integrating by parts. If m < n,∫
Hn(x)Hm(x)dγ(x) =

∫
Hm(x)

dn

dxn
e−

1
2
x2
dx = (−1)n

∫
e−

1
2
x2 dn

dxn
Hm(x)dx = 0.

(2)

17. Martingales in Brownian motion

Using the strong Markov property, we found the distribution of the first passage times τa.

It can be thought of as the exit time of a half-infinite interval. A natural question is to find the

distribution of the exit time τb,a of a finite interval [b, a] for b < 0 < a. In particular, since τ−a,a ≤ t
if and only if maxs≤t |Ws| ≥ a, this will also tell us the distribution of the running maximum of a

reflected Brownian motion.

The tools we use are martingales inside Brownian motion. We know that Wt itself is a martin-

gale. But W 2
t is not. Indeed,

E[W 2
t

∣∣∣∣∣∣ Fs] = E[(Ws + (Wt −Ws))
2
∣∣∣∣∣∣ Fs]

= E[W 2
s + 2Ws(Wt −Ws) + (Wt −Ws)

2
∣∣∣∣∣∣ Fs]

= W 2
s + (t− s).
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From this, we can deduce that W 2
t − t is a martingale. Similarly,

E[W 3
t

∣∣∣∣∣∣ Fs] = E[(Ws + (Wt −Ws))
3
∣∣∣∣∣∣ Fs]

= E[W 3
s + 3W 2

s (Wt −Ws) + 3Ws(Wt −Ws)
2 + (Wt −Ws)

3
∣∣∣∣∣∣ Fs]

= W 3
s + 3Ws(t− s).

From this, we deduce that W 3
t − 3tWt is a martingale. Continuing, we find that W 4

t − 6tW 2
t + 3t2

is a martingale. What is the general pattern?

Exponential martingales: Let λ ∈ R and define Mλ(t) := eλWt− 1
2
λ2t. Then,

E[Mλ(t)
∣∣∣∣∣∣ F+

s ] = eλWs− 1
2
λ2tE[eλ(Wt−Ws)] = eλWs− 1

2
λ2te

1
2
λ2(t−s) = Mλ(s).

Thus, for each λ ∈ R we have a martingale Mλ(t), t ≥ 0.

Consider the power series expansion of function eλx−
1
2
λ2

=
∑∞

n=0
1
n!Hn(x)λn where

Hn(x) =
dn

dλn
eλx−

1
2
λ2
∣∣∣
λ=0

.

It is easy to see that Hn(x) is a polynomial of degree n in x. These are called Hermite polynomials.

By explicit computation one can see that H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3, etc. The martingales that we got earlier are precisely tn/2Hn(Wt/
√
t).

Exercise 25

Use differentiation under the integral sign and the fact thatMλ is a martingale, to show that

tn/2Hn(Wt/
√
t) is a martingale for every n ≥ 0.

The usefulness of martingales is via the optional sampling theorem. We showed in class how

to analyse the exit time of an interval by one-dimensional Brownian motion. And also how to find

martingales for multi-dimensional Brownian motion. For instance, any u : R+ × Rd that satisfies

∂tu(t, x) + 1
2∆u(t, x) = 0 and some growth conditions gives a martingale u(t,Wt). In particular,

harmonic functions v satisfying some growth conditions give the martingales v(Wt).

We used these to prove recurrence and transience properties of Brownian motion. We may

touch upon the Dirichlet problem in the last lecture (if we have time).

Read up on these in the books we have been referring to.

Like with discrete time martingales, optional stopping theorem is a great tool. We state a basic

version.
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Theorem 56: Optional stopping theorem

Let X = (Xt)t≥0 be a martingale w.r.t. a filtration F• = (Ft)t≥0. Assume that the sample

paths of X are continuous. Let τ be a stopping time for F• and define Xτ (t) := X(τ ∧ t). If

Xτ is uniformly integrable, then E[X(τ)] = E[X(0)].

17.1. Recurrence and transience of Brownian motion.

18. Wiener’s stochastic integral

Let W be standard Brownian motion on (Ω,F ,P). Let f : [0, 1] → R. We want to make sense

of
∫ 1

0 f(t)dW (t) with extra conditions on f if necessary.

Let us first review what can be done in the non-random situation, where the integrating func-

tion is fixed.

I Let α ∈ C1(R). Then for any f ∈ C[0, 1] we may define
∫ 1

0 f(t)dα(t) as
∫ 1

0 f(t)α′(t)dt, the

latter being the Riemann integral of a continuous function.

I More generally, if α is a function of bounded variation7, then following ideas similar to

that of Riemann intergral, Stieltjes showed that
∫ 1

0 f(t)dα(t) can be made sense of for any

f ∈ C[0, 1].

I Suppose α ∈ C[0, 1], not necessarily of bounded variation. Then it is no longer possible

to define Stieltjes’ integral. But for f ∈ C[0, 1], we can define∫ 1

0
f(t)dα(t) := f(1)α(1)− f(0)α(0)−

∫ 1

0
α(t)f ′(t)dt.

The justification for this definition is that when α is of bounded variation, the expression

on the right is equal to
∫ 1

0 fdα, known as the integration by parts formula.

This simple observation has considerable reach, and lies at the base of the theory of

distributions in functional analysis. Any continuous function acts on smooth enough

functions as above.

Now fix a sample path of Brownian motion. It is not of bounded variation, hence the first two

approaches do not work. That is, we cannot make sense of
∫ 1

0 f(t)dW (t) for all f ∈ C[0, 1].

However, the sample path is indeed continuous, hence we can use the third approach and de-

fine
∫ 1

0 f(t)dW (t) for f ∈ C1 by the integration by parts formula.

But we can do more - we shall in fact define
∫ 1

0 f(t)dW (t) for every f ∈ L2[0, 1]! This is done

as follows.

7By definition, α is said to have bounded variation if sup
∑n
k=1 |α(tk)− α(tk−1)| is finite, where the supremum is

over all 0 = t0 < t1 < . . . < tn = 1. It is a fact that a function is of bounded variation if and only if it can be written as

a difference of two increasing functions. A
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Step 1: Let f : [0, 1]→ R be a step function, f(t) =
∑n

k=1 λk1[ak,bk](t) for some 0 ≤ a1 < b1 < a2 <

b2 < . . . < an < bn for some n ≥ 1. Then we define

I(f) =
n∑
k=1

λk(W (bk)−W (ak)).

If S denotes the collection of all step functions on [0, 1], then S is a dense subspace of L2[0, 1]. What

we have defined is a function I : S → L2(Ω,F ,P).

Step 2: We claim that I : S → L2(Ω,F ,P) is a linear isometry. Further, I(f) is a Gaussian random

variable for each f ∈ S.

Linearity is clear. To check isometry, by the independent increments property of W , we get

‖I(f)‖2L2(P) = E[|I(f)|2] = Var(
n∑
k=1

λk(W (bk)−W (ak))) =
n∑
k=1

λ2
k(bk − ak) = ‖f‖2L2[0,1].

