CHAPTER 3

Characteristic functions as tool for studying weak
convergence

Defintions and basic properties

Definition 3.1. Let u be a probability measure on R. The function v, : R? — R define
by wu(t) == [g e'**d u(x) is called the characteristic function or the Fourier transform of
u. If X is a random variable on a probability space, we sometimes say “characteristic
function of X” to mean the c.f of its distribution. We also write {i instead of y,.

There are various other “integral transforms” of a measure that are closely re-
lated to the c.f. For example, if we take v,(if) is the moment generating function
of u (f it exists). For p supported on N, its so called generating function F(¢) =
Y 5o uik}t® (which exists for |¢| < 1 since p is a probability measure) can be written
as ¥, (—ilogt) (at least for ¢ > 0!) etc. The characteristic function has the advantage
that it exists for all ¢ € R and for all finite measures p.

The following lemma gives some basic properties of a c.f.

Lemma 3.2. Let pu e P(R). Then, [i is a uniformly continuous function on R with
()| < 1 for all t with ((0) = 1. (equality may be attained elsewhere too).

PROOF. Clearly i(0)=1and |g(¢)|<1. U [ |

The importance of c.f comes from the following facts.

(A) It transforms well under certain operations of measures, such as shifting a
scaling and under convolutions.

(B) The c.f. determines the measure.

(C) fin(t) — fi(t) pointwise, if and only if 1, % .

(D) There exist necessary and sufficient conditions for a function ¢ : R — C to
be the c.f o f a measure. Because of this and part (B), sometimes one defines
a measure by its characteristic function.

(A) Transformation rules

Theorem 3.3. Let X,Y be random variables.
(1) For any a,b € R, we have y,x+p(t) = eibth(at).
(2) If XY are independent, then yx.y () =wx(@yy (¢).

PROOF. (D) Yax+p(t) = Ele"@X D] = E[e!X]eib! = ¢ibly y(at).
(2) yxiy (@) = E[e*X V)] = E[e! XY ] = B[ X |E[e' ] = wx (t)wy ().
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56 3. CHARACTERISTIC FUNCTIONS AS TOOL FOR STUDYING WEAK CONVERGENCE

Examples.
(1) If X ~ Ber(p), then wx(t) = pe'’ + g where ¢ = 1—p. If Y ~ Binomial(n, p),
then, Y d X1+...+X,, where X}, arei.i.d Ber(p). Hence, ¢y (¢) = (pe't +q)".

(2) If X ~ Exp(A), then wx(t) = [5° e M eit*dyx = A}it. If Y ~ Gammal(v, 1),

then if v is an integer, then Y d X1 +...+ X, where X;, are i.i.d Exp(Q).
Therefore, vy (¢) = m

(3) Y ~ Normal(y, 02). Then, Y = u+0X, where X ~ N(0,1) and by the tran-
sofrmatin rules, yy(¢) = ei”tu/X(ot). Thus it suffices to find the c.f of N(0,1).
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It appears that the stuff inside the brackets is equal to 1, since it looks
like the integral of a normal density with mean i¢ and variance 2. But if
the mean is complex, what does it mean?! I gave a rigorous proof that the
stuff inside brackets is indeed equal to 1, in class using contour integration,
Whichzv;/ill not be repeated here. The final concusion is that N(u,0?) has c.f
eith="3~

wx(t) = Ye 2a2dx—e = (

(B) Inversion formulas

Theorem 3.4. If i=7, then u=v.

PROOF. Let 6, denote the N(0,02) distribution and let Po(x) = #ﬁe,xz&gz and

Dy(x) = [Z ps(w)du and Oy(t) = e~7*t*2 denote the density and cdf and characteris-
tic functions, respectively. Then, by Parseval’s identity, we have for any a,

fe—iatﬂ(t)dgg(t) = fég(x—a)du(x)

= mf(pl(a x)d p(x)

where the last line comes by the explicit Gaussian form of 6,. Let fola):= \/% S e iat (e)d0s(t)
and integrate the above equation to get that for any finite a <,

b b
ffa(a)d(l ffmdg(a—x)du(x)dy(x)

b
ff ¢1(a—x)dadu(x) (by Fubini)
RJa o

f (@;(a—a)—@;(a—b))du(x).
[R o o
Now, we let 0 — 0o, and note that

ifu<O.
ifu>0.
ifu=0.

(w)—

Dy
o

o= = O

Further, ®;-1 is bounded by 1. Hence, by DCT, we get

b 1 1
[}erolo fola)da = f [l(a,b)(x) + él{a,b}(x) du(x) = wa,b)+ Eu{a,b}.
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Now we make two observations: (a) that f; is determined by [, and (b) that the
measure 1 is determined by the values of u(a,d) + % a,b} for all finite a < b. Thus,
[t determines the measure p. |
Corollary 3.5 (Fourier inversion formula). Let ye 2(R).
(1) For all finite a < b, we have
1 1 1 —iat _ e—ibt 2
= = =lim — | —— [ T 202
3.1) wWa,b)+ 2,u{oz} + 2,u{b} 011_{20 27 Je ” (e 2% dt
(2) If [z1a@)|dt < oo, then p has a continuous density given by

flx):= if,a(t)e_i“dt.
27 JR

PROOF. (1) Recall that the left hand side of is equal to lim,_.o f(f fo
where f,(a) := \/%fe_i“tﬁ(t)d(%(t). Writing out the density of 8, we see
that

b
f fol@)da

1 : _2
2—[ fe_’atﬂ(t)e 202 dtda
T Ja JR
1 b -2
= Eff e 'utye 202da dt  (by Fubini)
RJa

1 [ e-iat _ p-ibt 2

= — | —i(t)e 202dt.
271 Jr it ft)e

Thus, we get the first statement of the corollary.

