CHAPTER 3

Characteristic functions as tool for studying weak convergence

Defintions and basic properties

Definition 3.1. Let μ be a probability measure on \mathbb{R}. The function $\psi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ define by $\psi_{\mu}(t):=\int_{\mathbb{R}} e^{i t x} d \mu(x)$ is called the characteristic function or the Fourier transform of μ. If X is a random variable on a probability space, we sometimes say "characteristic function of X " to mean the c.f of its distribution. We also write $\hat{\mu}$ instead of ψ_{μ}.

There are various other "integral transforms" of a measure that are closely related to the c.f. For example, if we take $\psi_{\mu}(i t)$ is the moment generating function of μ (if it exists). For μ supported on \mathbb{N}, its so called generating function $F_{\mu}(t)=$ $\sum_{k \geq 0} \mu\{k\} t^{k}$ (which exists for $|t|<1$ since μ is a probability measure) can be written as $\psi_{\mu}(-i \log t)$ (at least for $t>0$!) etc. The characteristic function has the advantage that it exists for all $t \in \mathbb{R}$ and for all finite measures μ.

The following lemma gives some basic properties of a c.f.
Lemma 3.2. Let $\mu \in \mathscr{P}(\mathbb{R})$. Then, $\hat{\mu}$ is a uniformly continuous function on \mathbb{R} with $|\hat{\mu}(t)| \leq 1$ for all t with $\hat{\mu}(0)=1$. (equality may be attained elsewhere too).

Proof. Clearly $\hat{\mu}(0)=1$ and $|\hat{\mu}(t)| \leq 1$. U

The importance of $\mathrm{c} . \mathrm{f}$ comes from the following facts.
(A) It transforms well under certain operations of measures, such as shifting a scaling and under convolutions.
(B) The c.f. determines the measure.
(C) $\hat{\mu}_{n}(t) \rightarrow \hat{\mu}(t)$ pointwise, if and only if $\mu_{n} \xrightarrow{d} \mu$.
(D) There exist necessary and sufficient conditions for a function $\psi: \mathbb{R} \rightarrow \mathbb{C}$ to be the c.f o f a measure. Because of this and part (B), sometimes one defines a measure by its characteristic function.

(A) Transformation rules

Theorem 3.3. Let X, Y be random variables.
(1) For any $a, b \in \mathbb{R}$, we have $\psi_{a X+b}(t)=e^{i b t} \psi_{X}(a t)$.
(2) If X, Y are independent, then $\psi_{X+Y}(t)=\psi_{X}(t) \psi_{Y}(t)$.

Proof. (1) $\psi_{a X+b}(t)=\mathbf{E}\left[e^{i t(a X+b)}\right]=\mathbf{E}\left[e^{i t a X}\right] e^{i b t}=e^{i b t} \psi_{X}(a t)$.
(2) $\psi_{X+Y}(t)=\mathbf{E}\left[e^{i t(X+Y)}\right]=\mathbf{E}\left[e^{i t X} e^{i t Y}\right]=\mathbf{E}\left[e^{i t X}\right] \mathbf{E}\left[e^{i t Y}\right]=\psi_{X}(t) \psi_{Y}(t)$.

Examples.

(1) If $X \sim \operatorname{Ber}(p)$, then $\psi_{X}(t)=p e^{i t}+q$ where $q=1-p$. If $Y \sim \operatorname{Binomial}(n, p)$, then, $Y \stackrel{d}{=} X_{1}+\ldots+X_{n}$ where X_{k} are i.i.d $\operatorname{Ber}(p)$. Hence, $\psi_{Y}(t)=\left(p e^{i t}+q\right)^{n}$.
(2) If $X \sim \operatorname{Exp}(\lambda)$, then $\psi_{X}(t)=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{i t x} d x=\frac{1}{\lambda-i t}$. If $Y \sim \operatorname{Gamma}(v, \lambda)$, then if v is an integer, then $Y \stackrel{d}{=} X_{1}+\ldots+X_{n}$ where X_{k} are i.i.d $\operatorname{Exp}(\lambda)$. Therefore, $\psi_{Y}(t)=\frac{1}{(\lambda-i t)^{v}}$.
(3) $Y \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Then, $Y=\mu+\sigma X$, where $X \sim N(0,1)$ and by the transofrmatin rules, $\psi_{Y}(t)=e^{i \mu t} \psi_{X}(\sigma t)$. Thus it suffices to find the c.f of $N(0,1)$.

$$
\psi_{X}(t)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}} e^{i t x} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x=e^{-\frac{\sigma^{2} t^{2}}{2}}\left(\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{(x-i t)^{2}}{2 \sigma^{2}}} d x\right)
$$

It appears that the stuff inside the brackets is equal to 1 , since it looks like the integral of a normal density with mean it and variance σ^{2}. But if the mean is complex, what does it mean?! I gave a rigorous proof that the stuff inside brackets is indeed equal to 1 , in class using contour integration, which will not be repeated here. The final concusion is that $N\left(\mu, \sigma^{2}\right)$ has c.f $e^{i t \mu-\frac{\sigma^{2} t^{2}}{2}}$.

