

HOMEWORK 1: DUE 19TH AUG
SUBMIT THE FIRST FOUR PROBLEMS ONLY

1. Let \mathcal{F} be a σ -algebra of subsets of Ω .

- (1) Show that \mathcal{F} is closed under countable intersections ($\bigcap_n A_n$), under set differences ($A \setminus B$), under symmetric differences ($A \Delta B$).
- (2) If A_n is a countable sequence of subsets of Ω , the set $\limsup_n A_n$ (respectively $\liminf_n A_n$) is defined as the set of all $\omega \in \Omega$ that belongs to infinitely many (respectively, all but finitely many) of the sets A_n .
If $A_n \in \mathcal{F}$ for all n , show that $\limsup A_n \in \mathcal{F}$ and $\liminf A_n \in \mathcal{F}$. [Hint: First express $\limsup A_n$ and $\liminf A_n$ in terms of A_n s and basic set operations].
- (3) If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$, what are $\limsup A_n$ and $\liminf A_n$?

2. Let (Ω, \mathcal{F}) be a set with a σ -algebra.

- (1) Suppose \mathbf{P} is a probability measure on \mathcal{F} . If $A_n \in \mathcal{F}$ and A_n increase to A (respectively, decrease to A), show that $\mathbf{P}(A_n)$ increases to (respectively, decreases to) $\mathbf{P}(A)$.
- (2) Suppose $\mathbf{P} : \mathcal{F} \rightarrow [0, 1]$ is a function such that (a) $\mathbf{P}(\Omega) = 1$, (b) \mathbf{P} is finitely additive, (c) if $A_n, A \in \mathcal{F}$ and A_n s increase to A , then $\mathbf{P}(A_n) \uparrow \mathbf{P}(A)$. Then, show that \mathbf{P} is a probability measure on \mathcal{F} .

3.

- (1) Let X be an arbitrary set. Let S be the collection of all singletons in Ω . Describe $\sigma(S)$.
- (2) Let $S = \{(a, b] \cup [-b, -a) : a < b \text{ are real numbers}\}$. Show that $\sigma(S)$ is strictly smaller than the Borel σ -algebra of \mathbb{R} .
- (3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set in S either contains a and b both, or contains neither. Let $\mathcal{F} = \sigma(S)$. Show that any set in \mathcal{F} has the same property (either contains both a and b or contains neither).

4. Let Ω be an infinite set and let $\mathcal{A} = \{A \subseteq \Omega : A \text{ is finite or } A^c \text{ is finite}\}$. Define $\mu : \mathcal{A} \rightarrow \mathbb{R}_+$ by $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ if A^c is finite.

- (1) Show that \mathcal{A} is an algebra and that μ is finitely additive on \mathcal{A} .
- (2) Under what conditions does μ extend to a probability measure on $\mathcal{F} = \sigma(\mathcal{A})$?

xxxxxxxxxxxxxxxxxxxxxx

Do not submit the following problems, but at least read them. Some of them are straightforward exercises, but some are more advanced material which I don't get time to elaborate in class. The latter are meant for the extra-curious!

xxxxxxxxxxxxxxxxxxxxxx

5. (1) Let \mathcal{B} be the Borel sigma-algebra of \mathbb{R} . Show that \mathcal{B} contains all closed sets, all compact sets, all intervals of the form $(a, b]$ and $[a, b)$.
(2) Show that there is a countable family \mathcal{S} of subsets of \mathbb{R} such that $\sigma(\mathcal{S}) = \mathcal{B}_{\mathbb{R}}$.

6. Let A_1, A_2, \dots be a finite or countable partition of a non-empty set Ω (i.e., A_i are pairwise disjoint and their union is Ω). What is the σ -algebra generated by the collection of subsets $\{A_n\}$? What is the algebra generated by the same collection of subsets?

7. Let $X = [0, 1]^{\mathbb{N}}$ be the countable product of copies of $[0, 1]$. We define two sigma algebras of subsets of X . Then $d(x, y) = \sum_n |x_n - y_n|2^{-n}$ defines a metric on X . Let \mathcal{B}_X be the Borel sigma-algebra of (X, d) .

Let \mathcal{C}_X be the collection of all cylinder sets, i.e., sets of the form $A = U_1 \times U_2 \times \dots$ where U_i is a Borel subset of $[0, 1]$ for each i and $U_i = [0, 1]$ for all but finitely many i .

(1) Show that \mathcal{C}_X is a π -system.
(2) Show that $\sigma(\mathcal{C}_X) = \mathcal{B}_X$.

8. Let μ be the Lebesgue p.m. on the Cartheodary σ -algebra $\bar{\mathcal{B}}$ and let μ_* be the corresponding outer Lebesgue measure defined on all subsets of $[0, 1]$. We say that a subset $N \subseteq [0, 1]$ is a null set if $\mu_*(N) = 0$. Show that

$$\bar{\mathcal{B}} = \{B \cup N : B \in \mathcal{B} \text{ and } N \text{ is null}\}$$

where \mathcal{B} is the Borel σ -algebra of $[0, 1]$.

[Note: The point of this exercise is to show how much larger is the Lebesgue σ -algebra than the Borel σ -algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a Borel set. However, cardinality-wise, there is a difference. The Lebesgue σ -algebra is in bijection with $2^{\mathbb{R}}$ while the Borel σ -algebra is in bijection with \mathbb{R} .]