That I(f) is Gaussian is clear. Therefore it has N(0, ‖f‖2L2[0,1]) distribution.

Step 3: I maps Cauchy sequences in S to Cauchy sequences in L2(P). Hence, if fn ∈ S and

f ∈ L2[0, 1] and fn → f in L2, then {fn} is Cauchy in L2[0, 1] and therefore {I(fn)} is Cauchy in

L2(P). By completeness of L2(P), I(fn) has a limit. Clearly this limit depends only on f and not

on the sequence {fn}. Therefore, we can unambiguously extend I to a linear isometry of L2[0, 1]

into L2(P).

This defines the stochastic integral and we usualy write
∫ 1

0 f(t)dW (t) for I(f). Since L2-limits

of Gaussians are Gaussians, it follows that for any f, ginL2[0, 1], the distribution of I(f) and I(g)

is bivariate Gaussian with zero means and Cov(I(f), I(g)) =
∫ 1

0 fg. In particular, Var(I(f)) =

‖f‖2L2[0,1].

How was it possible to integrate every L2 function? The point to remember is that when

talking about Brownian motion, we are not talking of one function, but an entire ensemble of

them. Therefore,

(1) For any given Brownian path, there is a function f ∈ L2[0, 1] (even f ∈ C[0, 1]) that cannot

be integrated in any sense against the Brownian path.

(2) For a fixed f ∈ L2[0, 1], this problem does not arise for almost every Brownian path and

we can integrate f with respect to W .

(3) For almost every Brownian path, the integrals of all C1 functions can be simultaneously

defined (using the integration by parts formula).

In this sense, Brownian motion is better than a distribution, it can integrate functions with hardly

any smoothness.
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We shall not really use the Wiener integral to deduce any properties of Brownian motion. We

discussed it to mention an important topic that we shall not touch upon in this course. This is

the subject of Ito integral which makes sense of integrals of random functions such as
∫ t

0 WsdWs

(it turns out that this integral is 1
2W

2
t − 1

2 t in contrast to C1 functions α for which we always have∫ t
0 α(s)dα(s) = 1

2α(t)2). Here is an exercise.
Exercise 26

Let f : R → R be a measurable function such that
∫ t

0 f
2 < ∞ for all t < ∞. Then we may

define Xt =
∫ t

0 f(s)dW (s) exactly as above. Show that X is a martingale.

Stochastic summation: an analogy or more: Consider `2 = {x = (xn)n∈N :
∑

n x
2
n < ∞}. Let

a = (an)n∈N ∈ RN. Two observations.

I If a ∈ `2, then
∑

n anxn converges for every x ∈ `2. This is the inner product in `2, well-

defined because of the Cauchy-Schwarz inequality.

I Suppose
∑

n anxn converges for each x ∈ `2. Then a ∈ `2. To see this, define Lm :

`2 → R by Lm(x) =
∑

k≤m akxk. Then Lm is a bounded linear functional with ‖Lm‖2 =∑
k≤m a

2
k. By the hypothesis, for ach x ∈ `2, the sequence {Lm(x)}m is convergent in R,

and hence bounded in R. By the uniform boundedness principle, {‖Lm‖} is bounded.

Thus
∑

k≤m a
2
k ≤ C for some C and for all m which implies that a ∈ `2.

Now consider ξ = (ξn)n∈N, where ξn are i.i.d. N(0, 1) random variables on a common probability

space (Ω,F ,P). Then, ξn > 1 infinitely often, w.p.1. and hence ξ 6∈ `2, w.p.1. Thus, for almost

every ω, there is an x ∈ `2 such that
∑

n ξn(ω)xn does not converge. However, for each x ∈ `2,

using standard results on sums of independent random variables, it follows that
∑

n ξn converges

w.p.1. But let us do it in a more roundabout way to bring out the analogy with the Wiener integral.

Step 1: Let S = {x ∈ `2 : xn = 0 for all large n}, a dense subspace of `2. For x ∈ S, the sum

I(x) :=
∑

n ξnxn is a finite sum and therefore well-defined.

Step 2: I : S 7→ L2(Ω,F ,P) is a linear isometry. In fact, for each x ∈ `2, I(x) ∼ N(0, ‖x‖2). This is

easy to see by computing E[I(x)2].

Step 3: I extends as an isometry of `2 into L2(Ω,F ,P). This step is carried out exactly the same

way.

Interpret I(x) as
∑

n ξnxn (in fact, the latter series converges almost surely, using standard

theorems on sums of independent random variables). Thus, we have a very close analogy with
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the previous situation. To make the analogy even closer, you may want to define Sn = ξ1 + . . .+ξn

so that
∑

n ξnxn =
∑

n(Sn − Sn−1)xn looks like “
∫
x(n)dS(n)”.

19. A peek into Ito’s integration theory

LetW be standard Brownian motion in one dimension, defined on some (Ω,F ,P). The Wiener

integral made sense of
∫ 1

0 f(t)dW (t) for f ∈ L2[0, 1] as a random variable on the same probability

space. Can we also integrate random integrands. In other words, suppose X = (X(s))s≥0 is a

stochastic process on the same probability space. Can we make sense of
∫ 1

0 X(s)dW (s)? If X is

independent of W , then by conditioning on X , we reduce this to the situation of deterministic

integrands. Hence we are more interested in the situation where X depends on W .

In the basic theory of Stieltjes’ integral of f with respect to α, one starts out by considering

partitions 0 = t0 < t1 < . . . < tN = 1 and forming the Riemann sum
∑N−1

k=0 f(t∗k)(α(tk+1)− α(tk))

where t∗k ∈ [tk, tk+1] are arbitrary points. If the limit of these sums exists, as the partitions get finer

and over arbitrary choices of t∗ks, then the limit value is defined to be
∫ 1

0 f(t)dα(t).

Taking inspiration from this (all integration must be limit of summation, after all), we can try

to make sense of
∫ 1

0 X(s)dW (s) by considering
N−1∑
k=0

X(t∗k)(W (tk+1)−W (tk)).

It turns out that the choice of t∗k matters a lot! Henceforth, we consider the prototypical case of

X = W . By taking t∗k to be the left end-point or the right end-point or the mid-point of [tk−1, tk],

we get the following sums.

IN :=
N−1∑
k=0

W (
k

2n
)(W (

k + 1

2n
)−W (

k

2n
)),

JN :=

N−1∑
k=0

W (
k + 1

2n
)(W (

k + 1

2n
)−W (

k

2n
)),

KN :=

N−1∑
k=0

W (
k + 1

2

2n
)(W (

k + 1

2n
)−W (

k

2n
)).

Here is a simple calculation that shows that even if they have limits, the limits must be different.

JN − IN =

N−1∑
k=0

(W (
k + 1

2n
)−W (

k

2n
))2 a.s.→ 1

where the almost sure convergence was a homework exercise (if we consider a general sequence

of partitions, we only get convergence in probability, but that is not relevant for the point we are

about to make). Thus, the limits of JN and of IN , if they exist, must differ by 1. In fact the limits
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exist because

JN + IN =
N−1∑
k=0

(W (
k + 1

2n
)2 −W (

k

2n
)2) = W (1)2.

