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1. INTRODUCTION

In this second part of the course, we shall study independent random variables. Much of what
we do is devoted to the following single question: Given independent random variables with
known distributions, what can you say about the distribution of the sum? In the process of finding
answers, we shall weave through various topics. Here is a guide to the essential aspects that you
might pay attention to.

Firstly, the results. We shall cover fundamental limit theorems of probability, such as the weak
and strong law of large numbers, central limit theorems, poisson limit theorem, in addition to
results on random series with independent summands. We shall also talk about the various modes
of convergence of random variables.

The second important aspect will be the various techniques. These include the first and second
moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and Bernstein
and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention the outstandingly
useful tool of characteristic functions as well as the less profound but very common and useful
techniques of proofs such as truncation and approximation.

Thirdly, we shall try to introduce a few basic problems/constructs in probability that are of
interest in themselves and that appear in many guises in all sorts of probability problems. These
include the coupon collector problem, branching processes, Pólya’s urn scheme and Brownian

motion. Many more could have been included if there was more time1.

2. SOME BASIC TOOLS IN PROBABILITY

We collect three basic tools in this section. Their usefulness cannot be overstated.

2.1. First and second moment methods. In popular language, average value is often mistaken
for typical value. This is not always correct, for example, in many populations, a typical person
has much lower income than the average (because a few people have a large fraction of the total

wealth). For a mathematical example, suppose X = 106 with probability 10−3 and X = 0 with

probability 1− 10−3. Then E[X] = 1000 although with probability 0.999 its value is zero. Thus the
typical value is close to zero.

Since it is often easier to calculate expectations and variances (for example, expectation of a
sum is sum of expectations) than to calculate probabilities (example, tail probability of a sum of
random variables), the following inequalities that bound certain probabilities in terms of moments
may be expected to be somewhat useful. In fact, they are extremely useful as we shall shortly see!

Lemma 1. Let X ≥ 0 be a r.v.

(1) (Markov’s inequality or first moment method). For any t > 0, we have P(X ≥ t) ≤ t−1E[X].

1References: Dudley’s book is an excellent source for the first aspect and some of the second but does not have much
of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can touch
upon in this course. Lots of other standard books in probability have various non-negative and non-positive features.
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(2) (Paley-Zygmund inequality or second moment method). For any non-negative r.v. X , and
any 0 ≤ α ≤ 1, we have

P (X > αE[X]) ≥ (1− α)2
E[X]2

E[X2]
.

In particular, P (X > 0) ≥ E[X]2

E[X2]
.

Proof. (1) For any t > 0, clearly t1X≥t ≤ X . Positivity of expectations gives the inequality.

(2) E[X]2 = E[X1X>0]2 ≤ E[X2]E[1X>0] = E[X2]P(X > 0). Hence the second inequality fol-

lows. The first one is similar. Let µ = E[X]. By Cauchy-Schwarz, we have E[X1X>αµ]2 ≤
E[X2]P(X > αµ). Further, µ = E[X1X<αµ] + E[X1X>αµ] ≤ αµ + E[X1X>αµ], whence,

E[X1X>αµ] ≥ (1− α)µ. Thus,

P(X > αµ) ≥
E[X1X>αµ]2

E[X2]
≥ (1− α)2

E[X]2

E[X2]
. �

Remark 2. Applying these inequalities to other functions of X can give more information. For example,

if X has finite variance, P(|X − E[X]| ≥ t) = P(|X − E[X]|2 ≥ t2) ≤ t−2Var(X), which is called
Chebyshev’s inequality. Higher the moments that exist, better the asymptotic tail bounds that we get. For

example, if E[eλX ] <∞ for some λ > 0, we get exponential tail bounds by P(X > t) = P(eλX > eλt) ≤
e−λtE[eλX ]. Note that X is not assumed to be non-negative in these examples as Markov’s inequality is

applied to the non-negative random variables (X −E[X])2 and eλX .

In the next section we shall give several applications of the first and second moment methods.
Now we give two other results of ubiquitous use. Their use comes from the fact that most often
probabilists are engaged in showing that an event has probability zero or one!

2.2. Borel-Cantelli lemmas. IfAn is a sequence of events in a common probability space, lim supAn
consists of all ω that belong to infinitely many of these events. Probabilists often write the phrase
“An infinitely often” (or “An i.o” in short) to mean lim supAn.

Lemma 3 (Borel Cantelli lemmas). Let An be events on a common probability space.

(1) If
∑

nP(An) <∞, then P(An infinitely often) = 0.

(2) If An are independent and
∑

nP(An) =∞, then P(An infinitely often) = 1.

Proof. (1) For any N , P (∪∞n=NAn) ≤
∑∞

n=N P(An) which goes to zero as N → ∞. Hence

P(lim supAn) = 0.

(2) For any N < M , P(∪Mn=NAn) = 1 −
∏M
n=N P(Acn). Since

∑
nP(An) = ∞, it follows

that
∏M
n=N (1 − P(An)) ≤

∏M
n=N e

−P(An) → 0, for any fixed N as M → ∞. Therefore,

P (∪∞n=NAn) = 1 for all N , implying that P(An i.o.) = 1. �
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We shall give another proof later, using the first and second moment methods. It will be seen
then that pairwise independence is sufficient for the second Borel-Cantelli lemma!

2.3. Kolmogorov’s zero-one law. If (Ω,F ,P) is a probability space, the set of all events that have
probability equal to 0 or to 1 form a sigma algebra. Zero-one laws are theorems that (in special
situations) identify specific sub-sigma-algebras of this. Such σ-algebras (and events within them)
are sometimes said to be trivial. An equivalent statement is that all random variables measurable
with respect to such a sigma algebra are constants a.s.

Definition 4. Let (Ω,F) be a measurable space and let Fn be sub-sigma algebras of F . Then the
tail σ-algebra of the sequence Fn is defined to be T := ∩nσ (∪k≥nFk). For a sequence of random
variables X1, X2, . . ., the tail sigma algebra (also denoted T (X1, X2, . . .)) is the tail of the sequence
σ(Xn).

How to think of it? If A is in the tail of (Xk)k≥1, then A ∈ σ(Xn, Xn+1, . . .) for any n. That is,
the tail of the sequence is sufficient to tell you whether the event occurred or not. For example, A
could be the event that infinitely many Xk are positive.

Theorem 5 (Kolmogorov’s zero-one law). Let (Ω,F ,P) be a probability space.

(1) If Fn is a sequence of independent sub-sigma algebras of F , then the tail σ-algebra is trivial.

(2) If Xn are independent random variables, and A is a tail event, then P(A) = 0 or P(A) = 1.

Proof. The second statement follows immediately from the first. To prove the first, define Tn :=
σ (∪k>nFk). Then, F1, . . . ,Fn, Tn are independent. Since T ⊆ Tn, it follows that F1, . . . ,Fn, T are
independent. Since this is true for every n, we see that T ,F1,F2, . . . are independent. Hence, T
and σ (∪nFn) are independent. But T ⊆ σ (∪nFn), hence, T is independent of itself. This implies

that for any A ∈ T , we must have P(A)2 = P(A ∩A) = P(A) which forces P(A) to be 0 or 1. �

Independence is crucial (but observe thatXk need not be identically distributed). IfXk = X1 for
all k, then the tail sigma-algebra is the same as σ(X1) which is not trivial unless X1 is constant a.s.
As a more non-trivial example, let ξk, k ≥ 1 be i.i.d. N(0.1, 1) and let η ∼ Ber±(1/2). Set Xk = ηξk.
Intuitively it is clear that a majority of ξks are positive. Hence, by looking at (Xn, Xn+1, . . .) and
checking whether positive or negatives are in majority, we ought to be able to guess η. In other
words, the non-constant random variable η is in the tail of the sequence (Xk)k≥1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial
conclusions. Another interesting application (but not relevant to the course) will be given in a
later section.

Exercise 6. Let Xi be independent random variables. Which of the following random variables must nec-

essarily be constant almost surely? lim supXn, lim inf Xn, lim supn−1Sn, lim inf Sn.
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2.4. A few other useful tools. While it is difficult to match the utility of the tools that we have
mentioned so far, there are several others that are quite useful in many settings. Here we just
mention some of them so that the interested reader is at least aware of their existence. For lack of
time to cover good examples, we shall largely omit these in this course.

I Bernstein-Hoeffding inequalities give powerful bounds for the probability for a sum of inde-
pendent random variables to deviate from its mean. We shall cover these in Section 12.

I The probabilistic method is the name given to the trivial-sounding statement that P(A) > 0
implies that A is non-empty! Its usefulness comes from actual situations where one wants
to construct an object with given properties and the easiest way turns out to be to construct
a random object and show that it has the desired properties (with positive probability).

I Lovász’s local lemma states that if Ai are events, each having probability at most p and each

Ai is independent of all except (at most) d of the other events, and if p(d + 1) ≤ 1
e , then

Ac1 ∩ . . .∩Acn has positive probability. This is obvious if Ais are independent (then we only
need the condition P(Ai) < 1 for each i). Hence, intuitively one feels that the result should
hold if the dependence is weak, and the local lemma is a precise formulation of such a
result.

I There are many other zero-one laws that are quite useful. We mention two - ergodicity (which
is covered in the problem set) and Hewitt-Savage zero-one law (which we omit altogether).

3. APPLICATIONS OF FIRST AND SECOND MOMENT METHODS

The first and second moment methods are immensely useful. This is somewhat surprising,
given the very elementary nature of these inequalities, but the following applications illustrate
the ease with which they give interesting results.

3.1. Borel-Cantelli lemmas. If X takes values in R ∪ {+∞} and E[X] < ∞ then X < ∞ a.s. (if
you like you may see it as a consequence of Markov’s inequality!). Apply this to X =

∑∞
k=1 1Ak

which has E[X] =
∑∞

k=1 P(Ak) which is given to be finite. Therefore X < ∞ a.s. which implies

that for a.e. ω, only finitely many 1Ak(ω) are non-zero. This is the first Borel-Cantelli lemma.

The second one is more interesting. Fix n < m and define X =
∑m

k=n 1Ak . Then E[X] =∑m
k=nP(Ak). Also,

E[X2] = E

[
m∑
k=n

m∑
`=n

1Ak1A`

]
=

m∑
k=n

P(Ak) +
∑
k 6=`

P(Ak)P(A`)

≤

(
m∑
k=n

P(Ak)

)2

+
m∑
k=n

P(Ak).
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Apply the second moment method to see that for any fixed n, as m → ∞ (note that X > 0 is the
same as X ≥ 1),

P(X ≥ 1) ≥
(
∑m

k=nP(Ak))
2

(
∑m

k=nP(Ak))
2 +

∑m
k=nP(Ak)

=
1

1 + (
∑m

k=nP(Ak))
−1

which converges to 1 as m → ∞, because of the assumption that
∑

P(Ak) = ∞. This shows that
P(∪k≥nAk) = 1 for any n and hence P(lim supAn) = 1.

Note that this proof used independence only to claim that P(Ak∩A`) = P(Ak)P(A`). Therefore,
not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma holds
for pairwise independent events too!

3.2. Coupon collector problem. A bookshelf has (a large number) n books numbered 1, 2, . . . , n.
Every night, before going to bed, you pick one of the books at random to read. The book is
replaced in the shelf in the morning. How many days pass before you have picked up each of the
books at least once?

Theorem 7. Let Tn denote the number of days till each book is picked at least once. Then Tn is concentrated
around n log n in a window of size n by which we mean that for any sequence of numbers θn →∞, we have

P(|Tn − n log n| < nθn)→ 1.

The proof will proceed by computing the expected value of Tn and then showing that Tn is
typically near its expected value.

A very useful elementary inequality: In the following proof and many other places, we shall
have occasion to make use of the elementary estimate

(1) 1− x ≤ e−x for all x, 1− x ≥ e−x−x2
for |x| < 1

2
.

To see the first inequality, observe that e−x− (1− x) is equal to 0 for x = 0, has positive derivative
for x > 0 and negative derivative for x < 0. To prove the second inequality, recall the power series

expansion log(1− x) = −x− x2/2− x3/3− . . . which is valid for |x| < 1. Hence, if |x| < 1
2 , then

log(1− x) ≥ −x− x2 +
1
2
x2 − 1

2

∞∑
k=3

|x|k

≥ −x− x2

since
∑∞

k=3 |x|3 ≤ x2
∑∞

k=3 2−k ≤ 1
2x

2.

Proof of Theorem 7. Fix an integer t ≥ 1 and let Xt,k be the indicator that the kth book is not picked

up on the first t days. Then, P(Tn > t) = P(St,n ≥ 1) where St,n = Xt,1 + . . .+Xt,n is the number
6



of books not yet picked in the first t days. As E[Xt,k] = (1− 1/n)t and E[Xt,kXt,`] = (1− 2/n)t for
k 6= `, we also compute that thefirst two moments of St,n and use (1) to get

ne−
t
n
− t
n2 ≤ E[St,n] = n

(
1− 1

n

)t
≤ ne−

t
n .(2)

and

E[S2
t,n] = n

(
1− 1

n

)t
+ n(n− 1)

(
1− 2

n

)t
≤ ne−

t
n + n(n− 1)e−

2t
n .(3)

The left inequality on the first line is valid only for n ≥ 2 which we assume.
Now set t = n log n+ nθn and apply Markov’s inequality to get

(4) P(Tn > n log n+ nθn) = P(St,n ≥ 1) ≤ E[St,n] ≤ ne−
n logn+nθn

n ≤ e−θn = o(1).

