

Problem set 6

Problem 1. Find the density of $X + Y$.

1. $X \sim \text{Gamma}(\alpha_1, \lambda)$ independent of $Y \sim \text{Gamma}(\alpha_2, \lambda)$.
2. X, Y are i.i.d Uniform[0, 1].
3. $X \sim N(\mu_1, \sigma_1^2)$ independent of $Y \sim N(\mu_2, \sigma_2^2)$.

Problem 2. If X, Y are i.i.d. $N(0, 1)$, find the distribution of $X^2 + Y^2$. What about the sum of squares of n i.i.d. $N(0, 1)$ random variables?

Problem 3. If X, Y are i.i.d. $\text{Exp}(1)$, find the joint density of $U = X + Y$ and $V = Y$.

Problem 4. Let X, Y be independent integer-valued random variables. If X has pmf f and Y has pmf g , then $X + Y$ has pmf h given by $h(k) = \sum_{i \in \mathbb{Z}} f(i)g(k-i)$. Use this to show the following.

1. If $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(m, p)$, then $X + Y \sim \text{Bin}(m+n, p)$.
2. If $X \sim \text{Pois}(\lambda)$ and $Y \sim \text{Pois}(\mu)$, then $X + Y \sim \text{Pois}(\lambda + \mu)$.
3. If X, Y are i.i.d with $\text{Geo}(p)$ distribution, then $X + Y$ has a negative binomial distribution with parameters 2 and p .

Problem 5. Let X, Y be i.i.d. random variables with density f . Let $U = \min\{X, Y\}$ and $V = \max\{X, Y\}$.

1. Find the joint density of (U, V) .
2. If X, Y are i.i.d. $\text{Exp}(\lambda)$, show that $U \sim \text{Exp}(2\lambda)$.
3. If X, Y are i.i.d. Uniform[0, 1], find the density of V explicitly.

Problem 6. (*) Let X_1, X_2, \dots, X_n be i.i.d. random variables with CDF F and density f . Let $M = \max\{X_1, \dots, X_n\}$.

1. Show that the CDF of M is given by $G(x) = (F(x))^n$ and its pdf is given by $g(x) = n(F(x))^{n-1}f(x)$.
2. What are the CDF and pdf of $M' = \min\{X_1, \dots, X_n\}$?