Therefore, we deduce that

JN
a.s.→ 1

2
W (1)2 +

1

2
, IN

a.s.→ 1

2
W (1)2 − 1

2
.

We leave it as an exercise to check that KN
a.s.→ 1

2W (1)2. There is no difficulty in extending this for

any fixed t and get three possible candidates 1
2W (t)2 + 1

2 t,
1
2W (t)2 − 1

2 t and 1
2W (t)2 as possible

definitions of
∫ t

0 W (s)dW (s). Of course, choosing other t∗k, one can get other candidates. Which is

the right one?

It is tempting to choose the limit of KN , since choosing the mid-point makes one seem less

prejudiced to the temptations of left and right, and also because it agrees with the result for Stielt-

jes’ integrals,
∫ t

0 α(t)dα(t) = 1
2α(t)2 − 1

2α(0)2. But when we consider the integral as a process in

t (caution: We only showed that for fixed t, the limit exists, but let us suppose that the integral

makes sense as a process in t), the leftist choice 1
2W (t)2 − 1

2 t is more inviting, since it alone is a

martingale! Why did it become a martingale? A hint is there already in the definition of IN . If you

consider the discrete-time martingale W (k/2n), k = 0, 1, 2, . . ., then IN is like enhancing the kth

game by betting a predictable amount W (k/2n). The choices in JN and KN need knowledge of the

future to make the bet, hence they fail to be martingales.

Ito integral: LetW be standard Brownian motion on (Ω,F ,P) and letX be a continuous stochastic

process that is adapted to F•
+ (right-continuos, completed filtration). Let us assume that X is

uniformly bounded (this can be relaxed if X is unlikely to be very large on bounded intervals).

Then the limits

IX(t) := lim
n→∞

b2ntc∑
k=0

X(k/2n)(W (
k + 1

2n
)−W (

k

2n
))

exists as a process in t, and IX is a continuous martingale. It is called the Ito integral of X with

respect to W and denoted IX(t) =
∫ t

0 X(s)dW (s).

We have just stated this fact without proof. In specific cases, one can do this by hand. If noth-

ing else, this may be thought of as a systematic way to obtain many martingales from Brownian

motion!
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Exercise 27

At least for a few small values of p = 1, 2, . . ., show that∫ t

0
W (s)pdW (s) =

1

p+ 1
W (t)p+1 − p

2

∫ t

0
W (s)p−1ds.

20. Random walks and Brownian motion

Part of the original motivation for Brownian motion was that it was a kind of random walk

in continuous time and continuous space. We shall now make this precise and show that random

walks converge to Brownian motion in the sense of distribution. For this we need to see them both

as objects in the same space.

Random walk as a continuous stochastic process: Let x1, x2, . . . , xn be real numbers. Define the

continuous Wn by

Wn(t) =

x1 + . . .+ xk if t = k
n for some 0 ≤ k ≤ n,

linear in each interval [ kn ,
k+1
n ].

For later purposes, let us introduce the notationWn = T (x1, . . . , xn), so that T : Rn 7→ C[0, 1]. If xi
are random variables, then Wn is a continuous stochastic process whose distribution is the push-

forward of the distribution of T under T . When xi are i.i.d. random variables, Wn is essentially

the random walk with these steps, except that we interpolate continuously to make it a continuous

process of continuous time.

Weak convergence in C[0, 1]: Suppose µn, µ are Borel probability measures on a complete, sepa-

rable metric space (X, d). We say that µn
d→ µ if

∫
fdµn →

∫
fdµ for all f ∈ Cb(X) (the space of

bounded continuous functions on X). If Xn ∼ µn and X ∼ µ are random variables (not necessar-

ily on the same probability space), we abuse notation and write Xn
d→ X to mean µn

d→ µ. This is

the notion of convergence in distribution or weak convergence (that we have studied extensively

when the metric space is Euclidean space). In particular, this applies to probability measures on

C[0, 1].

For now, let us only make the observation that if F : X 7→ R is a continuous function, then

µn
d→ µ implies that µn ◦F−1 d→ µ ◦F−1 (these are probability measures on R). Thus, convergence

in distribution of one sequence of measures on C[0, 1] encodes innumerable convergence in distri-

bution statements on the real line (just by varying F ). A convergence in distribution statement on

C[0, 1] (or other such “large spaces”) are often called a functional limit theorem.
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With these definitions, we are ready to state one of the foundational theorems of probability

theory. For one, it is a far-reaching generalization of the central limit theorem.

Theorem 57: Donsker’s invariance principle

Let X1, X2, . . . be i.i.d. random variables with E[Xk] = 0 and E[X2
k ] = 1. Let Wn =

T (X1√
n
, . . . , Xn√

n
). Then Wn

d→W , a standard Brownian motion on [0, 1].

How is this a generalization of the central limit theorem? Just consider the continuous function

F : C[0, 1] 7→ R defined by F (ϕ) = ϕ(1). As F (Wn) = (X1 + . . . + Xn)/
√
n and F (W ) = W (1) ∼

N(0, 1), the standard central limit theorem follows. There are innumerable other functions one can

use, and that gives us an amazing machinery to transfer results from random walks to Brownian

motion or vice versa. Often from one particular random walk (e.g., simple symmetric random

walk) to Brownian motion and hence to all other random walks with steps of zero mean and unit

variance.

Why Donsker’s theorem makes one break into a song: For example, let F (ϕ) = max0≤t≤1 ϕ(t).

Then F is a continuous function from C[0, 1] to R. From Donsker’s theorem, it follows that

max0≤t≤1Wn(t)
d→ max0≤t≤1W (t). The left hand side is just the maximum of { 1√

n
S0, . . . ,

1√
n
Sn}

and the right hand side is what we have been calling M1. Since we worked out that M1
d
= |Z|

where Z ∼ N(0, 1), we now have limiting distribution of max{S0, . . . , Sn}/
√
n. Observe that the

special tricks that we used to compute the distribution of M1, namely the reflection principle, is

not available for general random walks, hence a direct proof of this statement about random walks

may not be so easy. This shows how Brownian motion can be useful even for proving things about

random walks!

To see the usefulness in the opposite direction, let us observe that the reflection principle is

in fact available for the simple symmetric random walk (steps ±1 with equal probability), hence

by some combinatorics (Feller’s vol. 1, chapter 3 remains the best resource for this topic) one

can actually show that 1√
n

max{S0, . . . , Sn}
d→ |Z|. Now use Donsker’s theorem to conclude that

M1
d
= |Z|. Furthermore, once you have it for Brownian motion, you have the result for random

walk with any step distribution (with zero mean, unit variance). Thus, by proving it for one

particular random walk, we can conclude it for all random walks, by passing through Brownian

motion!