On the other hand, taking t = n log n− nθn (where we take θn < log n, of course!), we now apply

the second moment method. For any n ≥ 2, by using (3) we get E[S2
t,n] ≤ eθn + e2θn . The first

inequality in (2) gives E[St,n] ≥ eθn−
logn−θn

n . Thus,

(5) P(Tn > n log n− nθn) = P(St,n ≥ 1) ≥ E[St,n]2

E[S2
t,n]
≥ e2θn−2 logn−θn

n

eθn + e2θn
= 1− o(1)

as n→∞. From (4) and (5), we get the sharp bounds

P (|Tn − n log(n)| > nθn)→ 0 for any θn →∞. �

Here is an alternate approach to the same problem. It brings out some other features well. But
we shall use elementary conditioning and appeal to some intuitive sense of probability.

Alternate proof of Theorem 7. Let τ1 = 1 and for k ≥ 2, let τk be the number of draws after k − 1
distinct coupons have been seen till the next new coupon appears. Then, Tn = τ1 + . . .+ τn.

We make two observations about τks. Firstly, they are independent random variables. This is
intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the

distribution of τk is Geo(n−k+1
n ). This is so since, after having seen (k−1) coupons, in every draw,

there is a chance of (n− k + 1)/n to see a new (unseen) coupon.

If ξ ∼ Geo(p) (this means P(ξ = k) = p(1 − p)k−1 for k ≥ 1), then E[ξ] = 1
p and Var(ξ) = 1−p

p2
,

by direct calculations. Therefore,

E[Tn] =
n∑
k=1

n

n− k + 1
= n log n+O(n),

Var(Tn) = n

n∑
k=1

k − 1
(n− k + 1)2

= n
n∑
j=1

n− j
j2

≤ Cn2
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with C =
∑∞

j=1
1
j2

. Thus, if θn ↑ ∞, then fix N such that |E[Tn]− n log n| ≤ 1
2nθn for n ≥ N . Then,

P {|Tn − n log n| ≥ nθn} ≤ P
{
|Tn −E[Tn]| ≥ 1

2
nθn

}
≤ Var(Tn)

1
4n

2θ2
n

≤ 4C
θ2
n

which goes to zero as n→∞, proving the theorem. �

3.3. Branching processes: Consider a Galton-Watson branching process with offsprings that are
i.i.d ξ. We quickly recall the definition informally. The process starts with one individual in the 0th
generation who has ξ1 offsprings and these comprise the first generation. Each of the offsprings
(if any) have new offsprings, the number of offsprings being independent and identical copies of

ξ. The process continues as long as there are any individuals left2.

Let Zn be the number of offsprings in the nth generation. Take Z0 = 1.

Theorem 8. Let m = E[ξ] be the mean of the offspring distribution.

(1) If m < 1, then w.p.1, the branching process dies out. That is P(Zn = 0 for all large n) = 1.

(2) If m > 1, then the process survives with positive probability, i.e., P(Zn ≥ 1 for all n) > 0.

Proof. In the proof, we compute E[Zn] and Var(Zn) using elementary conditional probability con-

cepts. By conditioning on what happens in the (n − 1)st generation, we write Zn as a sum of
Zn−1 independent copies of ξ. From this, one can compute that E[Zn|Zn−1] = mZn−1 and if

we assume that ξ has variance σ2 we also get Var(Zn|Zn−1) = Zn−1σ
2. Therefore, E[Zn] =

E[E[Zn|Zn−1]] = mE[Zn−1] from which we get E[Zn] = mn. Similarly, from the formula Var(Zn) =
E[Var(Zn|Zn−1)] + Var(E[Zn|Zn−1]) we can compute that

Var(Zn) = mn−1σ2 +m2Var(Zn−1)

=
(
mn−1 +mn + . . .+m2n−1

)
σ2 (by repeating the argument)

= σ2mn−1m
n+1 − 1
m− 1

.

2For those who are not satisfied with the informal description, here is a precise definition: Let V =
S∞
k=1 Nk+ be the

collection of all finite tuples of positive integers. For k ≥ 2, say that (v1, . . . , vk) ∈ Nk+ is a child of (v1, . . . , vk−1) ∈ Nk−1
+ .

This defines a graph G with vertex set V and edges given by connecting vertices to their children. Let G1 be the
connected component of G containing the vertex (1). Note that G1 is a tree where each vertex has infinitely many
children. Given any η : V → N (equivalently, η ∈ NV ), define Tη as the subgraph of G1 consisting of all vertices
(v1, . . . , vk) for which vj ≤ η((v1, . . . , vj−1)) for 2 ≤ j ≤ k. Also define Zk−1(η) = #{(v1, . . . , vk) ∈ T} for k ≥ 2 and
let Z0 = 1. Lastly, given a probability measure µ on N, consider the product measure µ⊗V on NV . Under this measure,
the random variables η(u), u ∈ V are i.i.d. and denote the offspring random variables. The random variable Zk denotes
the number of individuals in the kth generation. The random tree Tη is called the Galton-Watson tree.
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(1) By Markov’s inequality, P(Zn > 0) ≤ E[Zn] = mn → 0. Since the events {Zn > 0} are
decreasing, it follows that P(extinction) = 1.

(2) If m = E[ξ] > 1, then as before E[Zn] = mn which increases exponentially. But that is not

enough to guarantee survival. Assuming that ξ has finite variance σ2, apply the second
moment method to write

P(Zn > 0) ≥ E[Zn]2

Var(Zn) + E[Zn]2
≥ 1

1 + σ2

m−1

which is a positive number (independent of n). Again, since {Zn > 0} are decreasing
events, we get P(non-extinction) > 0.

The assumption of finite variance of ξ can be removed as follows. Since E[ξ] = m > 1,
we can find A large so that setting η = min{ξ, A}, we still have E[η] > 1. Clearly, η has
finite variance. Therefore, the branching process with η offspring distribution survives
with positive probability. Then, the original branching process must also survive with
positive probability! (A coupling argument is the best way to deduce the last statement:
Run the original branching process and kill every child after the first A. If inspite of the
violence the population survives, then ...) �

Remark 9. The fundamental result of branching processes also asserts the a.s extinction for the critical case
m = 1. We omit this for now as it does not follow directly from the first and second moment methods.

3.4. How many prime divisors does a number typically have? For a natural number k, let ν(k)
be the number of (distinct) prime divisors of n. What is the typical size of ν(n) as compared
to n? We have to add the word typical, because if p is a prime number then ν(p) = 1 whereas
ν(2 × 3 × . . . × p) = p. Thus there are arbitrarily large numbers with ν = 1 and also numbers for
which ν is as large as we wish. To give meaning to “typical”, we draw a number at random and
look at its ν-value. As there is no natural way to pick one number at random, the usual way of
making precise what we mean by a “typical number” is as follows.

Formulation: Fix n ≥ 1 and let [n] := {1, 2, . . . , n}. Let µn be the uniform probability measure on
[n], i.e., µn{k} = 1/n for all k ∈ [n]. Then, the function ν : [n] → R can be considered a random
variable, and we can ask about the behaviour of these random variables. Below, we write En to
denote expectation w.r.t µn.

Theorem 10 (Hardy, Ramanujan). With the above setting, for any δ > 0, as n→∞ we have

(6) µn

{
k ∈ [n] :

∣∣∣ ν(k)
log logn

− 1
∣∣∣ > δ

}
→ 0.

Proof. (Turan). Fix n and for any prime p define Xp : [n] → R by Xp(k) = 1p|k. Then, ν(k) =∑
p≤k

Xp(k). We define ψ(k) :=
∑

p≤ 4√
k

Xp(k). Then, ψ(k) ≤ ν(k) ≤ ψ(k) + 4 since there can be at most
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four primes larger than 4
√
k that divide k. From this, it is clearly enough to show (6) for ψ in place

of ν (why?).

We shall need the first two moments of ψ under µn. For this we first note that En[Xp] =

j
n
p

k
n

and En[XpXq] =

j
n
pq

k
n . Observe that 1

p −
1
n ≤

j
n
p

k
n ≤

1
p and 1

pq −
1
n ≤

j
n
pq

k
n ≤ 1

pq .

By linearity En[ψ] =
∑

p≤ 4√n
E[Xp] =

∑
p≤ 4√n

1
p +O(n−

3
4 ). Similarly

Varn[ψ] =
∑
p≤ 4√n

Var[Xp] +
∑

p6=q≤ 4√n

Cov(Xp, Xq)

=
∑
p≤ 4√n

(
1
p
− 1
p2

+O(n−1)
)

+
∑

p6=q≤ 4√n

O(n−1)

=
∑
p≤ 4√n

1
p
−
∑
p≤ 4√n

1
p2

+O(n−
1
2 ).

We make use of the following two facts. Here, an ∼ bn means that an/bn → 1.

∑
p≤ 4√n

1
p
∼ log logn

∞∑
p=1

1
p2

<∞.

The second one is obvious, while the first one is not hard, (see exercise 11 below)). Thus, we get

En[ψ] = log log n+O(n−
3
4 ) and Varn[ψ] = log log n+O(1). Thus, by Chebyshev’s inequality,

µn

{
k ∈ [n] :

∣∣∣ ψ(k)−En[ψ]
log log n

∣∣∣ > δ

}
≤ Varn(ψ)
δ2(log log n)2

= O

(
1

log logn

)
.

From the asymptotics En[ψ] = log log n+O(n−
3
4 ) we also get (for n large enough)

µn

{
k ∈ [n] :

∣∣∣ ψ(k)
log logn

− 1
∣∣∣ > δ

}
≤ Varn(ψ)
δ2(log log n)2

= O

(
1

log logn

)
.�

Exercise 11.
∑

p≤ 4√n

1
p ∼ log log n. [Note: This is not trivial although not too hard. Consult some Number

theory book. ].

4. APPLICATIONS OF BOREL-CANTELLI LEMMAS AND KOLMOGOROV’S ZERO-ONE LAW

We already mentioned a few direct consequences of Kolmogorov’s zero-one law, such as the

constancy of lim supn→∞
Sn
n . Let us give a couple more.
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4.1. Random power series. LetXn be i.i.d. Exp(1). Consider the random power series
∑∞

n=0Xn(ω)zn.

For fixed ω, we know that the radius of convergence is R(ω) = (lim sup |Xn(ω)|1/n)−1. Since this is
a tail random variable, by Kolmogorov’s zero-one law, it must be constant. In other words, there
is a deterministic r0 such that R(ω) = r0 a.s.

But what is the radius of convergence? It cannot be determined by the zero-one law. We may

use Borel-Cantelli lemma to determine it. Observe that P(|Xn|
1
n > t) = e−t

n
for any t > 0. If

t = 1 + ε with ε > 0, this decays very fast and is summable. Hence, |Xn|
1
n ≤ 1 + ε a.s.. and hence

R ≤ 1 + ε a.s. Take intersection over rational ε to get R ≤ 1 a.s.. For the other direction, if t < 1,

then e−t
n → 1 and hence

∑
n e
−tn =∞. Since Xn are independent, so are the events {|Xn|

1
n > t}.

By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n

such that |Xn|
1
n ≥ 1 − ε. Again, take intersection over rational ε to conclude that R ≥ 1 a.s. This

proves that the radius of convergence is equal to 1 almost surely.
In a homework problem, you are asked to show the same for a large class of distributions and

also to find the radius of convergence for more general random series of the form
∑∞

n=0 cnXnz
n.

4.2. Percolation on a lattice. This application is really an excuse to introduce a beautiful object of

probability. Consider the lattice Z2, points of which we call vertices. By an edge of this lattice we
mean a pair of adjacent vertices {(x, y), (p, q)} where x = p, |y − q| = 1 or y = q, |x − p| = 1. Let
E denote the set of all edges. Xe, e ∈ E be i.i.d Ber(p) random variables indexed by E. Consider

the subset of all edges e for which Xe = 1. This gives a random subgraph of Z2 called the bond
percolation graph at level p. We denote the subgraph by Gω for ω in the probability space.

Question: What is the probability that in the percolation subgraph, there is an infinite connected
component?

LetA = {ω : Gω has an infinite connected component}. If there is an infinite component, chang-
ing Xe for finitely many e cannot destroy it. Conversely, if there was no infinite cluster to start
with, changing Xe for finitely many e cannot create one. In other words, A is a tail event for the

collection Xe, e ∈ E! Hence, by Kolmogorov’s 0-1 law3, Pp(A) is equal to 0 or 1. Is it 0 or is it 1?

In a pathbreaking work of Harry Kesten, it was proved in 1980s that Pp(A) = 0 if p ≤ 1
2 and

Pp(A) = 1 if p > 1
2 . The same problem can be considered on G = Z3, keeping each edge with

probability p and deleting it with probability 1 − p, independently of all other edges. It is again
known (and not too difficult to show) that there is some number pc ∈ (0, 1) such that Pp(A) = 0

if p < pc and Pp(A) = 1 if p > pc. The value of pc is not known, and more importantly, it is not

known whether Ppc(A) is 0 or 1! This is a typical situation - Kolmogorov’s law may tell us that the
probability of an event is 0 or 1, but deciding between these two possibilities can be very difficult!

3You may be slightly worried that the zero-one law was stated for a sequence but we have an array here. Simply
take a bijection f : N→ Z2 and define Yn = Xf(n) and observe that the event that we want is in the tail of the sequence
(Yn)n∈N. This shows that we could have stated Kolmogorov’s zero one law for a countable collection Fi, i ∈ I , of
independent sigma algebras. The tail sigma algebra should then be defined as

T
F⊆I,|F |<∞

σ(
S

i∈I\F
Fi)

11



4.3. Random walk. Let Xi be i.i.d. Ber±(1/2) and let Sn = X1 + . . . + Xn for n ≥ 1 and S0 = 0
(S = (Sn) is called simple, symmetric random walk on integers). Let A be the event that the random
walk returns to the origin infinitely often, i.e., A = {ω : Sn(ω) = 0 infinitely often}.

