
CHAPTER 3

Characteristic functions as tool for studying weak
convergence

Defintions and basic properties

Definition 3.1. Let µ be a probability measure on R. The function ψµ :Rd →R define
byψµ(t) :=

∫
R eitxdµ(x) is called the characteristic function or the Fourier transform of

µ. If X is a random variable on a probability space, we sometimes say “characteristic
function of X ” to mean the c.f of its distribution. We also write µ̂ instead of ψµ.

There are various other “integral transforms” of a measure that are closely re-
lated to the c.f. For example, if we take ψµ(it) is the moment generating function
of µ (if it exists). For µ supported on N, its so called generating function Fµ(t) =∑

k≥0µ{k}tk (which exists for |t| < 1 since µ is a probability measure) can be written
as ψµ(−i log t) (at least for t > 0!) etc. The characteristic function has the advantage
that it exists for all t ∈R and for all finite measures µ.

The following lemma gives some basic properties of a c.f.

Lemma 3.2. Let µ ∈ P (R). Then, µ̂ is a uniformly continuous function on R with
|µ̂(t)|≤ 1 for all t with µ̂(0)= 1. (equality may be attained elsewhere too).

PROOF. Clearly µ̂(0)= 1 and |µ̂(t)|≤ 1. U ■

The importance of c.f comes from the following facts.

(A) It transforms well under certain operations of measures, such as shifting a
scaling and under convolutions.

(B) The c.f. determines the measure.
(C) µ̂n(t)→ µ̂(t) pointwise, if and only if µn

d→µ.
(D) There exist necessary and sufficient conditions for a function ψ : R→ C to

be the c.f o f a measure. Because of this and part (B), sometimes one defines
a measure by its characteristic function.

(A) Transformation rules

Theorem 3.3. Let X ,Y be random variables.

(1) For any a,b ∈R, we have ψaX+b(t)= eibtψX (at).
(2) If X ,Y are independent, then ψX+Y (t)=ψX (t)ψY (t).

PROOF. (1) ψaX+b(t)=E[eit(aX+b)]=E[eitaX ]eibt = eibtψX (at).
(2) ψX+Y (t)=E[eit(X+Y )]=E[eitX eitY ]=E[eitX ]E[eitY ]=ψX (t)ψY (t).

■
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Examples.
(1) If X ∼ Ber(p), then ψX (t) = peit + q where q = 1− p. If Y ∼ Binomial(n, p),

then, Y d= X1+ . . .+Xn where Xk are i.i.d Ber(p). Hence, ψY (t)= (peit+q)n.
(2) If X ∼ Exp(λ), then ψX (t) =

∫∞
0 λe−λxeitxdx = 1

λ−it . If Y ∼ Gamma(ν,λ),

then if ν is an integer, then Y d= X1 + . . .+ Xn where Xk are i.i.d Exp(λ).
Therefore, ψY (t)= 1

(λ−it)ν .
(3) Y ∼ Normal(µ,σ2). Then, Y = µ+σX , where X ∼ N(0,1) and by the tran-

sofrmatin rules, ψY (t)= eiµtψX (σt). Thus it suffices to find the c.f of N(0,1).

ψX (t)= 1
σ
$

2π

∫

R
eitxe−

x2
2σ2 dx = e−

σ2 t2
2

(
1

σ
$

2π

∫

R
e−

(x−it)2

2σ2 dx
)
.

It appears that the stuff inside the brackets is equal to 1, since it looks
like the integral of a normal density with mean it and variance σ2. But if
the mean is complex, what does it mean?! I gave a rigorous proof that the
stuff inside brackets is indeed equal to 1, in class using contour integration,
which will not be repeated here. The final concusion is that N(µ,σ2) has c.f

eitµ− σ2 t2
2 .

(B) Inversion formulas

Theorem 3.4. If µ̂= ν̂, then µ= ν.