We shall use these ideas and revisit the three arcsine laws (we only proved two of them),

and prove them for simple symmetric random walk (by combinatorics), for Brownian motion (by
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Donsker’s theorem) and hence for general random walks. We shall also prove the Khinchine-

Hartman-Wintner law of iterated logarithm and a functional form of it, by first doing it for Brow-

nian motion and then deducing it for random walks.

21. Proof of Donsker’s invariance principle

The method of proof is even simpler than that of CLT, since we shall essentially get conver-

gence in distribution by coupling random variables so that there is convergence in probability!

Here is the precise statement.

Lemma 58

Let µn, µ be probability measures on a metric space (X, d). Assume that µ is tight, in the

sense that given ε > 0, there exists a compact set Kε ⊆ X such that µ(Kε) > 1− ε.
Suppose we can construct X-valued random variables Yn, Zn on some probability space so

that Yn ∼ µn, Zn ∼ µ, and d(Yn, Zn)
P→ 0. Then, µn

d→ µ.

PROOF. Let f ∈ Cb(X). Then for any ε > 0, δ > 0,

|
∫
X
fdµn −

∫
X
fdµ| ≤ E[|f(Yn)− f(Zn)|]

≤ E[|f(Yn)− f(Zn)|1Zn 6∈Kε ] + E[|f(Yn)− f(Zn)|1d(Yn,Zn)≥δ] + E[|f(Yn)− f(Zn)|1Zn∈Kε1d(Yn,Zn)<δ]

≤ 2‖f‖supε+ 2‖f‖supP{d(Yn, Zn) ≥ δ}+ E[|f(Yn)− f(Zn)|1Zn∈Kε1d(Yn,Zn)<δ].

We observe that if δ is small enough, then |f(y)−f(z)| < εwhenever z ∈ Kε and d(y, z) < δ. If not,

there would be yn ∈ X , zn ∈ Kε such that d(yn, zn) → 0 and |f(yn)− f(zn)| ≥ ε. By compactness

we may assume zn → z ∈ Kε, then yn → z too, and by continuity f(yn) − f(zn) → 0. Thus, the

third term above may be bounded by ε.

Now let n→∞ and then ε→ 0 to see that
∫
fdµn →

∫
fdµ. As this holds for any f ∈ Cb(X),

µn
d→ µ. �

The argument above may be slightly extended to extend its applicability considerably.

Corollary 59

In the setting of the above lemma, the the conclusion
∫
fdµn →

∫
fdµ holds for any f that

is continuous on a σ-compact set Sf such that µ(Sf ) = 1.

PROOF. Write S = ∪mLm where Lnare compact and repeat the proof with Kε replaced by

Lm ∩Kε. Then let m→∞ along with n→∞ and ε→ 0. �
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When µ is the Wiener measure, we know that it is tight (for example, take Kε to be the set of

all Hölder(1/4) functions with sufficiently large Hölder constant). Further, for any set A ∈ BC[0,1],

there are compact sets Lm ⊆ A such that µ(Lm) ↑ µ(A).

Main step in the proof of Donsker’s theorem. LetW be standard Brownian motion on [0,∞).

By Skorokhod embedding theorem, there are stopping times 0 = τ0 ≤ τ1 ≤ τ2 ≤ . . . such that

(τi+1 − τi,W (τi+1)−W (τi)), i ≥ 0, are i.i.d., W (τi+1)−W (τi) are i.i.d. with the same distribution

as X1 and E[τi+1 − τi] = 1. In particular, (W (τ0),W (τ1), . . .)
d
= (S0, S1, . . .). Now define two

C[0, 1]-valued random variables (so 0 ≤ t ≤ 1).

Wn(t) =
1√
n
W (nt), Yn(t) =


W (τk)√

n
if t = k

n , 0 ≤ k ≤ n,

linear in between.

Then Yn has the same distribution as the rescaled random walk and Wn is a standard Brownian

motion. The key claim is that

‖Wn − Yn‖sup[0,1]
P→ 0.(20)

To show this, we observe that as Y is piecewise linear on each [k/n, (k + 1)/n],

‖Wn − Yn‖ =

(
max

0≤k≤n−1
sup

t∈[k/n,(k+1)/n]
|Wn(t)− Yn(k/n)|

)
∨

(
max

0≤k≤n−1
sup

t∈[k/n,(k+1)/n]
|Wn(t)− Yn((k + 1)/n)|

)
.

For k
n ≤ t ≤

k+1
n , we have

Wn(t)− Yn(k/n) = Wn(t)−Wn(τk/n), Wn(t)− Yn((k + 1)/n) = Wn(t)−Wn(τk+1/n)

hence if δ > 1
n , we have

P{‖Wn − Yn‖ > ε} ≤ P{ωWn(2δ) > ε}+ P{ max
0≤k≤n

|τk
n
− k

n
| ≥ δ}.

For fixed ε we can find δ so that the first probability is smaller than ε. As for the second, the

probability goes to zero as n→∞ because max0≤k≤n | τkn −
k
n
a.s.→ 0. This follows from the fact that

if xnn → 1, then maxk≤n |xk − k|/n→ 0. This completes the proof of (20).

Final touches to the proof of Donsker’s theorem. From (20) and Lemma 58 it follows that Yn
converges in distribution to standard Brownian motion.

22. Lévy’s arcsine laws

For f ∈ C[0, 1], we define

(1) T (f) = arg max f , the smallest t such that f(t) = max0≤s≤1 f(s). We say smallest, to

remove ambiguity in the definition.

(2) L(f) = max{t ∈ [0, 1] : f(t) = 0}where the maximum is 1 if the set is empty.
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(3) A(f) = Leb.{t ∈ [0, 1] : f(t) ≥ 0}.

Theorem 60: Lévy’s arcsine laws

If W is standard Browninan motion on R run for unit time, T (W ), L(W ) and A(W ) have

arcsine distribution having density 1

π
√
x(1−x)

.

The analogous asymptotic statements for random walks are as follows.

Theorem 61

Let X1, X2, . . . be i.i.d. random variables with zero mean and unit variance. Let S0 = 0 and

Sn = X1 + . . .+Xn. Define

(1) Tn = min{0 ≤ k ≤ n : Sk = max0≤j≤n Sj},

(2) Ln = max{0 ≤ k ≤ n : SkSk+1 ≤ 0},

(3) An = max{0 ≤ k ≤ n : Sk ≥ 0}.

Then, Tnn , Lnn and An
n converge in distribution to the arcsine law.

One can make slight variations in the definitions of these random variables without changing

the validity of the statement. For example, in the definition of Ln we can ask for strict inequality

SkSk+1 < 0 and similarly in An one can count strictly positive ones among S0, . . . , Sn. And in Tn
one may take the last time Sk equals the global maximum.

First we deduce Theorem 61 from Theorem 60. This is a little less straightforward than what

we discussed before (e.g., the maximum value), because none of T,W,A is a continuous function

on C0[0, 1]. However, they are continuous a.e. on C[0, 1], with respect to Wiener measure.

Lemma 62

T,W,A are continuous a.e. with respect to Wiener measure.

PROOF. To show this, define subsets of C[0, 1] that will be shown to have full Wiener measure

and on which the corresponding functional will be shown to be continuous.