Then A is not a tail event. Indeed, suppose Xk(ω) = (−1)k for k ≥ 2. Then, if X1(ω) = −1, the
event A occurs (i.e., A 3 ω) while if X1(ω) = +1, then A does not occur (i.e., A 63 ω). This proves
that A 6∈ σ(X2, X3, . . .) and hence, it is not a tail event.

Alternately, you may write A = lim supAn where An = {ω : Sn(ω) = 0} and try to use Borel-

Cantelli lemmas. It can be shown with some effort that P(A2n) � 1√
n

and hence
∑

nP(An) = ∞.

However, the events An are not independent (even pairwise), and hence we cannot apply the
second Borel-Cantelli to conclude that P(A) = 1.

Nevertheless, the last statement that P(A) = 1 is true. It is a theorem of Pólya that the random
walk returns to the origin in one and two dimensions but not necessarily in three and higher
dimensions! If you like a challenge, use the first or second moment methods to show it in the
one-dimensional case under consideration (Hint: Let Rn be the number of returns in the first n
steps and try to compute/estimate its first two moments).

5. A SHORT PREVIEW OF LAWS OF LARGE NUMBERS AND OTHER THINGS TO COME

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close to
50. What do we mean by that, for after all the number of heads could be any number between 0
and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The
weak law of large numbers expresses precisely this.

Let X1, X2, . . . be i.i.d. random variables with finite variance. Let µ = E[X1] and σ2 = Var(X1).

Let Sn = X1 + . . .+Xn and X̄n = 1
nSn be the sample mean of the first n observations.

By linearity of expectations, E[X̄n] = µ and by the independence of Xis, we have Var(Sn) =∑n
i=1 Var(Xi) = nσ2. In particular, the standard deviation of Sn is σ

√
n, showing that if µ = 0, then

the sum of n i.i.d. variables is of order
√
n. This is one of the most important facts in probability

and statistics (sometimes called square root law).
Returning to the sample mean, using Chebyshev’s inequality, for any δ > 0, we have

P{|X̄n − µ| ≥ δ} ≤
1
δ2

E[(X̄n − µ)2] =
σ2

δ2n
.

In particular, P{|X̄n − µ| ≥ δ} → 0 as n → ∞. In words, the distribution of the random variable

X̄n puts most of its mass close to the point µ (if n is large). This is one way of making precise
the idea that sample mean is close to the population mean. Thus we have proved the following
theorem, under the extra assumption that Var(X1) is finite.

Theorem 12 (Kolmogorov’s weak law of large numbers). Let X1, X2 . . . be i.i.d random variables. If

E[|X1|] <∞, then for any δ > 0, as n→∞, we have P{|X̄n − µ| ≥ δ} → 0.
12



The full statement (without finite variance assumption) will be proved later. One idea might

be to use Markov’s inequality for |X̄n − µ| (instead of squaring). That gives P{|X̄n − µ| ≥ δ} ≤
1
δE[|X̄n − µ|]. If we use triangle inequality we get

E[|X̄n − µ|] ≤
1
n

n∑
i=1

E[|Xi − µ|] = E[|X1 − µ|].

This would have been useful only if the bound were to go to zero as n → ∞. In summary,
whatever be the merits of mean absolute deviation as a measure of dispersion, it is not comparable
to standard deviation as a theoretical tool.

We shall also prove the strong law of large numbers which we state now.

Theorem 13 (Kolmogorov’s SLLN). Let Xn be i.i.d with E[|X1|] <∞. Then, P
{

lim
n→∞

X̄n = µ
}

= 1.

What is the difference between the weak and strong law? Let An,δ = {|X̄n − µ| ≥ δ}. Then,

• Weak law is equivalent to the statement that P{An,δ} → 0 for every δ > 0.

• Strong law is equivalent to the statement that P{An,δ i.o } = 0 for every δ > 0. This is

because, lim
n→∞

X̄n(ω) = µ if and only if ω ∈
⋂
k

⋃
m

⋂
n≥m

(An, 1
k
)c.

It is easy to figure from this that the strong law implies the weak law but not conversely. We do not
elaborate on this now, as we shall later study various modes of convergence of random variables
and their relative strengths.

How can we prove the strong law? Fix δ > 0. One way to show that P{An,δ i.o } = 0 is to show

that
∑

nP{An,δ} < ∞ and invoke the first Borel-Cantelli lemma. But even under finite variance

assumption, the bound we have on P{An,δ} if σ2/nδ2, which is not summable. We need a better
bound.

Proof of SLLN under fourth moment assumption. Assume that E[X4
1 ] < ∞. Without loss of general-

ity, assume that µ = 0 (else replace Xi by Xi − µ).

Since E[X̄n] = 0 too, we get P{An,δ} ≤ δ−4E[|X̄n|4] by Markov’s inequality. Further,

E[|X̄n − µ|4] =
1
n
E

( n∑
i=1

Xi

)4
 =

1
n4

∑
i,j,k,`≤n

E[XiXjXkX`]

=
1
n4

(
nE[X4

1 ] + 3n(n− 1)E[X2
1 ]2
)

since E[XiXjXkX`] = 0 if any one of the indices i, j, k` is distnct from the rest (if i is distinct from

j, k, ` then it factors out as E[Xi] = 0). Thus, we have proved that P{An,δ} ≤ Cδ−4n−2 where

C = 3E[X2
1 ]2 + E[X4

1 ].
Thus,

∑
nP{An,δ} <∞ and we see that P{An,δ i.o } = 0 for any δ > 0. �
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6. MODES OF CONVERGENCE

Before going to the proofs of laws of large numbers under optimal conditions, we try to under-
stand the different senses in which random variables can converge to other random variables. Let
us recall all the modes of convergence we have introduced so far.

Definition 14. Let Xn, X be real-valued random variables on a common probability space.

I Xn
a.s.→ X (Xn converges to X almost surely) if P {ω : limXn(ω) = X(ω)} = 1.

I Xn
P→ X (Xn converges to X in probability) if P{|Xn − X| > δ} → 0 as n → ∞ for any

δ > 0.

I Xn
Lp→ X (Xn converges to X in Lp) if ‖Xn −X‖p → 0 (i.e., E[|Xn −X|p]→ 0. This makes

sense for any 0 < p ≤ ∞ although ‖ · · · ‖p is a norm only for p ≥ 1. Usually it is understood

that E[|Xn|p] and E[|X|p] are finite, although the definition makes sense without that.

I Xn
d→ X (Xn converges to X in distribution) if the distribution of µXn

d→ µX where µX is
the distribution of X . This definition (but not the others) makes sense even if the random
variables Xn, X are all defined on different probability spaces.

Now, we study the inter-relationships between these modes of convergence.

6.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli ran-
dom variables elucidates the matter.

Example 15. Suppose An are events in a probability space. Then one can see that

(1) 1An
P→ 0⇐⇒ lim

n→∞
P(An) = 0,

(2) 1An
a.s.→ 0⇐⇒ P(lim supAn) = 0.

By Fatou’s lemma, P(lim supAn) ≥ lim sup P(An), and hence we see that a.s convergence of 1An to zero
implies convergence in probability. The converse is clearly false. For instance, if An are independent events

with P(An) = n−1, then P(An) goes to zero but, by the second Borel-Cantelli lemma P(lim supAn) = 1.
This example has all the ingredients for the following two implications.

Lemma 16. Suppose Xn, X are random variables on the same probability space. Then,

(1) If Xn
a.s.→ X , then Xn

P→ X .

(2) If Xn
P→ X “fast enough” so that

∑
nP(|Xn −X| > δ) <∞ for every δ > 0, then Xn

a.s.→ X .

Proof. Note that analogous to the example, in general

(1) Xn
P→ X ⇐⇒ ∀δ > 0, lim

n→∞
P(|Xn −X| > δ) = 0,

(2) Xn
a.s.→ X ⇐⇒ ∀δ > 0, P(lim sup{|Xn −X| > δ}) = 0.

14



Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For
the second part, observe that by the first Borel Cantelli lemma, if

∑
nP(|Xn −X| > δ) < ∞, then

P(|Xn −X| > δ i.o) = 0 and hence lim sup |Xn −X| ≤ δ a.s. Apply this to all rational δ and take
countable intersection to get lim sup |Xn −X| = 0. Thus we get a.s. convergence. �

The second statement is useful for the following reason. Almost sure convergence Xn
a.s.→ 0 is

a statement about the joint distribution of the entire sequence (X1, X2, . . .) while convergence in

probability Xn
P→ 0 is a statement about the marginal distributions of Xns. As such, convergence

in probability is often easier to check. If it is fast enough, we also get almost sure convergence for
free, without having to worry about the joint distribution of Xns.

Note that the converse is not true in the second statement. On the probability space ([0, 1],B, λ),

let Xn = 1[0,1/n]. Then Xn
a.s.→ 0 but P(|Xn| ≥ δ) is not summable for any δ > 0. Almost sure

convergence implies convergence in probability, but no rate of convergence is assured.

Exercise 17. (1) If Xn
P→ X , show that Xnk

a.s.→ X for some subsequence.

(2) Show that Xn
P→ X if and only if every subsequence of {Xn} has a further subsequence that

converges a.s.

(3) IfXn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn+bYn
P→ aX+bY

and XnYn
P→ XY .

6.2. In distribution and in probability. We say that Xn
d→ X if the distributions of Xn converges

to the distribution of X . This is a matter of language, but note that Xn and X need not be on
the same probability space for this to make sense. In comparing it to convergence in probability,
however, we must take them to be defined on a common probability space.

Lemma 18. Suppose Xn, X are random variables on the same probability space. Then,

(1) If Xn
P→ X , then Xn

d→ X .

(2) If Xn
d→ X and X is a constant a.s., then Xn

P→ X .

Proof. (1) Suppose Xn
P→ X . Since for any δ > 0

P(Xn ≤ t) ≤ P(X ≤ t+ δ) + P(X −Xn > δ)

and P(X ≤ t− δ) ≤ P(Xn ≤ t) + P(Xn −X > δ),

we see that lim sup P(Xn ≤ t) ≤ P(X ≤ t + δ) and lim inf P(Xn ≤ t) ≥ P(X ≤ t − δ) for
any δ > 0. Let t be a continuity point of the distribution function ofX and let δ ↓ 0. We

immediately get limn→∞P(Xn ≤ t) = P(X ≤ t). Thus, Xn
d→ X .

15



(2) If X = b a.s. (b is a constant), then the cdf of X is FX(t) = 1t≥b. Hence, P(Xn ≤ b− δ)→ 0

and P(Xn ≤ b + δ) → 1 for any δ > 0 as b ± δ are continuity points of FX . Therefore

P(|Xn− b| > δ) ≤ (1−FXn(b+ δ)) +FXn(b− δ) converges to 0 as n→∞. Thus, Xn
P→ b. �

IfXn = 1−U andX = U , thenXn
d→ X but of courseXn does not converge toX in probability!

Thus the condition of X being constant is essential in the second statement. In fact, if X is any
non-degnerate random variable, we can find Xn that converge to X in distribution but not in

probability. For this, fix T : [0, 1] → R such that T (U) d= X . Then define Xn = T (1 − U). For all

n the random variable Xn has the same distribution as X and hence Xn
d→ X . But Xn does not

converge in probability to X (unless X is degenerate).

Exercise 19. (1) Suppose thatXn is independent of Yn for each n (no assumptions about independence

across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn) d→ (U, V ) where U d= X , V d= Y and U, V are

independent. Further, aXn + bYn
d→ aU + bV .

(2) If Xn
P→ X and Yn

d→ Y (all on the same probability space), then show that XnYn
d→ XY .

6.3. In probability and in Lp. How do convergence in Lp and convergence in probability com-

pare? Suppose Xn
Lp→ X (actually we don’t need p ≥ 1 here, but only p > 0 and E[|Xn−X|p]→ 0).

Then, for any δ > 0, by Markov’s inequality

P(|Xn −X| > δ) ≤ δ−pE[|Xn −X|p]→ 0

and thus Xn
P→ X . The converse is not true. In fact, even almost sure convergence does not imply

convergence in Lp, as the following example shows.

Example 20. On ([0, 1],B, λ), define Xn = 2n1[0,1/n]. Then, Xn
a.s.→ 0 but E[Xp

n] = n−12np for all n,

and hence Xn does not go to zero in Lp (for any p > 0).

As always, the fruitful question is to ask for additional conditions to convergence in probability
that would ensure convergence in Lp. Let us stick to p = 1. Is there a reason to expect a (weaker)

converse? Indeed, suppose Xn
P→ X . Then write E[|Xn − X|] =

∫∞
0 P(|Xn − X| > t)dt. For

each t the integrand goes to zero. Will the integral go to zero? Surely, if |Xn| ≤ 10 a.s. for all n,
(then the same holds for |X|) the integral reduces to the interval [0, 20] and then by DCT (since the
integrand is bounded by 1 which is integrable over the interval [0,20]), we get E[|Xn −X|]→ 0.

As example 20 shows, the converse cannot be true in full generality. What goes wrong in that
example is that with a small probabilityXn can take a very very large value and hence the expected
value stays away from zero. This observation makes the next definition more palatable. We put
the new concept in a separate section to give it the due respect that it deserves.
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7. UNIFORM INTEGRABILITY

Definition 21. A family {Xi}i∈I of random variables is said to be uniformly integrable if given any
ε > 0, there exists A large enough so that E[|Xi|1|Xi|>A] < ε for all i ∈ I .