(B) Inversion formulas

Theorem 3.4. If $\hat{\mu}=\hat{v}$, then $\mu=v$.
Proof. Let θ_{σ} denote the $\mathrm{N}\left(0, \sigma^{2}\right)$ distribution and let $\phi_{\sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}$ and $\Phi_{\sigma}(x)=\int_{-\infty}^{x} \phi_{\sigma}(u) d u$ and $\hat{\theta}_{\sigma}(t)=e^{-\sigma^{2} t^{2} / 2}$ denote the density and cdf and characteristic functions, respectively. Then, by Parseval's identity, we have for any α,

$$
\begin{aligned}
\int e^{-i \alpha t} \hat{\mu}(t) d \theta_{\sigma}(t) & =\int \hat{\theta}_{\sigma}(x-\alpha) d \mu(x) \\
& =\frac{\sqrt{2 \pi}}{\sigma} \int \phi_{\frac{1}{\sigma}}(\alpha-x) d \mu(x)
\end{aligned}
$$

where the last line comes by the explicit Gaussian form of $\hat{\theta}_{\sigma}$. Let $f_{\sigma}(\alpha):=\frac{\sigma}{\sqrt{2 \pi}} \int e^{-i \alpha t} \hat{\mu}(t) d \theta_{\sigma}(t)$ and integrate the above equation to get that for any finite $a<b$,

$$
\begin{aligned}
\int_{a}^{b} f_{\sigma}(\alpha) d \alpha & =\int_{a}^{b} \int_{\mathbb{R}} \phi_{\frac{1}{\sigma}}(\alpha-x) d \mu(x) d \mu(x) \\
& =\int_{\mathbb{R}} \int_{a}^{b} \phi_{\frac{1}{\sigma}}(\alpha-x) d \alpha d \mu(x) \quad \text { (by Fubini) } \\
& =\int_{\mathbb{R}}\left(\Phi_{\frac{1}{\sigma}}(\alpha-a)-\Phi_{\frac{1}{\sigma}}(\alpha-b)\right) d \mu(x)
\end{aligned}
$$

Now, we let $\sigma \rightarrow \infty$, and note that

$$
\Phi_{\frac{1}{\sigma}}(u) \rightarrow \begin{cases}0 & \text { if } u<0 \\ 1 & \text { if } u>0 \\ \frac{1}{2} & \text { if } u=0\end{cases}
$$

Further, $\Phi_{\sigma^{-1}}$ is bounded by 1 . Hence, by DCT, we get

$$
\lim _{\sigma \rightarrow \infty} \int_{a}^{b} f_{\sigma}(\alpha) d \alpha=\int\left[\mathbf{1}_{(a, b)}(x)+\frac{1}{2} \mathbf{1}_{\{a, b\}}(x)\right] d \mu(x)=\mu(a, b)+\frac{1}{2} \mu\{a, b\}
$$

Now we make two observations: (a) that f_{σ} is determined by $\hat{\mu}$, and (b) that the measure μ is determined by the values of $\mu(a, b)+\frac{1}{2} \mu\{a, b\}$ for all finite $a<b$. Thus, $\hat{\mu}$ determines the measure μ.

Corollary 3.5 (Fourier inversion formula). Let $\mu \in \mathscr{P}(\mathbb{R})$.
(1) For all finite $a<b$, we have

$$
\begin{equation*}
\mu(a, b)+\frac{1}{2} \mu\{a\}+\frac{1}{2} \mu\{b\}=\lim _{\sigma \rightarrow \infty} \frac{1}{2 \pi} \int_{\mathbb{R}} \frac{e^{-i a t}-e^{-i b t}}{i t} \hat{\mu}(t) e^{-\frac{t^{2}}{2 \sigma^{2}}} d t \tag{3.1}
\end{equation*}
$$

(2) If $\int_{\mathbb{R}}|\hat{\mu}(t)| d t<\infty$, then μ has a continuous density given by

$$
f(x):=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{\mu}(t) e^{-i x t} d t
$$