(1) A1: All f such that L(f) < 1 and for every ε > 0, there exist s, t ∈ [L(f)− ε, L(f) + ε] such

that f(s) < 0 < f(t).

If f belongs toA1, fix ε > 0 and find δ > 0 such that there exist s, t ∈ [L(f)−ε, L(f)+ε]

such that f(s) < −δ and f(t) > δ and such that |f(u)| > δ for all u ≥ L(f) + ε. Then if

g ∈ C[0, 1] and ‖g−f‖ < δ, it is clear that g has no zeros in [L(f)+ε, 1], while it does have

a zero in [L(f)− ε, L(f) + ε] (because g(s) < 0 < g(t)), hence |L(g)− L(f)| ≤ ε.
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Since W (1) 6= 0 and W (0) = 0 with probability 1, it follows that L(W ) < 1 with

probability 1. Since L(f) is an accumulation point of the zero set of W (with probability

1), it follows that W has strict sign changes in [L(W )− ε, L(W )] for any ε > 0, while it has

no sign changes in [L(W ), 1]. This implies that W ∈ A1 with probability 1.

(2) A2: All f for which {t : f(t) = max0≤s≤1 f(s)} is a singleton.

If f ∈ A2, then given ε > 0, there is a δ > 0 such that the maximum of f outside

[T (f)− δ, T (f) + δ] is less than the global maximum by at least δ. Hence if g ∈ C[0, 1] and

‖g − f‖ < δ, then T (g) ∈ [T (f)− δ, T (f) + δ].

Fix any T ∈ [0, 1] and observe that max[0,T ]W − W (T ) and max[T,1]W − W (T ) are

independent random variables having the same distributions as
√
T |Z1| and

√
1− T |Z2|,

where Zi are standard Gaussians. From this, it is clear that there is no chance that these

two random variables are equal. But that is the same as saying that P{max[0,T ]W =

max[T,1]W} = 0. As this is true for each fixed T , it is true for the union over all T ∈
Q ∩ [0, 1]. But if W has two distinct global maxima, then max[0,T ]W = max[T,1]W for any

rational T for some rational T (any T between the two global maxima). Hence, P{W ∈
A2} = 1.

(3) A3: All f such that {t : f(t) = 0} has zero Lebesgue measure.

If f ∈ A3, then given ε > 0, there exists δ > 0 such that the Lebesgue measure of

{f ≥ δ} and {f ≤ −δ} are within ε of the Lebesgue measures of {f ≥ 0} and {f ≤ 0}
respectively. If g ∈ C[0, 1] and ‖f − g‖ < δ, then g > 0 on {f ≥ δ} and g < 0 on {f ≤ −δ},
from which it easily follows that |A(g)−A(f)| ≤ ε.

We have already shown that the zero set of W has zero Lebesgue measure, hence

P{W ∈ A3} = 1.

All claims in the theorem are proved. �

We need a slight extension of our earlier idea to functionals that are only continuous almost

everywhere.

Lemma 63

Let µn, µ be Borel probability measures on a separable metric space (X, d) such that µn
d→ µ.

If F : X 7→ R is continuous a.e. with respect to µ, then µn ◦ F−1 d→ µ ◦ F−1.

To prove this lemma, the easiest way is to use an idea of Skorokhod (called Skorokhod’s repre-

sentation theorem).
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Lemma 64: Skorokhod’s representation theorem

Let µn, µ be Borel probability measures on a metric space (X, d).

(1) Suppose Yn ∼ µn and Y ∼ µ are random variables on a common probability space

such that Yn
a.s.→ Y , then µn

d→ µ.

(2) Assume µn
d→ µ. If X is separable, then there are random variables Yn ∼ µn and

Y ∼ µ are random variables on a common probability space such that Yn
a.s.→ Y .

Assuming this, Lemma 63 is obvious. Get Yn ∼ µn and Y ∼ µ such that Yn
a.s.→ Y and observe

that F (Yn)
a.s.→ F (Y ) (since Y falls inside the set of continuity of F , with probability 1) and hence

F (Yn)
d→ F (Y ). Thus it only remains to prove Skorokhod’s representation theorem.

The first part is easy. Indeed, if f ∈ Cb(X), then f(Yn)
a.s.→ f(Y ) and by DCT it follows that

E[f(Yn)] → E[f(Y )], which is what it means to have Yn
d→ Y . The other direction requires one

to develop some machinery of weak convergence (e.g., that µn
d→ µ if and only if µn(A) → µ(A)

for all A ∈ BX such that µ(∂A) = 0). You may see the proof in Dudley’s book (Theorem 11.7.2).

We shall skip it, but for our purposes there will be no gap owing to this, because one way we

shall prove Donsker’s theorem is by constructing Wn and W such that Wn
a.s.→ W . This means that

Skorokhod representation will be proved for the special case of interest to us.

PROOF OF THEOREM 61 FROM THEOREM 60. Immediate from the two Lemmas above. �

Now we turn to the proof of Theorem 60. We have already proved the claim for L(W ) and

T (W ). Now we prove the statement for A(W ), by first proving an analogous statement for shall

take a different approach, proving the analogous statements for simple symmetric random walk,

using Donsker’s theorem to deduce it for Brownian motion, and then again using Donsker’s prin-

ciple to deduce it for general random walks. The same idea can be carried out for L and T , but we

leave that as exercises.

Lemma 65

Let 0 = S0, S1, . . . be a simple symmetric random walk on Z. Then
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CHAPTER 6

Appendix: Miscellaneous background material

1. Gaussian random variables

Standard normal: A standard normal or Gaussian random variable is one with density ϕ(x) :=

1√
2π
e−

1
2
x2

. Its distribution function is Φ(x) =
∫ x
−∞ ϕ(t)dt and its tail distribution function is de-

noted Φ̄(x) := 1 − Φ(x). If Xi are i.i.d. standard normals, then X = (X1, . . . , Xn) is called a stan-

dard normal vector in Rn. It has density
∏n
i=1 ϕ(xi) = (2π)−n/2 exp{−|x|2/2} and the distribution

is denoted by γn, so that for every Borel set A in Rn we have γn(A) = (2π)−n/2
∫
A

exp{−|x|2/2}dx.

Exercise 28

[Rotation invariance] If Pn×n is an orthogonal matrix, then γnP
−1 = γn or equivalently,

PX
d
= X . Conversely, if a random vector with independent co-ordinates has a distribution

invariant under orthogonal transformations, then it has the same distribution as cX for

some (non-random) scalar c.

Multivariate normal: If Ym×1 = µm×1 + Bm×nXn×1 where X1, . . . , Xn are i.i.d. standard normal,

then we say that Y ∼ Nm(µ,Σ) with Σ = BBt. Implicit in this notation is the fact that the

distribution of Y depends only on Σ and not on the way in which Y is expressed as a linear

combination of standard normals (this follows from Exercise 36). It is a simple exercise that µi =

E[Xi] and σi,j = Cov(Xi, Xj). Henceforth, for simplicity, we take the mean to be zero everywhere.