Example 22. A finite set of integrable random variables is uniformly integrable. More interestingly, an
Lp-bounded family with p > 1 is u.i. For, if E[|Xi|p] ≤M for all i ∈ I for some M > 0, then

E[|Xi| 1|Xi|>t] ≤ E

[(
|Xi|
t

)p−1

|Xi| 1|Xi|>t

]
≤ 1
tp−1

M

which goes to zero as t→∞. Thus, given ε > 0, one can choose t so that supi∈I E[|Xi|1|Xi|>t] < ε.

This fails for p = 1, i.e., an L1-bounded family of random variables need not be uniformly integrable. To
see this, modify Example 20 by defining Xn = n1[0, 1

n
].

However, a uniformly integrable family must be bounded in L1. To see this find A > 0 so that
E[|Xi|1|Xi|>A] < 1 for all i. Then, for any i ∈ I , we get E[|Xi|] = E[|Xi|1|Xi|<A] + E[|Xi|1|Xi|≥A] ≤
A+ 1. Convince yourself that for any p > 1, there exist uniformly integrable families that are not bounded
in Lp.

Exercise 23. If {Xi}i∈I and {Yj}j∈J are both u.i, then {Xi + Yj}(i,j)∈I×J is u.i. What about the family of

products, {XiYj}(i,j)∈I×J?

Lemma 24. Suppose Xn, X are integrable random variables on the same probability space. Then, the
following are equivalent.

(1) Xn
L1

→ X .

(2) Xn
P→ X and {Xn} is u.i.

Proof. If Yn = Xn − X , then Xn
L1

→ X iff Yn
L1

→ 0, while Xn
P→ X iff Yn

P→ 0 and by the first part
of exercise 23, {Xn} is u.i if and only if {Yn} is. Hence we may work with Yn instead (i.e., we may
assume that the limiting r.v. is 0 a.s).

First suppose Yn
L1

→ 0. We already showed that Yn
P→ 0. If {Yn} were not uniformly inte-

grable, then there exists δ > 0 such that for any positive integer k, there is some nk such that

E[|Ynk |1|Ynk |≥k] > δ. This in turn implies that E[|Ynk |] > δ. But this contradicts Yn
L1

→ 0.

Next suppose Yn
P→ 0 and that {Yn} is u.i. Then, fix ε > 0 and findA > 0 so that E[|Yk|1|Yk|>A] ≤

ε for all k. Then,

E[|Yk|] ≤ E[|Yk|1|Yk|≤A] + E[|Yk|1|Yk|>A]

≤
∫ A

0
P(|Yk| > t)dt + ε.
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Since Yn
P→ 0 we see that P(|Yk| > t) → 0 for all t < A. Further, P(|Yk| > t) ≤ 1 for all k and 1 is

integrable on [0, A]. Hence, by DCT the first term goes to 0 as k →∞. Thus lim sup E[|Yk|] ≤ ε for

any ε and it follows that Yk
L1

→ 0. �

Corollary 25. Suppose Xn, X are integrable random variables and Xn
a.s.→ X . Then, Xn

L1

→ X if and only
if {Xn} is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT.
As shown by Lemma 24 and corollary 25, uniform integrability is the sharp condition, so it must
be weaker than the assumption in DCT. Indeed, if {Xn} are dominated by an integrable Y , then
whatever “A” works for Y in the u.i condition will work for the whole family {Xn}. Thus a
dominated family is u.i., while the converse is false.

Remark: Like tightness of measures, uniform integrability is also related to a compactness ques-

tion. On the space L1(µ), apart from the usual topology coming from the norm, there is another

one called weak topology (where fn → f if and only if
∫
fngdµ →

∫
fgdµ for all g ∈ L∞(µ)). The

Dunford-Pettis theorem asserts that pre-compact subsets of L1(µ) in this weak topology are pre-

cisely uniformly integrable subsets of L1(µ)! A similar question can be asked in Lp for p > 1

where weak topology means that fn → f if and only if
∫
fngdµ→

∫
fgdµ for all g ∈ Lq(µ) where

q−1 + p−1 = 1. Another part of Dunford-Pettis theorem asserts that pre-compact subsets of Lp(µ)
in this weak topology are precisely those that are bounded in the Lp(µ) norm.

8. WEAK LAW OF LARGE NUMBERS

We have already seen the weak law of large numbers under the extra assumption of finite vari-
ance. Now we prove the weak law under assuming only the finiteness of the first moment.

Theorem 26 (Kolmogorov’s weak law of large numbers). Let X1, X2 . . . be i.i.d random variables. If
E[|X1|] <∞, then for any δ > 0, as n→∞, we have

P
(∣∣∣ X1 + . . .+Xn

n
−E[X1]

∣∣∣ > δ

)
→ 0.

Let us introduce some terminology. If Yn, Y are random variables on a probability space and
P{|Yn − Y | ≥ δ} → 0 as n → ∞ for every δ > 0, then we say that Yn converges to Y in probability

and write Yn
P→ Y . In this language, the conclusion of the weak law of large numbers is that

1
nSn

P→ E[X1] (the limit random variable happens to be constant).

Proof. Without loss of generality assume that E[X1] = 0. Fix n and write Xk = Yk + Zk, where
Yk := Xk1|Xk|≤An and Zk := Xk1|Xk|>An for some An to be chosen later. Then, Yi are i.i.d, with

some mean µn := E[Y1] = −E[Z1] that depends on An and goes to zero as An →∞. Fix δ > 0 and
choose n0 large enough so that |µn| < δ for n ≥ n0.

18



As |Y1| ≤ An, we get Var(Y1) ≤ E[Y 2
1 ] ≤ AnE[|X1|]. By the Chebyshev bound that we used in

the first step,

(7) P
{∣∣∣ SYn

n
− µn

∣∣∣ > δ

}
≤ Var(Y1)

nδ2
≤ 1
nδ2

E[Y 2
1 ] =

1
nδ2

E[X2
11|X1|≥An ].

If n ≥ n0 then |µn| < δ and hence if | 1nS
Z
n + µn| ≥ δ, then at least one of Z1, . . . , Zn must be

non-zero.

P
{∣∣∣ SZn

n
+ µn

∣∣∣ > δ

}
≤ nP(Z1 6= 0) = nP(|X1| > An).

Thus, writing Xk = (Yk − µn) + (Zk + µn), we see that

P
{∣∣∣ Sn

n

∣∣∣ > 2δ
}
≤ P

{∣∣∣ SYn
n
− µn

∣∣∣ > δ

}
+ P

{∣∣∣ SZn
n

+ µn

∣∣∣ > δ

}
≤ 1
nδ2

E[X2
11|X1|≥An ] + nP(|X1| > An)(8)

We use the bound X2
11|X1|≤An ≤ An|X1| and Markov’s inequality to get

P
{∣∣∣ Sn

n

∣∣∣ > 2δ
}
≤ AnE[|X1|]

nδ2
+

n

An
E[|X1| 1|X1|>An ].

Fix an arbitrary ε > 0 and take An = αn with α := εδ2E[|X1|]−1. The first term clearly becomes

less than ε. The second term is bounded by α−1E[|X1| 1|X1|>αn], which goes to zero as n→∞ (for

any fixed choise of α > 0). Thus, we see that lim sup P{|n−1Sn| ≥ δ} ≤ ε. As this is valid for every

ε > 0, it follows that P{|n−1Sn| ≥ δ} → 0 as n→∞. �

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to

say that Var(SYn ) = nVar(Y1) for which it suffices if Yi were uncorrelated. In particular, if
we assume that Xi pairwise independent, identically distributed and have finite mean, then
the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with den-

sity 1
π(1+t2)

. Observe that E[|X|p] < ∞ for all p < 1 but not p = 1. It is a fact (we shall

probably see this later, you may try proving it yourself!) that 1
nSn has exactly the same

distribution as X1. There is no chance of convergence in probability then!

(3) If Xk are i.i.d. random variables (possibly with E[|X1|] = ∞), let us say that weak law of

large numbers is valid if there exist (non-random) numbers an such that 1
nSn − an

P→ 0.

When Xi have finite mean, this holds with an = E[X].
It turns out that a necessary and sufficient condition for the existence of such an is that

tP{|X1| ≥ t} → 0 as t → ∞ (in which case, the weak law holds with an = E[X1|X|≤n]).
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Cauchy distribution is an example that violates this condition. Find a distribution which
satisfies the condition but does not have finite expectation.

9. STRONG LAW OF LARGE NUMBERS

Theorem 27 (Kolmogorov’s SLLN). LetXn be i.i.d with E[|X1|] <∞. Then, Snn
a.s.→ E[X1] as n→∞.

As we discussed earlier, under the assumption that E[X4
1 ] is finite, P

(
|n−1Sn| > δ

)
= O(n−2)

which is summable, and hence SLLN holds. But proving it under just first moment assumption is

nontrivial. We present it now4.

Proof. Step 1: It suffices to prove the theorem for integrable non-negative random variable, be-

cause we may write X = X+ −X− and it is true that Sn = S+
n − S−n where S+

n = X+
1 + . . . + X+

n

and S−n = X−1 + . . . + X−n . Henceforth, we assume that Xn ≥ 0 and µ = E[X1] < ∞ (Caution:
Don’t also assume zero mean in addition to non-negativity!). One consequence of non-negativity
is that

(9)
SN1

N2
≤ Sn

n
≤ SN2

N1
if N1 ≤ n ≤ N2.

Step 2: The second step is to prove the following claim. To understand the big picture of the proof,
you may jump to the third step where the strong law is deduced using this claim, and then return
to the proof of the claim.

Claim 28. Fix any λ > 1 and define nk := bλkc. Then, Snknk
a.s.→ E[X1] as k →∞.

Proof of the claim: Fix j and for 1 ≤ k ≤ nj write Xk = Yk + Zk where Yk = Xk1Xk≤nj and

Zk = Xk1Xk>nj (why we chose the truncation at nj is not clear at this point). Then, let Jδ be large

enough so that for j ≥ Jδ, we have E[Z1] ≤ δ. Let SYnj =
∑nj

k=1 Yk and SZnj =
∑nj

k=1 Zk. Since

Snj = SYnj + SZnj and E[X1] = E[Y1] + E[Z1], we get

P
{∣∣∣ Snj

nj
−E[X1]

∣∣∣ > 2δ
}
≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣+
∣∣∣ SZnj
nj
−E[Z1]

∣∣∣ > 2δ

}

≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
+ P

{∣∣∣ SZnj
nj
−E[Z1]

∣∣∣ > δ

}

≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
+ P

{
SZnj
nj
6= 0

}
.(10)

4The proof given here is due to Etemadi. The presentation is adapted from a blog article of Terence Tao.
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We shall show that both terms in (10) are summable over j. The first term can be bounded by
Chebyshev’s inequality

(11) P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
≤ 1
δ2nj

E[Y 2
1 ] =

1
δ2nj

E[X2
11X1≤nj ].

while the second term is bounded by the union bound

(12) P

{
SZnj
nj
6= 0

}
≤ njP(X1 > nj).

The right hand sides of (11) and (12) are both summable. To see this, observe that for any positive
x, there is a unique k such that nk < x ≤ nk+1, and then

(a)
∞∑
j=1

1
nj
x21x≤nj ≤ x2

∞∑
j=k+1

1
λj
≤ Cλx, (b)

∞∑
j=1

nj1x>nj ≤
k∑
j=1

λj ≤ Cλx.

Here, we may take Cλ = λ
λ−1 , but what matters is that it is some constant depending on λ (but not

on x). We have glossed over the difference between bλjc and λj but you may check that it does
not matter (perhaps by replacing Cλ with a larger value). Setting x = X1 in the above inequalities
(a) and (b) and taking expectations, we get

∞∑
j=1

1
nj

E[X2
11X1≤nj ] ≤ CλE[X1].

∞∑
j=1

njP(X1 > nj) ≤ CλE[X1].

As E[X1] < ∞, the probabilities on the left hand side of (11) and (12) are summable in j, and

hence it also follows that P
{∣∣∣ Snjnj −E[X1]

∣∣∣ > 2δ
}

is summable. This happens for every δ > 0

and hence Lemma 16 implies that
Snj
nj

a.s.→ E[X1] a.s. This proves the claim.

Step 3: Fix λ > 1. Then, for any n, find k such that λk < n ≤ λk+1, and then, from (9) we get

1
λ
E[X1] ≤ lim inf

n→∞

Sn
n
≤ lim sup

n→∞

Sn
n
≤ λE[X1], almost surely.

Take intersection of the above event over all λ = 1 + 1
m , m ≥ 1 to get lim

n→∞
Sn
n = E[X1] a.s. �

10. APPLICATIONS OF LAW OF LARGE NUMBERS

We give three applications, two “practical” and one theoretical.
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10.1. Wierstrass’ approximation theorem.

Theorem 29. The set of polynomials is dense in the space of continuous functions (with the sup-norm
metric) on an interval of the line.

Proof (Bernstein). Let f ∈ C[0, 1]. For any n ≥ 1, we define the Bernstein polynomials Qf,n(p) :=∑n
k=0 f

(
k
n

) (
n
k

)
pk(1− p)n−k. We show that ‖Qf,n − f‖ → 0 as n→∞, which is clearly enough. To

achieve this, we observe that Qf,n(p) = E[f(n−1Sn)], where Sn has Bin(n, p) distribution. Law of
large numbers enters, because Binomial may be thought of as a sum of i.i.d Bernoullis.