PROOF. Let θσ denote the N(0,σ2) distribution and let φσ(x)= 1
σ
$

2π
e−x2/2σ2

and

Φσ(x)=
∫x
−∞φσ(u)du and θ̂σ(t)= e−σ

2 t2/2 denote the density and cdf and characteris-
tic functions, respectively. Then, by Parseval’s identity, we have for any α,

∫
e−iαtµ̂(t)dθσ(t) =

∫
θ̂σ(x−α)dµ(x)

=
$

2π
σ

∫
φ 1

σ
(α− x)dµ(x)

where the last line comes by the explicit Gaussian form of θ̂σ. Let fσ(α) := σ$
2π

∫
e−iαtµ̂(t)dθσ(t)

and integrate the above equation to get that for any finite a < b,
∫b

a
fσ(α)dα =

∫b

a

∫

R
φ 1

σ
(α− x)dµ(x)dµ(x)

=
∫

R

∫b

a
φ 1

σ
(α− x)dαdµ(x) (by Fubini)

=
∫

R

(
Φ 1

σ
(α−a)−Φ 1

σ
(α−b)

)
dµ(x).

Now, we let σ→∞, and note that

Φ 1
σ

(u)→






0 if u < 0.
1 if u > 0.
1
2 if u = 0.

Further, Φσ−1 is bounded by 1. Hence, by DCT, we get

lim
σ→∞

∫b

a
fσ(α)dα=

∫[
1(a,b)(x)+ 1

2
1{a,b}(x)

]
dµ(x)=µ(a,b)+ 1

2
µ{a,b}.
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Now we make two observations: (a) that fσ is determined by µ̂, and (b) that the
measure µ is determined by the values of µ(a,b)+ 1

2µ{a,b} for all finite a < b. Thus,
µ̂ determines the measure µ. ■

Corollary 3.5 (Fourier inversion formula). Let µ ∈P (R).
(1) For all finite a < b, we have

(3.1) µ(a,b)+ 1
2
µ{a}+ 1

2
µ{b}= lim

σ→∞
1

2π

∫

R

e−iat − e−ibt

it
µ̂(t)e−

t2
2σ2 dt

(2) If
∫
R |µ̂(t)|dt <∞, then µ has a continuous density given by

f (x) := 1
2π

∫

R
µ̂(t)e−ixtdt.

PROOF. (1) Recall that the left hand side of (3.1) is equal to limσ→∞
∫b

a fσ
where fσ(α) := σ&

2π

∫
e−iαtµ̂(t)dθσ(t). Writing out the density of θσ we see

that
∫b

a
fσ(α)dα = 1

2π

∫b

a

∫

R
e−iαtµ̂(t)e−

t2
2σ2 dtdα

= 1
2π

∫

R

∫b

a
e−iαtµ̂(t)e−

t2
2σ2 dα dt (by Fubini)

= 1
2π

∫

R

e−iat − e−ibt

it
µ̂(t)e−

t2
2σ2 dt.

Thus, we get the first statement of the corollary.

(2) With fσ as before, we have fσ(α) := 1
2π

∫
e−iαtµ̂(t)e−

t2
2σ2 dt. Note that the in-

tegrand converges to e−iαtµ̂(t) as σ→∞. Further, this integrand is bounded
by |µ̂(t)| which is assumed to be integrable. Therefore, by DCT, for any α ∈R,
we conclude that fσ(α)→ f (α) where f (α) := 1

2π
∫

e−iαtµ̂(t)dt.
Next, note that for any σ > 0, we have | fσ(α)| ≤ C for all α where C =∫

|µ̂. Thus, for finite a < b, using DCT again, we get
∫b

a fσ→
∫b

a f as σ→∞.
But the proof of Theorem 3.4 tells us that

lim
σ→∞

∫b

a
fσ(α)dα = µ(a,b)+ 1

2
µ{a}+ 1

2
µ{b}.

Therefore, µ(a,b)+ 1
2µ{a}+ 1

2µ{b}=
∫b

a f (α)dα. Fixing a and letting b ↓ a, this
shows that µ{a} = 0 and hence µ(a,b) =

∫b
a f (α)dα. Thus f is the density of

µ.
The proof that a c.f. is continuous carries over verbatim to show that

f is continuous (since f is the Furier trnasform of µ̂, except for a change of
sign in the exponent). ■

An application of Fourier inversion formula Recall the Cauchy distribution µ

with with density 1
π(1+x2) whose c.f is not easy to find by direct integration (Residue

theorem in complex analysis is a way to compute this integral).
Consider the seemingly unrelated p.m ν with density 1

2 e−|x| (a symmetrized ex-
ponential, this is also known as Laplace’s distribution). Its c.f is easy to compute and
we get

n̂u(t)= 1
2

∫∞

0
eitx−xdx+ 1

2

∫0

−∞
eitx+xdx = 1

2

(
1

1− it
+ 1

1+ it

)
= 1

1+ t2 .
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By the Fourier inversion formula (part (b) of the corollary), we therefore get

1
2

e−|x| = 1
2π

∫
ν̂(t)eitxdt = 1

2π

∫ 1
1+ t2 eitxdt.

