

HOMEWORK 2: DUE 31ST AUG
SUBMIT THE FIRST FOUR PROBLEMS ONLY

1. Suppose X_n are real-valued random variables on $(\Omega, \mathcal{F}, \mathbf{P})$. Assume that $X(\omega) := \lim_{n \rightarrow \infty} X_n(\omega)$ exists for each $\omega \in \Omega$. Show that X is a random variable (just use definitions, do not invoke any results already stated).

2. For each of the following distributions, find an explicit mapping $T : (0, 1) \rightarrow \mathbb{R}$ such that $\lambda \circ T^{-1}$ is equal to the given distribution. (1) Cauchy distribution (density is $\frac{1}{\pi(1+x^2)}$). (2) Exponential distribution (density is e^{-x} for $x > 0$). (3) Laplace distribution (density is $e^{-|x|}$ for all $x \in \mathbb{R}$). (4) A beta density $\frac{1}{\pi\sqrt{x(1-x)}}$ for $x \in (0, 1)$.

3. (1) Given a CDF $F : \mathbb{R} \rightarrow [0, 1]$ show that there is a unique way to write it as $F = \alpha F_d + (1 - \alpha)F_c$ where $0 \leq \alpha \leq 1$, F_d, F_c are CDFs, F_c is continuous and F_d increases only in jumps (the last point means that if $[a, b]$ contains no discontinuities of F_d , then $F_d(b) = F_d(a)$).
(2) If μ, μ_c, μ_d are the corresponding probability measures, then show that $\mu(A) = \alpha\mu_d(A) + (1 - \alpha)\mu_c(A)$ for all $A \in \mathcal{B}_{\mathbb{R}}$.

4. Let \mathcal{G} be the countable-cocountable sigma algebra on \mathbb{R} . Define the probability measure μ on \mathcal{G} by $\mu(A) = 0$ if A is countable and $\mu(A) = 1$ if A^c is countable. Show that μ is *not* the push-forward of Lebesgue measure on $[0, 1]$, i.e., there does not exist a measurable function $T : [0, 1] \mapsto \Omega$ (w.r.t. the σ -algebras \mathcal{B} and \mathcal{G}) such that $\mu = \lambda \circ T^{-1}$.

Do not submit the following problems, but at least read them. Some of them are straightforward exercises, but some are more advanced material which I don't get time to elaborate in class. The latter are meant for the extra-curious!

5. Let F_1, F_2 be CDFs on \mathbb{R} . Show that the following are also CDFs.

- (1) $F : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $F(x, y) = F_1(x)F_2(y)$.
- (2) $F : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $F(x, y) = F_1(\min\{x, y\})$.
- (3) $F : \mathbb{R} \rightarrow \mathbb{R}$ defined as $F(x) = F_1(x^3)$.

6. (1) Let $X : \mathbb{R}^n \rightarrow \mathbb{R}^m$. Show that X is Borel measurable if it is (a) right continuous or (b) lower semicontinuous or (c) non-decreasing (take $m = n = 1$ for the last one).

(2) If μ is a Borel p.m. on \mathbb{R} with CDF F , then find the push-forward of μ under F .

7. Let $\Omega = X = \mathbb{R}$ and let $T : \Omega \rightarrow X$ be defined by $T(x) = x$. We give a pair of σ -algebras, \mathcal{F} on Ω and \mathcal{G} on X by taking \mathcal{F} and \mathcal{G} to be one of $2^{\mathbb{R}}$ or $\mathcal{B}_{\mathbb{R}}$ or $\{\emptyset, \mathbb{R}\}$. Decide for each of the nine pairs, whether T is measurable or not.

8. Given $X : \Omega \rightarrow \mathbb{R}^d$, let $\sigma(X)$ denote the smallest sigma algebra on Ω so that X becomes measurable (as always, take Borel sigma algebra on \mathbb{R}^d).

- (1) Let $X = (X_1, \dots, X_n)$. Show that X is an \mathbb{R}^d -valued r.v. if and only if X_1, \dots, X_n are (real-valued) random variables. How does $\sigma(X)$ relate to $\sigma(X_1), \dots, \sigma(X_n)$?
- (2) Let $X : \Omega_1 \rightarrow \Omega_2$ be a random variable. If $X(\omega) = X(\omega')$ for some $\omega, \omega' \in \Omega_1$, show that there is no set $A \in \sigma(X)$ such that $\omega \in A$ and $\omega' \notin A$ or vice versa. [**Extra!** If $Y : \Omega_1 \rightarrow \Omega_2$ is another r.v. which is measurable w.r.t. $\sigma(X)$ on Ω_1 , then show that Y is a function of X .]