For p ∈ [0, 1], consider X1, X2, . . . i.i.d Ber(p) random variables. For any p ∈ [0, 1], we have∣∣∣Ep

[
f

(
Sn
n

)]
− f(p)

∣∣∣ ≤ Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣]

= Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣1|Sn
n
−p|≤δ

]
+ Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣1|Sn
n
−p|>δ

]

≤ ωf (δ) + 2‖f‖Pp

{∣∣∣ Sn
n
− p

∣∣∣ > δ

}
(13)

where ‖f‖ is the sup-norm of f and ωf (δ) := sup{|f(x) − f(y)| : |x − y| < δ} is the modulus of

continuity of f . Observe that Varp(X1) = p(1− p) to write

Pp

{∣∣∣ Sn
n
− p

∣∣∣ > δ

}
≤ p(1− p)

nδ2
≤ 1

4δ2n
.

Plugging this into (13) and recalling that Qf,n(p) = Ep

[
f
(
Sn
n

)]
, we get

sup
p∈[0,1]

∣∣∣Qf,n(p)− f(p)
∣∣∣ ≤ ωf (δ) +

‖f‖
2δ2n

Since f is uniformly continuous (which is the same as saying that ωf (δ) ↓ 0 as δ ↓ 0), given any

ε > 0, we can take δ > 0 small enough that ωf (δ) < ε. With that choice of δ, we can choose n
large enough so that the second term becomes smaller than ε. With this choice of δ and n, we get
‖Qf,n − f‖ < 2ε. �

Remark 30. It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but
the Chebyshev bound. The main point is that the Bin(n, p) probability measure puts almost all its mass

between np(1 − δ) and np(1 + δ) (in fact, in a window of width
√
n around np). Nevertheless, WLLN

makes it transparent why this is so.

10.2. Monte Carlo method for evaluating integrals. Consider a continuous function f : [a, b] →
R whose integral we would like to compute. Quite often, the form of the function may be suf-
ficiently complicated that we cannot analytically compute it, but is explicit enough that we can
numerically evaluate (on a computer) f(x) for any specified x. Here is how one can evaluate the
integral by use of random numbers.
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Suppose X1, X2, . . . are i.i.d uniform([a, b]). Then, Yk := f(Xk) are also i.i.d with E[Y1] =∫ b
a f(x)dx. Therefore, by WLLN,

P

(∣∣∣ 1
n

n∑
k=1

f(Xk) −
∫ b

a
f(x)dx

∣∣∣ > δ

)
→ 0.

Hence if we can sample uniform random numbers from [a, b], then we can evaluate 1
n

∑n
k=1 f(Xk),

and present it as an approximate value of the desired integral!
In numerical analysis one uses the same idea, but with deterministic points. The advantage of

random samples is that it works irrespective of the niceness of the function. The accuracy is not

great, as the standard deviation of 1
n

∑n
k=1 f(Xk) is Cn−1/2, so to decrease the error by half, one

needs to sample four times as many points.

Exercise 31. Since π =
∫ 1
0

4
1+x2dx, by sampling uniform random numbersXk and evaluating 1

n

∑n
k=1

4
1+X2

k

we can estimate the value of π! Carry this out on the computer to see how many samples you need to get the
right value to three decimal places.

10.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such as
“do you support the war in Iraq?”. The poll may be conducted across continents, and one is
sometimes dismayed to see that the pollsters asked a 1000 people in France and about 1800 people
in India (a much much larger population). Should the sample sizes have been proportional to the
size of the population?

Behind the survey is the simple hypothesis that each person is a Bernoulli random variable
(1=‘yes’, 0=‘no’), and that there is a probability pi (or pf ) for an Indian (or a French person) to have
the opinion yes. Are different peoples’ opinions independent? Definitely not, but let us make

that hypothesis. Then, if we sample n people, we estimate p by X̄n where Xi are i.i.d Ber(p). The

accuracy of the estimate is measured by its mean-squared deviation
√

Var(X̄n) =
√
p(1− p)n−

1
2 .

Note that this does not depend on the population size, which means that the estimate is about as
accurate in India as in France, with the same sample size! This is all correct, provided that the
sample size is much smaller than the total population. Even if not satisfied with the assumption
of independence, you must concede that the vague feeling of unease about relative sample sizes
has no basis in fact...

11. THE LAW OF ITERATED LOGARITHM

If an ↑ ∞ is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup Sn
an

is constant a.s. This motivates the following natural question.

Question: Let Xi be i.i.d Ber±(1/2) random variables. Find an so that lim sup Sn
an

= 1 a.s.
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The question is about the growth rate of sums of random independent ±1s. We know that

n−1Sn
a.s.→ 0 by the SLLN, hence, an = n is “too much”. What about nα for some α < 1? Ap-

plying Hoeffding’s inequality (to be proved in the next section), we see that P(n−αSn > t) ≤
exp{−1

2 t
2n2α−1}. If α > 1

2 , this is a summable sequence for any t > 0, and therefore P(n−αSn >

t i.o.) = 0. That is lim supn−αSn
a.s.→ 0 for α > 1

2 . Alternately (instead of using Hoeffding’s in-

equality), you may do the same using moments. For a positive integer p, we have

P{|Sn| ≥ nαδ} ≤
1

δ2pn2αp
E[(X1 + . . .+Xn)2p]

≤ Cp
δ2pn2αp−p

where we used the fact that E[S2p
n ] ≤ Cpnp (exercise!). If α = 1

2 + ε, then taking p large enough we

can make this summable and hence 1
nαSn

a.s.→ 0.

What about α = 1
2? One can show that lim supn−

1
2Sn = +∞ a.s, which means that

√
n is too

slow compared to Sn. So the right answer is larger than
√
n but smaller than n

1
2
+ε for any ε > 0.

The sharp answer, due to Khinchine is one of the great results of probability theory. Khinchine
proved it for Bernoulli random variables AND it was extended to general distributions with finite
variance by Hartman and Wintner.

Result 32 (Law of iterated logarithm). LetXi be i.i.d with zero mean and finite variance σ2. Then,

lim sup
n→∞

Sn

σ
√

2n log logn
= +1 a.s.

In fact the set of all limit points of the sequence
{

Sn
σ
√

2n log logn

}
is almost surely equal to the interval

[−1, 1].

We skip the proof of LIL, because it is a bit involved, and there are cleaner ways to deduce it
using Brownian motion (in this or a later course).

Exercise 33. Let Xi be i.i.d random variables taking values ±1 with equal probability. Show that

lim sup
n→∞

Sn√
2n log logn

≤ 1, a.s.

12. HOEFFDING’S INEQUALITY

If Xn are i.i.d with finite mean, then we know that the probability for Sn/n to be more than δ

away from its mean, goes to zero. How fast? Assuming finite variance, we saw that this proba-

bility decays at least as fast as n−1. If we assume higher moments, we can get better bounds, but
always polynomial decay in n. Here we assume that Xn are bounded a.s, and show that the decay
is like a Gaussian.
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Lemma 34. (Hoeffding’s inequality). LetX1, . . . , Xn be independent, and assume that |Xk| ≤ dk w.p.1.
For simplicity assume that E[Xk] = 0. Then, for any n ≥ 1 and any t > 0,

P (|Sn| ≥ t) ≤ 2 exp
{
− t2

2
∑n

i=1 d
2
i

}
.

Remark 35. The boundedness assumption on Xks is essential. That E[Xk] = 0 is for convenience. If we
remove that assumption, note that Yk = Xk−E[Xk] satisfy the assumptions of the theorem, except that we
can only say that |Yk| ≤ 2dk (because |Xk| ≤ dk implies that |E[Xk]| ≤ dk and hence |Xk−E[Xk]| ≤ 2dk).
Thus, applying the result to Yks, we get

P (|Sn −E[Sn]| ≥ t) ≤ 2 exp
{
− t2

8
∑n

i=1 d
2
i

}
.

Proof. Without loss of generality, take E[Xk] = 0. Now, if |X| ≤ d w.p.1, and E[X] = 0, for any
λ > 0 use the convexity of exponential on [−λd, λd] (note that λX lies inside this interval and
hence a convex combination of −λd and λd), we get

eλX ≤ 1
2

((
1 +

X

d

)
eλd +

(
1− X

d

)
e−λd

)
.

Therefore, taking expectations we get E[exp{λX}] ≤ cosh(λd). Take X = Xk, d = dk and multiply

the resulting inequalities and use independence to get E[exp{λSn}] ≤
∏n
k=1 cosh(λdk). Apply the

elementary inequality cosh(x) ≤ exp(x2/2) to get

E[exp{λSn}] ≤ exp

{
1
2
λ2

n∑
k=1

d2
k

}
.

From Markov’s inequality we thus get P(Sn > t) ≤ e−λtE[eλSn ] ≤ exp
{
−λt+ 1

2λ
2
∑n

k=1 d
2
k

}
.

Optimizing this over λ gives the choice λ = tPn
k=1 d

2
k

and the inequality

P (Sn ≥ t) ≤ exp
{
− t2

2
∑n

i=1 d
2
i

}
.

Working with −Xk gives a similar inequality for P(−Sn > t) and adding the two we get the
statement in the lemma. �

The power of Hoeffding’s inequality is that it is not an asymptotic statement but valid for every
finite n and finite t. Here are two consequences. Let Xi be i.i.d bounded random variables with
P(|X1| ≤ d) = 1.

(1) (Large deviation regime) Take t = nu to get

P
(∣∣∣ 1
n
Sn −E[X1]

∣∣∣ ≥ u) = P (|Sn −E[Sn]| ≥ nu) ≤ 2 exp
{
− u2

8d2
n

}
.
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This shows that for bounded random variables, the probability for the sample sum Sn to
deviate by an order n amount from its mean decays exponentially in n. This is called the
large deviation regime because the order of the deviation is the same as the typical order of
the quantity we are measuring.

(2) (Moderate deviation regime) Take t = u
√
n to get

P
(
|Sn −E[Sn]| ≥ u

√
n
)
≤ 2 exp

{
− u2

8d2

}
.

This shows that Sn is within a window of size
√
n centered at E[Sn]. In this case the proba-

bility is not decaying with n, but the window we are looking at is of a smaller order namely,
√
n, as compared to Sn itself, which is of order n. Therefore this is known as moderate de-

viation regime. The inequality also shows that the tail probability of (Sn − E[Sn])/
√
n is

bounded by that of a Gaussian with variance d. More generally, if we take t = unα with

α ∈ [1/2, 1), we get P (|Sn −E[Sn]| ≥ unα) ≤ 2e−
u2

8d2
n2α−1

.

As Hoeffding’s inequality is very general, and holds for all finite n and t, it is not surprising that

it is not asymptotically sharp. For example, CLT will show us that (Sn − E[Sn])/
√
n

d→ N(0, σ2)

where σ2 = Var(X1). Since σ2 < d, and the N(0, σ2) has tails like e−u
2/2σ2

, the constant in the
exponent given by Hoeffding’s is not sharp in the moderate regime. In the large deviation regime,

there is well studied theory. A basic result there says that P(|Sn − E[Sn]| > nu) ≈ e−nI(u), where
the function I(u) can be written in terms of the moment generating function of X1. It turns out

that if |Xi| ≤ d, then I(u) is larger than u2/8d2 which is what Hoeffding’s inequality gave us.
Again, Hoeffding’s is not sharp in the large deviation regime.

13. RANDOM SERIES WITH INDEPENDENT TERMS

In law of large numbers, we considered a sum of n terms scaled by n. A natural question is
to ask about convergence of infinite series with terms that are independent random variables. Of
course

∑
Xn will not converge if Xi are i.i.d (unless Xi = 0 a.s!). Consider an example.

Example 36. Let an be i.i.d with finite mean. Important examples are an ∼ N(0, 1) or an = ±1 with
equal probability. Then, define f(z) =

∑
n anz

n. What is the radius of convergence of this series? From

the formula for radius of convergence R =
(

lim supn→∞ |an|
1
n

)−1
, it is easy to find that the radius of

convergence is exactly 1 (a.s.) [Exercise]. Thus we get a random analytic function on the unit disk.

Now we want to consider a general series with independent terms. For this to happen, the in-
dividual terms must become smaller and smaller. The following result shows that if that happens
in an appropriate sense, then the series converges a.s.
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Theorem 37 (Khinchine). Let Xn be independent random variables with finite second moment. Assume
that E[Xn] = 0 for all n and that

∑
n Var(Xn) <∞. Then

∑
Xn converges, a.s.

Proof. A series converges if and only if it satisfies Cauchy criterion. To check the latter, consider N
and consider

(14) P (|Sn − SN | > δ for some n ≥ N) = lim
m→∞

P (|Sn − SN | > δ for some N ≤ n ≤ N +m) .

Thus, for fixed N,m we must estimate the probability of the event δ < max1≤k≤m |SN+k − SN |.
For a fixed k we can use Chebyshev’s to get P(δ < |SN+k − SN |) ≤ δ−2Var(XN + XN+1 + . . . +
XN+m). However, we don’t have a technique for controlling the maximum of |SN+k − SN | over
k = 1, 2, . . . ,m. This needs a new idea, provided by Kolmogorov’s maximal inequality below.

Invoking 40, we get

P (|Sn − SN | > δ for some N ≤ n ≤ N +m) ≤ δ−2
N+m∑
k=N

Var(Xk) ≤ δ−2
∞∑
k=N

Var(Xk).