Since matrices of the form BBt are precisely positive semi-definite matrices (defined as those

Σm×m for which vtΣv ≥ 0 for all v ∈ Rm), it is clear that covariance matrices of normal random

vectors are precisely p.s.d. matrices. Clearly, if Y ∼ Nm(µ,Σ) and Zp×1 = Cp×mY + θp×1, then

Z ∼ Np(θ + Cµ,CΣCt). Thus, affine linear transformations of normal random vectors are again

normal.
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Exercise 29

The random vector Y has density if and only if Σ is non-singular, and in that case the density

is
1

(2π)n/2
√

det(Σ)
exp

{
−1

2
ytΣ−1y

}
.

If Σ is singular, then X takes values in a lower dimensional subspace in Rn and hence does

not have density.

In particular, if v ∈ Rm, then vtY is univariate normal with mean vtµ and variance vtΣv. The

covariance of two different linear combinations vtY and utY is vtΣu. The converse is also true. If

vtY is univariate Gaussian for every v ∈ Rm, then it is necessarily the case that Y is multi-variate

Gaussian. You may prove this using characteristic functions, for example. The characteristic func-

tion of Gaussian distribution is given in the exercise below.
Exercise 30

Irrespective of whether Σ is non-singular or not, the characteristic function of Y is given by

E
[
ei〈λ,Y 〉

]
= e−

1
2
λtΣλ, for λ ∈ Rm.

In particular, if X ∼ N(0, σ2), then its characteristic function is E[eiλX ] = e−
1
2
σ2λ2

for λ ∈ R.

Exercise 31

If Uk×1 and V(m−k)×1 are such that Y t = (U t, V t), and we write µ = (µ1, µ2) and Σ =[
Σ11 Σ12

Σ21 Σ22

]
are partitioned accordingly, then

(1) U ∼ Nk(µ1,Σ11).

(2) U
∣∣∣
V
∼ Nk(µ1 − Σ12Σ

−1/2
22 V, Σ11 − Σ12Σ−1

22 Σ21) (assume that Σ22 is invertible).

2. More about the univariate normal distribution

Tail of the standard Gaussian distribution: Recall the standard Gaussian density ϕ(x). The cor-

responding cumulative distribution function is denoted by Φ and the tail is denoted by Φ̄(x) :=∫∞
x ϕ(t)dt. The following estimates will be used very often.

Exercise 32

For all x > 0, we have
1√
2π

x

1 + x2
e−

1
2
x2 ≤ Φ̄(x) ≤ 1√

2π

1

x
e−

1
2
x2
.(21)
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In particulara, Φ̄(x) ∼ x−1ϕ(x) as x → ∞. Most often the following simpler bound, valid

for x ≥ 1, suffices.
1

10x
e−

1
2
x2 ≤ Φ̄(x) ≤ e−

1
2
x2
.(22)

aThe notation f(x) ∼ g(x) means that lim
x→∞

f(x)
g(x)

= 1.

Maximum of independent standard Gaussians: Let X1, . . . , Xn be (not necessarily independent)

random variables with each having N(0, 1) distribution. Let Mn = max{X1, . . . , Xn}. How big

is Mn? In general, the maximum of correlated Gaussians is a very important question of great

current interest. The i.i.d. case is a very special and easy case where we can extract the right

answer easily.

Observe that Mn ≥ t if and only if Xi ≥ t for some i ≤ n. Therefore,

P{Mn ≥ t} ≤
n∑
k=1

P{Xk ≥ t} = nΦ̄(t).

Using the upper bound in (22), and setting t =
√

2A log n with A > 1, we get (since t ≥ 1 for

n ≥ 2),

P{Mn ≥
√

2A log n} ≤ ne−A logn =
1

nA−1
.(23)

We shall use this quantitative bound many times in the lectures. In particular, for every δ > 0, the

above inequality implies that P
{

1√
2 logn

Mn ≥ 1 + δ
}
→ 0 as n → ∞. This bound is actually

tight if the random variables are independent.
Exercise 33: U

e the lower bound for the tail of the Normal distribution from (22), show that

P
{

1√
2 logn

Mn ≤ 1− δ
}
→ 0 for any δ > 0. Conclude that in this case 1√

2 logn
Mn

P→ 1.

Convergence and Gaussians: Distributional limits of Gaussians are Gaussians. In other words,

if µn → µ and σ2
n → σ2, then N(µn, σ

2
n)

d→ N(µ, σ2). Conversely, if N(µn, σ
2
n)

d→ ν for some

probability measure ν, then ν = N(µ, σ2) for some µ ∈ R and σ2 ≥ 0. If this is not clear, take it as

an exercise!

Gaussian density and heat equation: For t > 0, let pt(x) := 1√
t
ϕ(x/

√
t) be the N(0, t) density. We

interpret p0(x)dx as the degenerate measure at 0. These densities have the following interesting

properties.
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Exercise 34: S

ow that pt ? ps = pt+s, i.e.,
∫
R
pt(x− y)ps(y)dy = pt+s(x).

Exercise 35: S

ow that pt(x) satisfies the heat equation: ∂
∂tpt(x) = 1

2
∂2

∂x2 pt(x) for all t > 0 and x ∈ R.

Remark 9: P

t together, these facts say that pt(x) is the fundamental solution to the heat equation. This just

means that the heat equation ∂
∂tu(t, x) = 1

2
∂2

∂x2u(t, x) with the initial condition u(0, x) = f(x)

can be solved simply as u(t, x) = (f ?pt)(x) :=
∫
R f(y)pt(x−y)dy. This works for reasonable

f (say f ∈ L1(R)).

3. Existence of countably many Gaussians with given covariances

Let Σ = (σi,j)i,j≥1 be a semi-infinite matrix. Do there exist random variables X1, X2, . . . that

are jointly Gaussian (by which we mean that any finite sub-collection of them has joint Gaussian

distribution) and such that E[Xi] = 0 and E[XiXj ] = σi,j for all i, j ≥ 1?

A necessary condition is that Σ is (symmetric and) positive semi-definite. This means that

σi,j = σj,i for all i, j and
∑n

i,j=1 uiujσi,j ≥ 0 for all n ≥ 1 and all u ∈ Rn. Symmetry is clearly

necessary. As for the second condition, observe that

n∑
i,j=1

uiujσi,j = E

( n∑
i=1

uiXi

)2


by expanding the square and interchanging expectation with the sum. From this, the p.s.d prop-

erty is clear. Note that we did not require Gaussian property here - covariance matrix of any

collection of random variables is p.s.d.

Claim 66

Let Σ = (σi,j)i,j≥1 be a symmetric p.s.d. matrix. Then, there exist random variables (on

some probability space)Xi, i ≥ 1, that are jointly Gaussian, have zero means and covariance

matrix Σ.