Proof. (1) Recall that the left hand side of (3.1) is equal to $\lim _{\sigma \rightarrow \infty} \int_{a}^{b} f_{\sigma}$ where $f_{\sigma}(\alpha):=\frac{\sigma}{\sqrt{2 \pi}} \int e^{-i \alpha t} \hat{\mu}(t) d \theta_{\sigma}(t)$. Writing out the density of θ_{σ} we see that

$$
\begin{aligned}
\int_{a}^{b} f_{\sigma}(\alpha) d \alpha & =\frac{1}{2 \pi} \int_{a}^{b} \int_{\mathbb{R}} e^{-i \alpha t} \hat{\mu}(t) e^{-\frac{t^{2}}{2 \sigma^{2}}} d t d \alpha \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{a}^{b} e^{-i \alpha t} \hat{\mu}(t) e^{-\frac{t^{2}}{2 \sigma^{2}}} d \alpha d t \quad \text { (by Fubini) } \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{e^{-i a t}-e^{-i b t}}{i t} \hat{\mu}(t) e^{-\frac{t^{2}}{2 \sigma^{2}}} d t
\end{aligned}
$$

Thus, we get the first statement of the corollary.
(2) With f_{σ} as before, we have $f_{\sigma}(\alpha):=\frac{1}{2 \pi} \int e^{-i \alpha t} \hat{\mu}(t) e^{-\frac{t^{2}}{2 \sigma^{2}}} d t$. Note that the integrand converges to $e^{-i \alpha t} \hat{\mu}(t)$ as $\sigma \rightarrow \infty$. Further, this integrand is bounded by $|\hat{\mu}(t)|$ which is assumed to be integrable. Therefore, by DCT, for any $\alpha \in \mathbb{R}$, we conclude that $f_{\sigma}(\alpha) \rightarrow f(\alpha)$ where $f(\alpha):=\frac{1}{2 \pi} \int e^{-i \alpha t} \hat{\mu}(t) d t$.

Next, note that for any $\sigma>0$, we have $\left|f_{\sigma}(\alpha)\right| \leq C$ for all α where $C=$ $\int \mid \hat{\mu}$. Thus, for finite $a<b$, using DCT again, we get $\int_{a}^{b} f_{\sigma} \rightarrow \int_{a}^{b} f$ as $\sigma \rightarrow \infty$. But the proof of Theorem 3.4 tells us that

$$
\lim _{\sigma \rightarrow \infty} \int_{a}^{b} f_{\sigma}(\alpha) d \alpha=\mu(a, b)+\frac{1}{2} \mu\{a\}+\frac{1}{2} \mu\{b\}
$$

Therefore, $\mu(a, b)+\frac{1}{2} \mu\{a\}+\frac{1}{2} \mu\{b\}=\int_{a}^{b} f(\alpha) d \alpha$. Fixing a and letting $b \downarrow a$, this shows that $\mu\{a\}=0$ and hence $\mu(a, b)=\int_{a}^{b} f(\alpha) d \alpha$. Thus f is the density of μ.

The proof that a c.f. is continuous carries over verbatim to show that f is continuous (since f is the Furier trnasform of $\hat{\mu}$, except for a change of sign in the exponent).

An application of Fourier inversion formula Recall the Cauchy distribution μ with with density $\frac{1}{\pi\left(1+x^{2}\right)}$ whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is a way to compute this integral).

Consider the seemingly unrelated p.m v with density $\frac{1}{2} e^{-|x|}$ (a symmetrized exponential, this is also known as Laplace's distribution). Its c.f is easy to compute and we get

$$
\hat{n u}(t)=\frac{1}{2} \int_{0}^{\infty} e^{i t x-x} d x+\frac{1}{2} \int_{-\infty}^{0} e^{i t x+x} d x=\frac{1}{2}\left(\frac{1}{1-i t}+\frac{1}{1+i t}\right)=\frac{1}{1+t^{2}}
$$

By the Fourier inversion formula (part (b) of the corollary), we therefore get

$$
\frac{1}{2} e^{-|x|}=\frac{1}{2 \pi} \int \hat{v}(t) e^{i t x} d t=\frac{1}{2 \pi} \int \frac{1}{1+t^{2}} e^{i t x} d t
$$

This immediately shows that the Cauchy distribution has c.f. $e^{-|t|}$ without having to compute the integral!!

(C) Continuity theorem

Theorem 3.6. Let $\mu_{n}, \mu \in \mathscr{P}(\mathbb{R})$.
(1) If $\mu_{n} \xrightarrow{d} \mu$ then $\hat{\mu}_{n}(t) \rightarrow \hat{\mu}(t)$ pointwise for all t.
(2) If $\hat{\mu}_{n}(t) \rightarrow \psi(t)$ pointwise for all t, then $\psi=\hat{\mu}$ for some $\mu \in \mathscr{P}(\mathbb{R})$ and $\mu_{n} \xrightarrow{d} \mu$.