This immediately shows that the Cauchy distribution has c.f. e−|t| without having to
compute the integral!!

(C) Continuity theorem

Theorem 3.6. Let µn,µ ∈P (R).

(1) If µn
d→µ then µ̂n(t)→ µ̂(t) pointwise for all t.

(2) If µ̂n(t)→ψ(t) pointwise for all t, then ψ= µ̂ for some µ ∈P (R) and µn
d→µ.

PROOF. (1) If µn
d→ mu, then

∫
f dµn →

∫
f dµ for any f ∈ Cb(R) (bounded

continuous function). Since x → eitx is a bounded continuous function for
any t ∈R, it follows that µ̂n(t)→ µ̂(t) pointwise for all t.

(2) Now suppose µ̂n(t) → µ̂(t) pointwise for all t. We first claim that the se-
quence {µn} is tight. Assuming this, the proof can be completed as follows.

Let µnk be any subsequence that converges in distribution, say to ν.
By tightness, nu ∈ P (R). Therefore, by part (a), µ̂nk → ν̂ pointwise. But
obviously, µ̂nk → µ̂ since µ̂n → µ̂. Thus, ν̂= µ̂ which implies that ν=µ. That
is, any convergent subsequence of {µn} converges in distribution to µ. This
shows that µn

d→ µ (because, if not, then there is some subsequence {nk}
and some ε > 0 such that the Lévy distance between µnk and µ is at least
ε. By tightness, µnk must have a subsequence that converges to some p.m
ν which cannot be equal to µ contradicting what we have shown!).

It remains to show tightness. From Lemma 3.7 below, as n →∞,

µn
(
[−2/δ,2/δ]c) ≤ 1

δ

δ∫

−δ

(1− µ̂n(t))dt −→ 1
δ

δ∫

−δ

(1− µ̂(t))dt

where the last implication follows by DCT (since 1−µ̂n(t)→ 1−µ̂(t) for each

t and also |1−µ̂n(t)|≤ 2 for all t. Further, as δ ↓ 0, we get 1
δ

δ∫

−δ
(1−µ̂(t))dt → 0

(because, 1− µ̂(0)= 0 and µ̂ is continuous at 0).
Thus, given ε> 0, we can find δ> 0 such that limsupn→∞µn ([−2/δ,2/δ]c)<

ε. This means that for some finite N, we have µn ([−2/δ,2/δ]c) < ε for all
n ≥ N. Now, find A > 2/δ such that for any n ≤ N, we get µn ([−2/δ,2/δ]c)< ε.
Thus, for any ε> 0, we have produced an A > 0 so that µn ([−A, A]c) < ε for
all n. This is the definition of tightness. ■

Lemma 3.7. Let µ ∈P (R). Then, for any δ> 0, we have

µ
(
[−2/δ,2/δ]c)≤ 1

δ

δ∫

−δ

(1− µ̂(t))dt.
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PROOF. We write
∫δ

−δ
(1− µ̂(t))dt =

∫δ

−δ

∫

R
(1− eitx)dµ(x)dt

=
∫

R

∫δ

−δ
(1− eitx)dtdµ(x)

=
∫

R

(
2δ− sin(xδ)

x

)
dµ(x)

= 2δ
∫

R

(
1− sin(xδ)

2xδ

)
dµ(x).

When |x|δ > 2, we have sin(xδ)
2xδ ≤ 1

2 (since sin(xδ) ≤ 1). Therefore, the integrand is at
least 1

2 when |x| > 2
δ and the integrand is always non-negative since |sin(x)| ≤| x|.

Therefore we get ∫δ

−δ
(1− µ̂(t))dt ≥ 1

2
µ

(
[−2/δ,2/δ]c) . ■


