Some Solutions

1. $\mathcal{P}(\mathbb{R})$ is a complete metric space under the Levy metric.

Sol. Let $\{\mu_n\}$ be a cauchy sequence, i.e., given $\epsilon > 0, \exists N_0, \text{ s.t } \forall n, m \ge N_0, d(\mu_n, \mu_m) < \epsilon$. In particular $\forall n > N_0$

$$F_{N_0}(x-\epsilon) - \epsilon < F_N(x) < F_{N_0}(x+\epsilon) + \epsilon.$$

Consider $\mu_1, \mu_2, \dots, \mu_{N_0}$. Any finite sequence of measures is tight. So given $\epsilon > 0$, $\exists K > 0$, s.t for $n = 1, 2, \dots, N_0$

$$F_n(K) > 1 - \epsilon$$

 $F_n(-K) < \epsilon$

Now $\forall n > N_0$

$$F_n(K+1) > F_{N_0}(K+1-\epsilon) - \epsilon$$

$$\geq F_{N_0}(K) - \epsilon$$

$$> 1 - 2\epsilon.$$

Similarly

$$F_n(-k-1) < F_{N_0}(-k-1+\epsilon) + \epsilon$$

$$\leq F_{N_0}(-k) + \epsilon$$

$$< 2\epsilon$$

Thus $\{\mu_n\}$ is tight and so has a convergent subsequence, i.e., \exists a probability measure μ and a subsequence μ_{n_k} of μ_n s.t,

$$\mu_{n_k} \xrightarrow{d} \mu$$

 $\mu_n \xrightarrow{d} \mu$

Since $\{\mu_n\}$ is cauchy

$$d(\mu_n,\mu) \to 0 \text{ as } n \to \infty$$

Hence the completeness.

2. If $\mu_n \xrightarrow{d} \mu$ then $\liminf_{n \to \infty} \mu_n(G) \ge \mu(G)$ if G is open.

Sol. Since every open set in \mathbb{R} is a countable union of disjoint open intervals it is enough to check the above for open intervals.

$$\mu_n(a,b) = F_{\mu_n}(b-) - F_{\mu_n}(a)$$

1

Since $\mu_n \xrightarrow{d} \mu$,

$$\limsup_{n \to \infty} F_{\mu_n}(x) \ge F_{\mu}(x) \tag{0.1}$$

Also for all u > 0

$$\lim \inf_{n \to \infty} F_{\mu_n}(x-1) \ge \lim \inf_{n \to \infty} F_{\mu_n}(x-u) > F_{\mu}(x-2u) - u$$

Now letting $u \to 0$ we get,

$$\lim \inf_{n \to \infty} F_{\mu_n}(x-) > F_{\mu}(x-) \tag{0.2}$$

Therefore,

$$\lim \inf_{n \to \infty} \mu_n(a, b) = \lim \inf_{n \to \infty} (F_{\mu_n}(b-) - F_{\mu_n}(a))$$

$$\geq \lim \inf_{n \to \infty} F_{\mu_n}(b-) - \lim \sup_{n \to \infty} F_{\mu_n}(a)$$

$$\geq F_{\mu}(b-) - F_{\mu}(a)$$

$$= \mu(a, b)$$

where the third inequality follows from (0.1) and (0.2). Hence the proof.