Proof. (1) If $\mu_{n} \xrightarrow{d} m u$, then $\int f d \mu_{n} \rightarrow \int f d \mu$ for any $f \in C_{b}(\mathbb{R})$ (bounded continuous function). Since $x \rightarrow e^{i t x}$ is a bounded continuous function for any $t \in \mathbb{R}$, it follows that $\hat{\mu}_{n}(t) \rightarrow \hat{\mu}(t)$ pointwise for all t.
(2) Now suppose $\hat{\mu}_{n}(t) \rightarrow \hat{\mu}(t)$ pointwise for all t. We first claim that the sequence $\left\{\mu_{n}\right\}$ is tight. Assuming this, the proof can be completed as follows.

Let $\mu_{n_{k}}$ be any subsequence that converges in distribution, say to v. By tightness, $n u \in \mathscr{P}(\mathbb{R})$. Therefore, by part (a), $\hat{\mu}_{n_{k}} \rightarrow \hat{v}$ pointwise. But obviously, $\hat{\mu}_{n_{k}} \rightarrow \hat{\mu}$ since $\hat{\mu}_{n} \rightarrow \hat{\mu}$. Thus, $\hat{v}=\hat{\mu}$ which implies that $v=\mu$. That is, any convergent subsequence of $\left\{\mu_{n}\right\}$ converges in distribution to μ. This shows that $\mu_{n} \xrightarrow{d} \mu$ (because, if not, then there is some subsequence $\left\{n_{k}\right\}$ and some $\epsilon>0$ such that the Lévy distance between $\mu_{n_{k}}$ and μ is at least ϵ. By tightness, $\mu_{\mathbf{n}_{k}}$ must have a subsequence that converges to some p.m v which cannot be equal to μ contradicting what we have shown!).

It remains to show tightness. From Lemma 3.7 below, as $n \rightarrow \infty$,

$$
\mu_{n}\left([-2 / \delta, 2 / \delta]^{c}\right) \leq \frac{1}{\delta} \int_{-\delta}^{\delta}\left(1-\hat{\mu}_{n}(t)\right) d t \longrightarrow \frac{1}{\delta} \int_{-\delta}^{\delta}(1-\hat{\mu}(t)) d t
$$

where the last implication follows by DCT (since $1-\hat{\mu}_{n}(t) \rightarrow 1-\hat{\mu}(t)$ for each t and also $\left|1-\hat{\mu}_{n}(t)\right| \leq 2$ for all t. Further, as $\delta \downarrow 0$, we get $\frac{1}{\delta} \int_{-\delta}^{\delta}(1-\hat{\mu}(t)) d t \rightarrow 0$ (because, $1-\hat{\mu}(0)=0$ and $\hat{\mu}$ is continuous at 0).

Thus, given $\epsilon>0$, we can find $\delta>0$ such that limsup $\sin _{n \rightarrow \infty} \mu_{n}\left([-2 / \delta, 2 / \delta]^{c}\right)<$ ϵ. This means that for some finite N, we have $\mu_{n}\left([-2 / \delta, 2 / \delta]^{c}\right)<\epsilon$ for all $n \geq N$. Now, find $A>2 / \delta$ such that for any $n \leq N$, we get $\mu_{n}\left([-2 / \delta, 2 / \delta]^{c}\right)<\epsilon$. Thus, for any $\epsilon>0$, we have produced an $A>0$ so that $\mu_{n}\left([-A, A]^{c}\right)<\epsilon$ for all n. This is the definition of tightness.

Lemma 3.7. Let $\mu \in \mathscr{P}(\mathbb{R})$. Then, for any $\delta>0$, we have

$$
\mu\left([-2 / \delta, 2 / \delta]^{c}\right) \leq \frac{1}{\delta} \int_{-\delta}^{\delta}(1-\hat{\mu}(t)) d t
$$

Proof. We write

$$
\begin{aligned}
\int_{-\delta}^{\delta}(1-\hat{\mu}(t)) d t & =\int_{-\delta}^{\delta} \int_{\mathbb{R}}\left(1-e^{i t x}\right) d \mu(x) d t \\
& =\int_{\mathbb{R}} \int_{-\delta}^{\delta}\left(1-e^{i t x}\right) d t d \mu(x) \\
& =\int_{\mathbb{R}}\left(2 \delta-\frac{\sin (x \delta)}{x}\right) d \mu(x) \\
& =2 \delta \int_{\mathbb{R}}\left(1-\frac{\sin (x \delta)}{2 x \delta}\right) d \mu(x) .
\end{aligned}
$$

When $|x| \delta>2$, we have $\frac{\sin (x \delta)}{2 x \delta} \leq \frac{1}{2}$ (since $\sin (x \delta) \leq 1$). Therefore, the integrand is at least $\frac{1}{2}$ when $|x|>\frac{2}{\delta}$ and the integrand is always non-negative since $|\sin (x)| \leq|x|$. Therefore we get

$$
\int_{-\delta}^{\delta}(1-\hat{\mu}(t)) d t \geq \frac{1}{2} \mu\left([-2 / \delta, 2 / \delta]^{c}\right)
$$