The right hand side goes to zero as N →∞. Thus, from (14), we conclude that for any δ > 0,

lim
N→∞

P (|Sn − SN | > δ for some n ≥ N) = 0.

This implies that lim supSn − lim inf Sn ≤ δ a.s. Take intersection over δ = 1/k, k = 1, 2 . . . to get
that Sn converges a.s. �

Remark 38. What to do if the assumptions are not exactly satisfied? First, suppose that
∑

n Var(Xn) is
finite but E[Xn] may not be zero. Then, we can write

∑
Xn =

∑
(Xn − E[Xn]) +

∑
E[Xn]. The first

series on the right satisfies the assumptions of Theorem 37 and hence converges a.s. Therefore,
∑
Xn will

then converge a.s if and only if the deterministic series
∑

nE[Xn] converges.
Next, suppose we drop the finite variance condition too. Now Xn are arbitrary independent random

variables. We reduce to the previous case by truncation. Suppose we could find some A > 0 such that
P(|Xn| > A) is summable. Then set Yn = Xn1|Xn|≤A. By Borel-Cantelli, almost surely, Xn = Yn for

all but finitely many n and hence
∑
Xn converges if and only if

∑
Yn converges. Note that Yn has finite

variance. If
∑

nE[Yn] converges and
∑

n Var(Yn) <∞, then it follows from the argument in the previous
paragraph and Theorem 37 that

∑
Yn converges a.s. Thus we have proved

Lemma 39 (Kolmogorov’s three series theorem - part 1). Suppose Xn are independent random vari-
ables. Suppose for some A > 0, the following hold with Yn := Xn1|Xn|≤A.

(a)
∑
n

P(|Xn| > A) <∞. (b)
∑
n

E[Yn] converges. (c)
∑
n

Var(Yn) <∞.

Then,
∑

nXn converges, almost surely.
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Kolmogorov showed that if
∑

nXn converges a.s., then for any A > 0, the three series (a), (b) and (c)
must converge. Together with the above stated result, this forms a very satisfactory answer as the question
of convergence of a random series (with independent entries) is reduced to that of checking the convergence
of three non-random series! We skip the proof of this converse implication.

14. KOLMOGOROV’S MAXIMAL INEQUALITY

It remains to prove the inequality invoked earlier about the maximum of partial sums of Xis.
Note that the maximum of n random variables can be much larger than any individual one. For

example, if Yn are independent Exponential(1), then P(Yk > t) = e−t, whereas P(maxk≤n Yk >

t) = 1− (1− e−t)n which is much larger. However, when we consider partial sums S1, S2, . . . , Sn,
the variables are not independent and a miracle occurs.

Lemma 40 (Kolmogorov’s maximal inequality). Let Xn be independent random variables with finite

variance and E[Xn] = 0 for all n. Then, P (maxk≤n |Sk| > t) ≤ t−2
∑n

k=1 Var(Xk).

Proof. The second inequality follows from the first by considering Xks and their negatives. Hence
it suffices to prove the first inequality.

Fix n and let τ = inf{k ≤ n : |Sk| > t} where it is understood that τ = n if |Sk| ≤ t for all k ≤ n.
Then, by Chebyshev’s inequality,

P(max
k≤n
|Sk| > t) = P(|Sτ | > t) ≤ t−2E[S2

τ ].(15)

We control the second moment of Sτ by that of Sn as follows.

E[S2
n] = E

[
(Sτ + (Sn − Sτ ))2

]
= E[S2

τ ] + E
[
(Sn − Sτ )2

]
+ 2E[Sτ (Sn − Sτ )]

≥ E[S2
τ ] + 2E[Sτ (Sn − Sτ )].(16)

We evaluate the second term by splitting according to the value of τ . Note that Sn − Sτ = 0 when
τ = n. Hence,

E[Sτ (Sn − Sτ )] =
n−1∑
k=1

E[1τ=kSk(Sn − Sk)]

=
n−1∑
k=1

E [1τ=kSk] E[Sn − Sk] (because of independence)

= 0 (because E[Sn − Sk] = 0).

In the second line we used the fact that Sk1τ=k depends on X1, . . . , Xk only, while Sn − Sk de-

pends only on Xk+1, . . . , Xn. From (16), this implies that E[S2
n] ≥ E[S2

τ ]. Plug this into (15) to get

P(maxk≤n Sk > t) ≤ t−2E[S2
n]. �
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15. CENTRAL LIMIT THEOREM - STATEMENT, HEURISTICS AND DISCUSSION

If Xi are i.i.d with zero mean and finite variance σ2, then we know that E[S2
n] = nσ2, which can

roughly be interpreted as saying that Sn ≈
√
n (That the sum of n random zero-mean quantities

grows like
√
n rather than n is sometimes called the fundamental law of statistics). The central limit

theorem makes this precise, and shows that on the order of
√
n, the fluctuations (or randomness)

of Sn are independent of the original distribution of X1! We give the precise statement and some
heuristics as to why such a result may be expected.

Theorem 41. Let Xn be i.i.d with mean µ and finite variance σ2.Then, Sn−nµ
σ
√
n

converges in distribution to

N(0, 1).

Informally, letting χ denote a standard Normal variable, we may write Sn ≈ nµ + σ
√
nχ. This

means, the distribution of Sn is hardly dependent on the distribution of X1 that we started with,
except for the two parameters - mean and variance. This is a statement about a remarkable sym-
metry, where replacing one distribution by another makes no difference to the distribution of the
sum.

Heuristics:: Why should one expect such a statement to be true? Without loss of generality, let

us take µ = 0 and σ2 = 1. First point to note is that the standard deviation of Sn/
√
n is 1, which

gives hope that in the limit we may get a non-degenerate distribution. Indeed, if the variance were
going to zero, then we could only expect the limiting distribution to have zero variance and thus
be degenerate. Further, since the variance is bounded above, it follows that the distributions of

Sn/
√
n form a tight family. Therefore, there must be subsequences that have distributional limits.

Let us make a leap of faith and assume that the entire sequence Sn/
√
n converges in distribution

to some Y . If so, what can be the distribution of Y ? Observe that (2n)−
1
2S2n

d→ Y and further,

X1 +X3 + . . .+X2n−1√
n

d→ Y,
X2 +X4 + . . .+X2n√

n

d→ Y.

But (X1, X3, . . .) is independent of (X2, X4, . . .). Therefore, by an earlier exercise, we also get(
X1 +X3 + . . .+X2n−1√

n
,
X2 +X4 + . . .+X2n√

n

)
d→ (Y1, Y2)

where Y1, Y2 are i.i.d copies of Y . But then, by yet another exercise, we get

S2n√
2n

=
1√
2

(
X1 +X3 + . . .+X2n−1√

n
+
X2 +X4 + . . .+X2n√

n

)
d→ Y1 + Y2√

2

Thus we must have Y1 + Y2
d=
√

2Y . If Y1 ∼ N(0, σ2), then certainly it is true that Y1 + Y2
d=
√

2Y .

We claim that N(0, σ2) are the only distributions that have this property. If so, then it gives a
strong heuristic that the central limit theorem is true.
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To show that N(0, σ2) is the only distribution that satisfies Y1 + Y2
d=
√

2Y (where Y1, Y2, Y are

i.i.d. N(0, σ2)) is not trivial. The cleanest way is to use characteristic functions. If ψ(t) denotes the
characteristic function of Y , then

ψ(t) = E
[
eitY

]
= E

[
eitY/

√
2
]2

= ψ

(
t√
2

)2

.

From this, by standard methods, one can deduce that ψ(t) = e−at
2

for some a > 0 (exercise, but
note that characteristic functions are always continuous). By uniqueness of characteristic func-

tions, Y ∼ N(0, 2a). Since we expect E[Y 2] = 1, we must get N(0, 1).
Apart from these heuristics, it is possible to prove the CLT for certain special distributions. One

is of course the Demoivre-Laplace limit theorem (CLT for Bernoullis), which is well known and
we omit it here. We just recall that sums of independent Bernoullis have binomial distribution,
with explicit formula for the probability mass function and whose asymptotics can be calculated
using Stirling’s formula.

Instead, let us consider the less familiar case of exponential distribution. If Xi are i.i.d Exp(1) so

that E[X1] = 1 and Var(X1) = 1. Then Sn ∼ Gamma(n, 1) and hence Sn−n√
n

has density

fn(x) =
1

Γ(n)
e−n−x

√
n(n+ x

√
n)n−1√n

=
e−nnn−

1
2

Γ(n)
e−x
√
n

(
1 +

x√
n

)n−1

→ 1√
2π
e−

1
2
x2

by elementary calculations (use Stirling’s approximation for Γ(n) and for terms involving x write

the exponent as −x
√
n+ log(1 + x/

√
n) and use the Taylor expansion of logarithm). By an earlier

exercise convergence of densities implies convergence in distribution and thus we get CLT for
sums of exponential random variables.

Exercise 42. Prove the CLT for X1 ∼ Ber(p). Note that this also implies CLT for X1 ∼ Bin(k, p).

Lastly, we show how the CLT can be derived under strong assumptions by the method of mo-
ments. As justifying all the steps here would take time, let us simply present it as a heuristic for
CLT for Bernoulli random variables. Let Xi be i.i.d. Ber±(1/2).

As usual Sn = X1 + . . .+Xn. Let us compute the moments of Sn/
√
n. By the symmetry of the

distribution, all odd moments are zero. Consider an even moment

E[(Sn/
√
n)2p] =

1
np

∑
1≤i1,...,i2p≤n

E[Xi1Xi2 . . . Xi2p ].

If any Xk occurs an odd number of times in the expectation, then the term is zero.
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16. STRATEGIES OF PROOF OF CENTRAL LIMIT THEOREM

In the next few sections, we shall prove CLT as stated in Theorem 41 as well as a more gen-
eral CLT for triangular arrays to be stated in Theorem 49. We shall in fact give two proofs, one
via the replacement strategy of Lindeberg and another via characteristic functions. Both proofs
teach useful techniques in probability. To separate the key ideas from technical details that are
less essential, we shall first prove a weaker version of Theorem 41 (assuming that X1 has finite
third moment) by both approaches. Then we prove the more general Theorem 49 (which implies
Theorem 41 anyway) by adding minor technical details to both approaches.

What are these two strategies? The starting point is the following fact that we have seen before.

Lemma 43. Yn
d→ Y if and only if E[f(Yn)] → E[f(Y )] for all f ∈ Cb(R). Here Cb(R) is the space of

bounded continuous functions on R.

The implication that we shall use is one way, and let us recall how that is proved.

Proof of one implication. Suppose E[f(Yn)]→ E[f(Y )] for all f ∈ Cb(R). Fix t, a continuity point of
FY , and for each k ≥ 1 define a function fk ∈ Cb(R) such that 0 ≤ fk ≤ 1, fk(x) = 1 for x ≤ t and

fk(x) = 0 for x ≥ t+ 1
k . For example, we may take fk to be linear in [t, t+ 1

k ].

As fk ∈ Cb(R), we get E[fk(Yn)]→ E[fk(Y )] as n→∞. But FY (t) ≤ E[fk(Y )] ≤ FY (t+ 1
k ) and

FYn(t) ≤ E[fk(Yn)] ≤ FYn(t+ 1
k ). Hence, lim supn→∞ FYn(t) ≤ FY (t+ 1

k ). This being true for every

k, we let k →∞ and get lim supn→∞ FYn(t) ≤ FY (t). Similarly, use the function gk(x) := fk(x+ 1
k )

to get

lim inf
n→∞

FYn(t) ≥ lim
n→∞

E[gk(Yn)] = E[gk(Y )] ≥ FY (t− 1
k

).

Again, letting k → ∞ and using continuity of FY at t we get lim infn→∞ FYn(t) ≥ FY (t). Thus,

Yn
d→ Y . �

Continuous functions are more easy to work with than indicators of intervals, hence the use-
fulness of the above lemma. However, it is even more convenient that we can restrict to smaller
subclasses of the space of continuous functions. We state two results to that effect.

Lemma 44. Suppose E[f(Yn)]→ E[f(Y )] for all f ∈ C(3)
b (R), the space of all functions whose first three

derivatives exist, are continuous and bounded. Then, Yn
d→ Y .

Proof. Repeat the proof given for Lemma 43 but take fk to be a smooth function such that 0 ≤ fk ≤
1, fk(x) = 1 for x ≤ t and fk(x) = 0 for x ≥ t+ 1

k . �

Here is the further reduction, which unlike the first, is not so obvious! It is proved in the
appendix, and goes by the name Lévy’s continuity theorem.

Lemma 45 (Lévy’s continuity theorem). Suppose E[eiλYn ]→ E[eiλY ] for all λ ∈ R. Then, Yn
d→ Y .
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In this lemma, we only check convergence of expectations for the very special class of functions

eλ(y) := eiλy, for λ ∈ R. Note that by the expectation of a complex valued random variable U + iV

withU, V real-valued, we simply mean E[U ]+iE[V ]. The functionϕY : R→ C defined by ϕY (λ) =

E[eiλY ] is called the characteristic function of Y . It is a very useful tool in probability and analysis,
and a brief introduction including the proof of the above lemma is give in the appendix 21.

17. CENTRAL LIMIT THEOREM - TWO PROOFS ASSUMING THIRD MOMENTS

We give two proofs of the following slightly weaker version of CLT.

Theorem 46. Let Xn be i.i.d with finite third moment, and having zero mean and unit variance. Then, Sn√
n

converges in distribution to N(0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume
Theorem 41.

17.1. Proof via characteristic functions. We shall need the following facts.

Exercise 47. Let zn be complex numbers such that nzn → z. Then, (1 + zn)n → ez .