PROOF. Let ξn, n ≥ 1, be i.i.d. N(0, 1) random variables (on your favourite probability space,

for example, ([0, 1],B, λ)). We shall define Xn = an,1ξ1 + . . . + an,nξn, where the coefficients an,j ,

1 ≤ j ≤ n, will be chosen so as to satisfy the covariance conditions. That Xn, n ≥ 1, have a joint

Gaussian distribution is clear.
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First, we define a1,1 =
√
σ1,1 so that X1 ∼ N(0, 1). This definition is valid since p.s.d. property

implies that σ1,1 ≥ 0.

Next, from E[X1X2] = σ1,2 we get the equation a1,2
√
σ1,1 = σ1,2 and a2

2,2 + a2
2,1 = σ2,2. As the

2× 2 matrix (σi,j)i,j≤2 is p.s.d., we certainly have σ1,1 ≥ 0 and σ2,2σ1,1 − σ2
1,2 ≥ 0. If σ1,1 > 0, then

the unique solutions are

a2,1 =
σ1,2√
σ1,1

, a2,2 =

√
σ2,2 −

σ2
1,2

σ1,1
.

What if σ1,1 = 0. Then use p.s.d property to show that σ1,i = 0 for all i (in general, if a diagonal

entry vanishes, the entire row and column containing it must also vanish). But then the first

equation is vacuous and we may set a1,2 = 0 (or anything else, it does not matter since X1 is the

zero random variable!) and a2,2 =
√
σ2,2.

Now suppose we have solved for ak,j , 1 ≤ j ≤ k ≤ n − 1. We want to solve for an,j , j ≤
n. Let us use matrix notation and write B = (ak,j)j,k≤n−1 (with ak,j = 0 if j > k). Let ut =

(an,1, . . . , an,n−1) and let vt = (σn,1, . . . , σn,n−1). Then, the equations that we must solve are Bu =

v and a2
n,n + ‖u‖2 = σn,n. If ak,k > 0 for k ≤ n − 1, then B is non-singular and we get the unique

solutions u = B−1v and an,n =
√
σn,n − ‖u‖2. The last square root makes sense because of the

matrix theory fact that

det

[
X v

vt c

]
= det(X).(c− vtX−1v)

whenever X is a non-singular matrix. Here we apply it with X = (σi,j)i,j≤n−1, v as before and

c = σn,n. Positive definiteness implies that both determinants are positive. Hence c− vtX−1v > 0

(in our case this is precisely σn,n − ‖u‖2.

All this is fine if Σ is strictly positive definite, for then det(σi,j)i,j≤n > 0 for every n. Hence,

inductively, we see that an,n > 0 for all n and the above procedure continues without any difficulty.

If an,n = 0 for some n, then we need to modify the procedure.

[Will write this, too tired now...] �

4. Gaussian random variables

Standard normal: A standard normal or Gaussian random variable is one with density ϕ(x) :=

1√
2π
e−

1
2
x2

. Its distribution function is Φ(x) =
∫ x
−∞ ϕ(t)dt and its tail distribution function is de-

noted Φ̄(x) := 1 − Φ(x). If Xi are i.i.d. standard normals, then X = (X1, . . . , Xn) is called a stan-

dard normal vector in Rn. It has density
∏n
i=1 ϕ(xi) = (2π)−n/2 exp{−|x|2/2} and the distribution

is denoted by γn, so that for every Borel set A in Rn we have γn(A) = (2π)−n/2
∫
A

exp{−|x|2/2}dx.

137



Exercise 36

[Rotation invariance] If Pn×n is an orthogonal matrix, then γnP
−1 = γn or equivalently,

PX
d
= X . Conversely, if a random vector with independent co-ordinates has a distribution

invariant under orthogonal transformations, then it has the same distribution as cX for

some (non-random) scalar c.

Multivariate normal: If Ym×1 = µm×1 + Bm×nXn×1 where X1, . . . , Xn are i.i.d. standard normal,

then we say that Y ∼ Nm(µ,Σ) with Σ = BBt. Implicit in this notation is the fact that the

distribution of Y depends only on Σ and not on the way in which Y is expressed as a linear

combination of standard normals (this follows from Exercise 36). It is a simple exercise that µi =

E[Xi] and σi,j = Cov(Xi, Xj). Since matrices of the form BBt are precisely positive semi-definite

matrices (defined as those Σm×m for which vtΣv ≥ 0 for all v ∈ Rm), it is clear that covariance

matrices of normal random vectors are precisely p.s.d. matrices. Clearly, if Y ∼ Nm(µ,Σ) and

Zp×1 = Cp×mY + θp×1, then Z ∼ Np(θ+Cµ,CΣCt). Thus, affine linear transformations of normal

random vectors are again normal.
Exercise 37

The random vector Y has density if and only if Σ is non-singular, and in that case the density

is
1

(2π)n/2
√

det(Σ)
exp

{
−1

2
ytΣ−1y

}
.

If Σ is singular, then X takes values in a lower dimensional subspace in Rn and hence does

not have density.

Exercise 38

Irrespective of whether Σ is non-singular or not, the characteristic function of Y is given by

E
[
ei〈λ,Y 〉

]
= e−

1
2
λtΣλ, for λ ∈ Rm.

In particular, if X ∼ N(0, σ2), then its characteristic function is E[eiλX ] = e−
1
2
σ2λ2

for λ ∈ R.

Exercise 39: I

Uk×1 and V(m−k)×1 are such that Y t = (U t, V t), and we write µ = (µ1, µ2) and Σ =[
Σ11 Σ12

Σ21 Σ22

]
are partitioned accordingly, then

(1) U ∼ Nk(µ1,Σ11).
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(2) U
∣∣∣
V
∼ Nk(µ1 − Σ12Σ

−1/2
22 V, Σ11 − Σ12Σ−1

22 Σ21) (assume that Σ22 is invertible).

Moments: All questions about a centered Gaussian random vector must be answerable in terms

of the covariance matrix. In some cases, there are explicit answers.

Exercise 40

Prove the Wick formula (also called Feynman diagram formula) for moments of centered Gaus-

sians.

(1) Let X ∼ Nn(0,Σ). Then, E[X1 . . . Xn] =
∑

M∈Mn

∏
{i,j}∈M

σi,j , whereMn is the collec-

tion of all matchings of the set [n] (thusMn is empty if n is odd) and the product

is over all matched pairs. For example, E[X1X2X3X4] = σ12σ34 + σ13σ24 + σ14σ23.

(2) If ξ ∼ N(0, 1), then E[ξ2n] = (2n− 1)(2n− 3) . . . (3)(1).

Cumulants: Let X be a real-valued random variable with E[etX ] <∞ for t in a neighbourhood of

0. Then, we can write the power series expansions

E[eiλX ] =
∞∑
k=0

mn(X)
λn

n!
, logE[eiλX ] =

∞∑
k=1

κn[X]
λn

n!
.

Here mn[X] = E[Xn] are the moments while κn[X] is a linear combination of the first n moments

(κ1 = m1, κ2 = m2−m2
1, etc). Then κn is called the nth cumulant ofX . IfX and Y are independent,

then it is clear that κn[X + Y ] = κn[X] + κn[Y ].