2
(2) With f,; as before, we have f,(a):= % fe’i‘”ﬂ(t)e_;?dt. Note that the in-
tegrand converges to e “**[i(t) as 0 — co. Further, this integrand is bounded
by |i(¢)| which is assumed to be integrable. Therefore, by DCT, for any a € R,
we conclude that f;(a) — f(a) where f(a):= %fe‘i“t/ft(t)dt.
Next, note that for any o > 0, we have |f,(a)| < C for all « where C =
J14. Thus, for finite a < b, using DCT again, we get fab fo— fab f as o0 — oo.
But the proof of Theorem tells us that

b 1 1
lim f fol@da = ua,b)+=plat+=pu{d}.
g=00 ), 2 2
Therefore, u(a,b)+ %u{a}+ %p{b} = fab f(a)da. Fixing a and letting b | a, this
shows that p{a} = 0 and hence u(a,b) = f: f(a)da. Thus f is the density of
.

The proof that a c.f. is continuous carries over verbatim to show that
f is continuous (since f is the Furier trnasform of [, except for a change of
sign in the exponent). ]

An application of Fourier inversion formula Recall the Cauchy distribution u
with with density m whose c.f is not easy to find by direct integration (Residue
theorem in complex analysis is a way to compute this integral).

Consider the seemingly unrelated p.m v with density %e"xl (a symmetrized ex-
ponential, this is also known as Laplace’s distribution). Its c.fis easy to compute and
we get

1 > . 100 . 1 1 1 1
nu(t) = —f e dx 4+ —f ety = = ( )
2 Jo 2J-c 2

—+ — | = .
1-it 1+4it) 1+1¢2
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By the Fourier inversion formula (part (b) of the corollary), we therefore get

1 1 . 1 1 .
—lxl _ o itx gy _ itx

z = t dt=— | —=e'*dt.

2¢ 2an( e 2n[1+t2€

This immediately shows that the Cauchy distribution has c.f. el

compute the integral!!

without having to

(C) Continuity theorem
Theorem 3.6. Let i, 1t € P(R).

) If i % 1 then fin(8) — A(t) pointwise for all t.
(2) If 1,(t) — w(t) pointwise for all t, then v = [i for some pe P(R) and u, 4 U

PROOF. D) If y, 4 mu, then [fdu, — [fdu for any f € Cy(R) (bounded
continuous function). Since x — e'** is a bounded continuous function for
any t € R, it follows that [1,,(¢) — [i(¢) pointwise for all ¢.

(2) Now suppose [i,(t) — [i(¢) pointwise for all ¢. We first claim that the se-

quence {,} is tight. Assuming this, the proof can be completed as follows.

Let p,, be any subsequence that converges in distribution, say to v.
By tightness, nu € 22(R). Therefore, by part (a), fi,, — ¥ pointwise. But
obviously, fi,, — fi since fi, — fi. Thus, ¥ = 4 which implies that v = u. That
is, any convergent subsequence of {1} converges in distribution to u. This
shows that u, 4, U (because, if not, then there is some subsequence {nj}
and some ¢ > 0 such that the Lévy distance between u,, and u is at least
€. By tightness, pn, must have a subsequence that converges to some p.m
v which cannot be equal to u contradicting what we have shown!).

It remains to show tightness. From Lemma [3.7] below, as n — oo,

0 o
1 (1-2/6,2/61) < % f (1 fn(®)dt — % f (1- pe)dt
= =

where the last implication follows by DCT (since 1—fi,(¢) — 1—fi(¢) for each
0

¢t and also |1—/,(¢)| <2 for all ¢. Further, as § | 0, we get % JSA-p@)Hdt—0
-6

(because, 1 —/i(0) =0 and {1 is continuous at 0).

Thus, given € > 0, we can find 6 > 0 such that limsup,,_. .y, ([-2/6,2/6]°) <
€. This means that for some finite N, we have u, ([-2/5,2/61¢) < € for all
n=N. Now, find A > 2/§ such that for any n < N, we get u, ([—2/5,2/5]1°) <e.
Thus, for any € > 0, we have produced an A > 0 so that y, ([-A,A]°) <€ for
all n. This is the definition of tightness. |

Lemma 3.7. Let ype€ P(R). Then, for any d >0, we have

o
u([-2/5,2/51°) < % (1- at)dt.
-0
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PROOF. We write

)
f - e

s .
f f (1-e"™)du(x)dt
-0 JR

g :
ff (1-e'™)dtd u(x)
RJ-6
f(25_ s1n3(cx6))du(x)

R
sin(x6)
26 1- d .
fR ( 920 ) (x)
sin(xd)

When |x|6 > 2, we have o5 = % (since sin(x6) < 1). Therefore, the integrand is at
least % when |x| > % and the integrand is always non-negative since |sin(x)| <| x|.
Therefore we get

o
f (1-pt)de = %u([—2/5,2/5]°‘). [
-5