We need a second fact that is proved in the appendix 21. It is quite easy to prove it incorrectly,
but less so to prove it correctly!

Exercise 48. Let X ∼ N(0, 1). Then, E[eitX ] = e−
1
2
t2 .

Proof of Theorem 46. By Lévy’s continuity theorem (Lemma 45), it suffices to show that the char-

acteristic functions of n−
1
2Sn converge to the characteristic function of N(0, 1). The characteristic

function of Sn/
√
n is ψn(t) := E

[
eitSn/

√
n
]
. Writing Sn = X1 + . . .+Xn and using independence,

ψn(t) = E

[
n∏
k=1

eitXk/
√
n

]

=
n∏
k=1

E
[
eitXk/

√
n
]

= ψ

(
t√
n

)n
where ψ denotes the characteristic function of X1.

Use Taylor expansion to third order for the function x→ eitx to write,

eitx = 1 + itx− 1
2
t2x2 − i

6
t3eitx

∗
x3 for some x∗ ∈ [0, x] or [x, 0].
32



Apply this with X1 in place of x and tn−1/2 in place of t. Then take expectations and recall that

E[X1] = 0 and E[X2
1 ] = 1 to get

ψ

(
t√
n

)
= 1− t2

2n
+Rn(t), where Rn(t) = − i

6n
3
2

t3E
[
eitX

∗
1X3

1

]
.

Clearly, |Rn(t)| ≤ Ctn
−3/2 for a constant Ct (that depends on t but not n). Hence nRn(t) → 0 and

by Exercise 47 we conclude that for each fixed t ∈ R,

ψn(t) =
(

1− t2

2n
+Rn(t)

)n
→ e−

t2

2

which is the characteristic function of N(0, 1). �

17.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we

observe that the central limit theorem is trivial for (Y1 + . . .+Yn)/
√
n, if Yi are independentN(0, 1)

random variables. The key idea of Lindeberg is to go from X1 + . . .+Xn to Y1 + . . .+ Yn in steps,
replacing each Xi by Yi, one at a time, and arguing that the distribution does not change much!

Proof. We assume, without loss of generality, that Xi and Yi are defined on the same probability
space, are all independent, Xi have the given distribution (with zero mean and unit variance) and
Yi have N(0, 1) distribution.

Fix f ∈ C(3)
b (R) and let

√
nUk =

∑k−1
j=1 Xj +

∑n
j=k+1 Yj and

√
nVk =

∑k
j=1Xj +

∑n
j=k+1 Yj for

0 ≤ k ≤ n and empty sums are regarded as zero. Then, V0 = SYn /
√
n and Vn = SXn /

√
n. Also,

SYn /
√
n has the same distribution as Y1. Thus,

E
[
f

(
1√
n
SXn

)]
−E[f(Y1)] =

n∑
k=1

E [f (Vk)− f (Vk−1)]

=
n∑
k=1

E [f (Vk)− f (Uk)]−
n∑
k=1

E [f (Vk−1)− f (Uk)] .

By Taylor expansion, we see that

f(Vk)− f(Uk) = f ′(Uk)
Xk√
n

+ f ′′(Uk)
X2
k

2n
+ f ′′′(U∗k )

X3
k

6n
3
2

,

f(Vk−1)− f(Uk) = f ′(Uk)
Yk√
n

+ f ′′(Uk)
Y 2
k

2n
+ f ′′′(U∗∗k )

Y 3
k

6n
3
2

.

Take expectations and subtract. A key observation is that Uk is independent of Xk, Yk. Therefore,

E[f ′(Uk)X
p
k ] = E[f ′(Uk)]E[Xp

k ] etc. Consequently, using equality of the first two moments of
Xk, Yk, we get

E[f(Vk)− f(Vk−1)] =
1

6n
3
2

{
E[f ′′′(U∗k )X3

k ] + E[f ′′′(U∗∗k )Y 3
k ]
}
.
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Now, U∗k and U∗∗k are not independent of Xk, Yk, hence we cannot factor the expectations. We put
absolute values and use the bound on derivatives of f to get∣∣∣E[f(Vk)]−E[f(Vk−1)]

∣∣∣ ≤ 1

n
3
2

Cf
{
E[|X1|3] + E[|Y1|3]

}
.

Add up over k from 1 to n to get

∣∣∣E [f ( 1√
n
SXn

)]
−E[f(Y1)]

∣∣∣ ≤ 1

n
1
2

Cf
{
E[|X1|3] + E[|Y1|3]

}
which goes to zero as n → ∞. Thus, E[f(Sn/

√
n)] → E[f(Y1)] for any f ∈ C

(3)
b (R) and conse-

quently, by Lemma 44 we see that 1√
n
Sn

d→ N(0, 1). �

18. CENTRAL LIMIT THEOREM FOR TRIANGULAR ARRAYS

The CLT does not really require the third moment assumption, and we can modify the above
proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where
we don’t have one infinite sequence, but the random variables that we add to get Sn depend on n
themselves. Further, observe that we assume independence but not identical distributions in each
row of the triangular array.

Theorem 49 (Lindeberg-Feller CLT). Suppose Xn,k, k ≤ n, n ≥ 1, are random variables. We assume
that

(1) For each n, the random variables Xn,1, . . . , Xn,n are defined on the same probability space, are
independent, and have finite variances.

(2) E[Xn,k] = 0 and
∑n

k=1 E[X2
n,k]→ σ2, as n→∞.

(3) For any δ > 0, we have
∑n

k=1 E[X2
n,k1|Xn,k|>δ]→ 0 as n→∞.

Then, Xn,1 + . . .+Xn,n
d→ N(0, σ2) as n→∞.

First we show how this theorem implies the standard central limit theorem under second mo-
ment assumptions.

Proof of Theorem 41 from Theorem 49. LetXn,k = n−
1
2Xk for k = 1, 2, . . . , n. Then, E[Xn,k] = 0 while∑n

k=1 E[X2
n,k] = 1

n

∑n
k=1 E[X2

1 ] = σ2, for each n. Further,
∑n

k=1 E[X2
n,k1|Xn,k|>δ] = E[X2

11|X1|>δ
√
n]

which goes to zero as n→∞ by DCT, since E[X2
1 ] <∞. Hence the conditions of Lindeberg Feller

theorem are satisfied and we conclude that Sn√
n

converges in distribution to N(0, 1). �

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-
Feller CLT. We consider some examples.
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Example 50. Let Xk ∼ Ber(pk) be independent random variables with 0 < pk < 1. Is Sn asymptotically

normal? By this we mean, does (Sn − E[Sn])/
√

Var(Sn) converge in distribution to N(0, 1)? Obviously
the standard CLT does not apply.

To fit it in the framework of Theorem 49, define Xn,k = Xk−pk
τn

where τ2
n =

∑n
k=1 pk(1 − pk) is the

variance of Sn. The first assumption in Theorem 49 is obviously satisfied. Further, Xn,k has mean zero

and variance pk(1 − pk)/τ2
n which sum up to 1 (when summed over 1 ≤ k ≤ n). As for the crucial third

assumption, observe that 1|Xn,k|>δ = 1|Xk−pk|>δτn . If τn ↑ ∞ as n → ∞, then the indicator becomes zero

(since |Xk − pk| ≤ 1). This shows that whenever τn →∞, asymptotic normality holds for Sn.
If τn does not go to infinity, there is no way CLT can hold. We leave it for the reader to think about, just

pointing out that in this case, X1 has a huge influence on (Sn − E[Sn])/τn. Changing X1 from 0 to 1 or
vice versa will induce a big change in the value of (Sn−E[Sn])/τn from which one can argue that the latter
cannot be asymptotically normal.

The above analysis works for any uniformly bounded sequence of random variables. Here is a
generalization to more general, independent but not identically distributed random variables.

Exercise 51. Suppose Xk are independent random variables and E[|Xk|2+δ] ≤ M for some δ > 0 and
M <∞. If Var(Sn)→∞, show that Sn is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 52. If Xn are i.i.d (mean zero and unit variance) random variable, what can we say about the

asymptotics of Tn := X1 + 2X2 + . . . + nXn? Clearly E[Tn] = 0 and E[T 2
n ] =

∑n
k=1 k

2 ∼ n3

3 . Thus, if

we expect any convergence to Gaussian, then it must be that n−
3
2Tn

d→ N(0, 1/3).

To prove that this is indeed so, write n−
3
2Tn =

∑n
k=1Xn,k, where Xn,k = n−

3
2kXk. Let us check the

crucial third condition of Theorem 49.

E[X2
n,k1|Xn,k|>δ] = n−3k2E[X2

k1|Xk|>δk−1n3/2 ]

≤ n−1E[X21|X|>δ√n] (since k ≤ n)

which when added over k gives E[X21|X|>δ√n]. Since E[X2] < ∞, this goes to zero as n → ∞, for any

δ > 0.

Exercise 53. Let 0 < a1 < a2 < . . . be fixed numbers and let Xk be i.i.d. random variables with zero
mean and unit variance. Find simple sufficient conditions on ak to ensure asymptotic normality of Tn :=∑n

k=1 akXk.

19. TWO PROOFS OF THE LINDEBERG-FELLER CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with
the earlier proofs and see where some modifications are required.
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19.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a prod-
uct to an exponential.

Exercise 54. If zk, wk ∈ C and |zk|, |wk| ≤ θ for all k, then
∣∣∣ n∏
k=1

zk −
n∏
k=1

wk

∣∣∣ ≤ θn−1
n∑
k=1

|zk − wk|.

Proof of Theorem 49. The characteristic function of Sn = Xn,1 + . . . + Xn,n is given by ψn(t) =
n∏
k=1

E
[
eitXn,k

]
. Again, we shall use the Taylor expansion of eitx, but we shall need both the second

and first order expansions.

eitx =

1 + itx− 1
2 t

2x2 − i
6 t

3eitx
∗
x3 for some x∗ ∈ [0, x] or [x, 0].

1 + itx− 1
2 t

2eitx
+
x2 for some x+ ∈ [0, x] or [x, 0].

Fix δ > 0 and use the first equation for |x| ≤ δ and the second one for |x| > δ to write

eitx = 1 + itx− 1
2
t2x2 +

1|x|>δ
2

t2x2(1− eitx+
)−

i1|x|≤δ
6

t3x3eitx
∗
.

Apply this with x = Xn,k, take expectations and write σ2
n,k := E[X2

n,k] to get

E[eitXn,k ] = 1− 1
2
σ2
n,kt

2 +Rn,k(t)

where, Rn,k(t) := t2

2 E
[
1|Xn,k|>δX

2
n,k

(
1− eitX

+
n,k

)]
− it3

6 E
[
1|Xn,k|≤δX

3
n,ke

itX∗n,k
]
. We can bound

Rn,k(t) from above by using |Xn,k|31|Xn,k|≤δ ≤ δX
2
n,k and |1− eitx| ≤ 2, to get

(17) |Rn,k(t)| ≤ t2E
[
1|Xn,k|>δX

2
n,k

]
+
|t|3δ

6
E
[
X2
n,k

]
.

We want to apply Exercise 54 to zk = E
[
eitXn,k

]
and wk = 1 − 1

2σ
2
n,kt

2. Clearly |zk| ≤ 1 by

properties of c.f. If we prove that max
k≤n

σ2
n,k → 0, then it will follow that |wk| ≤ 1 and hence with

θ = 1 in Exercise 54, we get

lim sup
n→∞

∣∣∣ n∏
k=1

E
[
eitXn,k

]
−

n∏
k=1

(
1− 1

2
σ2
n,kt

2

) ∣∣∣ ≤ lim sup
n→∞

n∑
k=1

|Rn,k(t)|

≤ 1
6
|t|3σ2δ (by 17)

To see that max
k≤n

σ2
n,k → 0, fix any δ > 0 note that σ2

n,k ≤ δ2 + E
[
X2
n,k1|Xn,k|>δ

]
from which we get

max
k≤n

σ2
n,k ≤ δ2 +

n∑
k=1

E
[
X2
n,k1|Xn,k|>δ

]
→ δ2.
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As δ is arbitrary, it follows that max
k≤n

σ2
n,k → 0 as n→∞. As δ > 0 is arbitrary, we get

(18) lim
n→∞

n∏
k=1

E
[
eitXn,k

]
= lim

n→∞

n∏
k=1

(
1− 1

2
σ2
n,kt

2

)
.

For n large enough (and fixed t), max
k≤n

t2σ2
n,k ≤

1
2 and then

e−
1
2
σ2
n,kt

2− 1
4
σ4
n,kt

4

≤ 1− 1
2
σ2
n,kt

2 ≤ e−
1
2
σ2
n,kt

2

.

Take product over k ≤ n, and observe that
∑n

k=1 σ
4
n,k → 0 (why?). Hence,

n∏
k=1

(
1− 1

2
σ2
n,kt

2

)
→ e−

σ2t2

2 .

From 18 and Lévy’s continuity theorem, we get
∑n

k=1Xn,k
d→ N(0, σ2). �

19.2. Proof of Lindeberg-Feller CLT by replacement method.

Proof. As before, without loss of generality, we assume that on the same probability space as the
random variables Xn,k we also have the Gaussian random variables Yn,k that are independent

among themselves and independent of all the Xn,ks and further satisfy E[Yn,k] = E[Xn,k] and

E[Y 2
n,k] = E[X2

n,k].

Similarly to the earlier proof of CLT, fix n and define Uk =
∑k−1

j=1 Xn,j +
∑n

j=k+1 Yn,j and Vk =∑k
j=1Xn,j +

∑n
j=k+1 Yn,j for 0 ≤ k ≤ n. Then, V0 = Yn,1 + . . . + Yn,n and Vn = Xn,1 + . . . + Xn,n.