Exercise 41: (optional)

Prove the following relationship between moments and cumulants. The sums below are

over partitions Π of the set [n] and Π1, . . . ,Π`Π denote the blocks of Π.

mn[X] =
∑

Π

∏
i

κ|Πi|[X], κn[X] =
∑

Π

(−1)`Π−1
∏
i

m|Πi|[X].

Thus κ1 = m1, κ2 = m2 −m2
1,

Exercise 42

If ξ ∼ N(0, 1), then κ1 = 0, κ2 = 1 and κn = 0 for all n ≥ 3.
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The converse of this result is also true and often useful in proving that a random variable is

normal. For instance, the theorem below implies that to show that a sequence of random variables

converges to normal, it suffices to show that cumulants κm[Xn]→ 0 for all m ≥ m0 for some m0.

Result 67: Marcinkiewicz

If X is a random variable with finite moments of all orders and κn[X] = 0 for all n ≥ n0 for

some n0, then X is Gaussian.

Convergence and Gaussians:
Exercise 43

The family of distributions N(µ, σ2), where µ ∈ R and 0 ≤ σ2 < ∞, is closed under con-

vergence in distribution (for this statement to be valid we include N(µ, 0) which means δµ).

Indeed, N(µn, σ
2
n)

d→ N(µ, σ2) if and only if µn → µ and σ2
n → σ2.

A vector space of Gaussian random variables: Let Y ∼ Nm(0,Σ) be a random vector in some

probability space (Ω,F ,P). Then, for every vector v ∈ Rm, define the random variable Yv :=

vtY . Then, for any v1, . . . ,vj , the random variables Yv1 , . . . , Yvj are jointly normal. The joint

distribution of {Yv} is fully specified by noting that Yv have zero mean and E[YvYu] = vtΣu.

We may interpret this as follows. If Σ is p.d. (p.s.d. and non-singular), then (v,u)Σ := vtΣu

defines an inner product on Rm. On the other hand, the set L2
0(Ω,F ,P) of real-valued random

variables on Ω with zero mean and finite variance, is also an inner product space under the in-

ner product 〈U, V 〉 := E[UV ]. The observation in the previous paragraph is that v → Yv is an

isomorphism of (Rm, (·, ·)Σ) into L2
0(Ω,F ,P).

In other words, given any finite dimensional inner-product space (V, 〈·, ·〉), we can find a col-

lection of Gaussian random variables on some probability space, such that this collection is iso-

morphic to the given inner-product space. Later we shall see the same for Hilbert spaces1.

5. The Gaussian density

Recall the standard Gaussian density ϕ(x). The corresponding cumulative distribution func-

tion is denoted by Φ and the tail is denoted by Φ̄(x) :=
∫∞
x ϕ(t)dt. The following estimate will be

used very often.

1This may seem fairly pointless, but here is one thought-provoking question. Given a vector space of Gaussian

random variables, we can multiply any two of them and thus get a larger vector space spanned by the given normal

random variables and all pair-wise products of them. What does this new vector space correspond to in terms of the

original (V, 〈·, ·〉)?
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Exercise 44

For all x > 0, we have 1√
2π

x
1+x2 e

− 1
2
x2 ≤ Φ̄(x) ≤ 1√

2π
1
xe
− 1

2
x2

In particulara, Φ̄(x) ∼ x−1ϕ(x)

as x→∞. Most often the following simpler bound, valid for x ≥ 1, suffices.
1

10x
e−

1
2
x2 ≤ Φ̄(x) ≤ e−

1
2
x2
.

aThe notation f(x) ∼ g(x) means that lim
x→∞

f(x)
g(x)

= 1.

For t > 0, let pt(x) := 1√
t
ϕ(x/

√
t) be theN(0, t) density. We interpret p0(x)dx as the degenerate

measure at 0. These densities have the following interesting properties.
Exercise 45

Show that pt ? ps = pt+s, i.e.,
∫
R
pt(x− y)ps(y)dy = pt+s(x).

Exercise 46

Show that pt(x) satisfies the heat equation: ∂
∂tpt(x) = 1

2
∂2

∂x2 pt(x) for all t > 0 and x ∈ R.

Remark 10

Put together, these facts say that pt(x) is the fundamental solution to the heat equation. This

just means that the heat equation ∂
∂tu(t, x) = 1

2
∂2

∂x2u(t, x) with the initial condition u(0, x) =

f(x) can be solved simply as u(t, x) = (f ? pt)(x) :=
∫
R f(y)pt(x − y)dy. This works for

reasonable f (say f ∈ L1(R)).

We shall have many occasions to use the following “integration by parts” formula.
Exercise 47

Let X ∼ Nn(0,Σ) and let F : Rn → R. Under suitable conditions on F (state sufficient

conditions), show that E [XiF (X)] =
∑n

j=1 σijE[∂jF (X)]. As a corollary, deduce the Wick

formula of Exercise 40.

Stein’s equation: Here we may revert to t = 1, thus p1 = ϕ. Then, ϕ′(x) = −xϕ(x). Hence, for

any f ∈ C1
b (R), we integrate by parts to get

∫
f ′(x)ϕ(x)dx = −

∫
f(x)ϕ′(x)dx =

∫
f(x)xϕ(x)dx. If

X ∼ N(0, 1), then we may write this as

E[(Tf)(X)] = 0 for all f ∈ C1
b (R), where (Tf)(x) = f ′(x)− xf(x).(24)

The converse is also true. Suppose (24) holds for all f ∈ C1
b (R). Apply it to f(x) = eiλx for any

fixed λ ∈ R to get E[XeiλX ] = iλE[eiλX ]. Thus, if ψ(λ) := E[eiλX ] is the characteristic function

141



of X , then ψ′(λ) = −λψ(λ) which has only one solution, e−λ
2/2. Hence X must have standard

normal distribution.

Digression - central limit theorem: One reason for the importance of normal distribution is of

course the central limit theorem. The basic central limit theorem is for Wn := (X1 + . . .+Xn)/
√
n

where Xi are i.i.d. with zero mean and unit variance. Here is a sketch of how central limit

theorem can be proved using Stein’s method. Let f ∈ C1
b (R) and observe that E[Wnf(Wn)] =

√
nE[X1f(Wn)]. Next, write

f

(
X1 + . . .+Xn√

n

)
≈ f

(
X2 + . . .+Xn√

n

)
+
X1√
n
f ′
(
X2 + . . .+Xn√

n

)
where we do not make precise the meaning of the approximation. Let Ŵn = X2+...+Xn√

n
. Then,

E[Wnf(Wn)] ≈
√
nE[X1]E[f(Ŵn)] + E[X2

1 ]E[f ′(Ŵn)] = E[f ′(Ŵn)].

Since Ŵn ≈Wn, this shows that E[Tf(Wn)] ≈ 0. We conclude that Wn ≈ N(0, 1).

There are missing pieces here, most important being the last statement - that if a random

variable satisfies Stein’s equation approximately, then it must be approximately normal. When

included, one does get a proof of the standard CLT.
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