Also, Vn ∼ N(0, σ2). Thus,

E [f (Vn)]−E[f(V0)] =
n∑
k=1

E [f (Vk)− f (Vk−1)](19)

=
n∑
k=1

E [f (Vk)− f (Uk)]−
n∑
k=1

E [f (Vk−1)− f (Uk)] .

We expand f(Vk)− f(Uk) by Taylor series, both of third order and second order and write

f(Vk)− f(Uk) = f ′(Uk)Xn,k +
1
2
f ′′(Uk)X2

n,k +
1
6
f ′′′(U∗k )X3

n,k,

f(Vk)− f(Uk) = f ′(Uk)Xn,k +
1
2
f ′′(U#

k )X2
n,k

37



where U∗k and U#
k are between Vk and Uk. Write analogous expressions for f(Vk−1) − f(Uk) (ob-

serve that Vk−1 = Uk + Yn,k) and subtract from the above to get

f(Vk)− f(Vk−1) = f ′(Uk)(Xn,k − Yn,k) +
1
2
f ′′(Uk)(X2

n,k − Y 2
n,k) +

1
6

(f ′′′(U∗k )X3
n,k − f ′′′(U∗∗k )Y 3

n,k),

f(Vk)− f(Vk−1) = f ′(Uk)(Xn,k − Yn,k) +
1
2

(f ′′(U#
k )X2

n,k − f ′′(U
##
k )Y 2

n,k).

Use the first one when |Xn,k| ≤ δ and the second one when |Xn,k| > δ and take expectations to get

|E[f(Vk)]−E[f(Vk−1)]| ≤ 1
2
E[|f ′′(Uk)|]

∣∣∣E[X2
n,k1|Xn,k|≤δ]−E[Y 2

n,k1|Yn,k|≤δ]
∣∣∣(20)

+
1
2

∣∣∣E[|f ′′(U#
k )|X2

n,k1|Xn,k|>δ]
∣∣∣+

1
2

∣∣∣E[|f ′′(U##
k )|Y 2

n,k1|Yn,k|>δ]
∣∣∣(21)

+
1
6

∣∣∣E[|f ′′′(U∗k )||Xn,k|31|Xn,k|≤δ]
∣∣∣+

1
6

∣∣∣E[|f ′′′(U∗∗k )||Yn,k|31|Yn,k|≤δ]
∣∣∣(22)

Since E[X2
n,k] = E[Y 2

n,k], the term in the first line (20) is the same as 1
2E[|f ′′(Uk)|]

∣∣E[X2
n,k1|Xn,k|>δ]−

E[Y 2
n,k1|Yn,k|>δ]

∣∣which in turn is bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}.

The terms in (21) are also bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}.

To bound the two terms in (22), we show how to deal with the first.∣∣∣E[|f ′′′(U∗k )||Xn,k|31|Xn,k|≤δ]
∣∣∣ ≤ CfδE[X2

n,k].

The same bound holds for the second term in (22). Putting all this together, we arrive at

|E[f(Vk)]−E[f(Vk−1)]| ≤ Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}+ δ{E[|X2
n,k] + E[Y 2

n,k]}.

Add up over k and use (19) to get

∣∣∣E [f (Vn)]−E[f(V0)]
∣∣∣ ≤ δ n∑

k=1

E[|X2
n,k] + E[Y 2

n,k]

+ Cf

n∑
k=1

E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ].

As n → ∞, the first term on the right goes to 2δσ2. The second term goes to zero. This follows
directly from the assumptions for the terms involvingX whereas for the terms involving Y (which
are Gaussian), it is a matter of checking that the same conditions do hold for Y .
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Consequently, we get lim sup
∣∣E[f(V0)] − E[f(Vn)]

∣∣ ≤ 2σ2δ. As δ is arbitrary, we have shown

that for any f ∈ C(3)
b (R), we have

E[f(Xn,1 + . . .+Xn,n)]→ E[f(Z)]

where Z ∼ N(0, σ2). This completes the proof that Xn,1 + . . .+Xn,n
d→ N(0, σ2). �

20. SUMS OF MORE HEAVY-TAILED RANDOM VARIABLES

Let Xi be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see

that the sums Sn converge to Gaussian distribution after shifting (by nE[X1]) and scaling (by
√
n).

What if we drop the assumption of second moments? Let us first consider the case of Cauchy
random variables to see that such results may be expected in general.

Example 55. Let Xi be i.i.d Cauchy(1), with density 1
π(1+x2)

. Then, one can check that Snn has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write Sn
n

d→ C1. If Xi were i.i.d

with density a
π(a2+(x−b)2)

(which can be denoted Ca,b with a > 0, b ∈ R), then Xi−b
a are i.i.d C1, and hence,

we get

Sn − nb
an

d→ C1.

This is the analogue of CLT, except that the location change is nb instead of nE[X1], scaling is by n instead

of
√
n and the limit is Cauchy instead of Normal.

This raises the following questions.

(1) For general i.i.d sequences, how are the location and scaling parameter determined, so that

b−1
n (Sn − an) converges in distribution to a non-trivial measure on the line?

(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what

distributions on X1 do we get b−1
n (Sn − an) d→ C1?

For simplicity, let us restrict ourselves to symmetric distributions, i.e., X d= −X . Then, clearly no
shifting is required, an = 0. Let us investigate the issue of scaling and what might be the limit.

It turns out that for each α ≤ 2, there is a unique (up to scaling) distribution µα such that

X + Y
d= 2

1
αX if X,Y ∼ µ are independent. This is known as the symmetric α-stable distribution

and has characteristic function ψα(t) = e−c|t|
α

. For example, the normal distribution corresponds

to α = 2 and the Cauchy to α = 1. If Xi are i.i.d µα, then is is easy to see that n−1/αSn
d→ µα. The

fact is that there is a certain domain of attraction for each stable distribution, and for i.i.d random

variables from any such distribution n−1/αSn
d→ µα.
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21. APPENDIX: CHARACTERISTIC FUNCTIONS AND THEIR PROPERTIES

Definition 56. Let µ be a probability measure on R. The function ψµ : Rd → R define by ψµ(t) :=∫
R e

itxdµ(x) is called the characteristic function5 or the Fourier transform of µ. If X is a random

variable on a probability space, we sometimes say “characteristic function of X” to mean the c.f

of its distribution (thus ψX(t) = E[eitX ]). We also write µ̂ instead of ψµ.

There are various other “integral transforms” of a measure that are closely related to the c.f. For
example, if we take ψµ(it) is the moment generating function of µ (if it exists). For µ supported

on N, its so called generating function Fµ(t) =
∑

k≥0 µ{k}tk (which exists for |t| < 1 since µ is

a probability measure) can be written as ψµ(−i log t) (at least for t > 0!) etc. The characteristic
function has the advantage that it exists for all t ∈ R and for all finite measures µ.

The importance of c.f comes from the following facts.

(A) It transforms well under certain operations of measures, such as shifting a scaling and
under convolutions.

(B) The c.f. determines the measure. Further, the smoothness of the characteristic function
encodes the tail decay of the measure, and vice versa.

(C) µ̂n(t) → µ̂(t) pointwise, if and only if µn
d→ µ. This is the key property that was used in

proving central limit theorems.

(D) There exist necessary and sufficient conditions for a function ψ : R → C to be the c.f o f a
measure. Because of this and part (B), sometimes one defines a measure by its characteristic
function.

(A) Transformation rules and some examples.

Theorem 57. Let X,Y be random variables.

(1) For any a, b ∈ R, we have ψaX+b(t) = eibtψX(at).

(2) If X,Y are independent, then ψX+Y (t) = ψX(t)ψY (t).

Proof. (1) ψaX+b(t) = E[eit(aX+b)] = E[eitaX ]eibt = eibtψX(at).

(2) ψX+Y (t) = E[eit(X+Y )] = E[eitXeitY ] = E[eitX ]E[eitY ] = ψX(t)ψY (t).
�

We give some examples.

(1) If X ∼ Ber(p), then ψX(t) = peit + q where q = 1 − p. If Y ∼ Binomial(n, p), then,

Y
d= X1 + . . .+Xn where Xk are i.i.d Ber(p). Hence, ψY (t) = (peit + q)n.

5In addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is
an excellent resource for the basics of characteristic functions. Our presentation is based on it too.
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(2) If X ∼ Exp(λ), then ψX(t) =
∫∞
0 λe−λxeitxdx = λ

λ−it . If Y ∼ Gamma(ν, λ), then if ν is an

integer, then Y d= X1 + . . .+Xν where Xk are i.i.d Exp(λ). Therefore, ψY (t) = λν

(λ−it)ν . This

is true even if ν is not an integer, but the proof would have to be a direct computation.

(3) Y ∼ Normal(µ, σ2). Then, Y = µ+σX , whereX ∼ N(0, 1) and by the transofrmatin rules,

ψY (t) = eiµtψX(σt). Thus it suffices to find the c.f of N(0, 1). Denote it by ψ.

ψ(t) =
1√
2π

∫
R
eitxe−

x2

2 dx = e−
t2

2

(
1√
2π

∫
R
e−

(x−it)2
2 dx

)
.

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of

a normal density with mean it and variance σ2. But if the mean is complex, what does
it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff
inside brackets is indeed equal to 1.

Alternately, one can justify differentiation under the integral sign to get

ψ′(t) =
i√
2π

∫
xeitxe−

x2

2 dx.

Then, justify differentiation under, in class using contour integration, which will not be

repeated here. The final concusion is that N(µ, σ2) has c.f eitµ−
σ2t2

2 .

(B) Continuity properties. The following lemma gives some basic properties of a c.f.

Lemma 58. Let µ ∈ P(R). Then, µ̂ is a uniformly continuous function on R with |µ̂(t)| ≤ 1 for all t with
µ̂(0) = 1. (equality may be attained elsewhere too).

Proof. Clearly µ̂(0) = 1 and |µ̂(t)| ≤ 1. Further,

|µ̂(λ+ h)− µ̂(λ)| ≤
∫
|eix(λ+h) − eiλx|dµ(x) =

∫
|eihx − 1|dµ(x).

The last quantity does not depend on λ. Further, the integrand approaches 0 as h → 0 while

|eihx − 1| ≤ 2 gives the domination required to conclude that the integral goes to 0 as h→ 0. �

The more we assume about the continuity/smoothness of the measure µ, the stronger the con-
clusion that can be drawn about the decay of µ̂. And conversely, if the tail of µ decays fast, the
smoother µ̂ will be. We used this latter fact in the proof of central limit theorems.

Lemma 59. Let Tn(θ) =
∑n

k=0
(iθ)k

k! be the nth order Taylor series for eiθ. Then, for any n ≥ 0 and any

θ ∈ R, we have

|eiθ − Tn(θ)| ≤


|θ|n+1

(n+1)!

2|θ|n
n!

(23)
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Proof. Observe that

d

dθ
eiθ = ieiθ,

d

dθ
Tn(θ) = iTn−1(θ).

Therefore, for any θ ∈ R,

|eiθ − Tn(θ)| ≤
∫ θ

0
|eiϕ − Tn−1(ϕ)|dϕ.

Inductively, this gives the inequalities in (23). In the base case n = 0, we have |eiθ − 1| =
2| sin(θ/2)| ≤ 2 ∧ |θ|. �

Lemma 60. Let X be a random variable with E|X|p <∞ for some positive integer p. Then, as λ→ 0,

ψX(λ) =
p∑

k=0

(iλ)k

k!
E[Xk] + o(λp+1).

In particular, ψ(k)
X (0) = ikE[Xk].

Proof. Put θ = λX in (23) and take expectations to get

∣∣∣E[eiλX ]−
p∑

k=0

(iλ)k

k!
E[Xk]

∣∣∣ ≤ |λ|p
p!

E
[
|X|p

(
|λX|
p+ 1

∧ 2
)]

.

We need to show that E
[
|X|p

(
|λX|
p+1 ∧ 2

)]
→ 0 as λ → 0. This follows from DCT since the inte-

grand goes to zero almost surely as λ→ 0 and is bounded by 2|X|p which is integrable. �

We stated only what we need. But the theme here can be developed further.

• If E|X|p < ∞, a little more work shows that ψ ∈ C(p)(R) and ψ(k)(λ) = ikE[XkeiλX ] for
k ≤ p.

• Conversely, if a characteristic function is differentiable p times, it can be shown that E|X|p−1 <

∞.

• The above facts show that the decay of the tail of a measure is encoded in the smoothness
of the characteristic function.

• Conversely, the decay of the characteristic function encodes the smoothness of the measure.
For example, if µ has a density then µ̂(λ) → 0 as λ → ±∞ (Riemann-Lebesgue lemma).

If the density is differentiable p times, then µ̂(λ) = o(|λ|−p) etc. Conversely, we have seen
that if µ̂ is integrable, then µ has a density (Fourier inversion formula). If it decays faster,
one can deduce further smoothness of the density.

For proofs, consult, Feller’s book.
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(C) Inversion formulas.

Theorem 61. If µ̂ = ν̂, then µ = ν.

Proof. Let θσ denote the N(0, σ2) distribution and letϕσ(x) = 1
σ
√

2π
e−x

2/2σ2
and Φσ(x) =

∫ x
−∞ ϕσ(u)du

and θ̂σ(t) = e−σ
2t2/2 denote the density and cdf and characteristic functions, respectively. Then,

by Parseval’s identity, we have for any α,∫
e−iαtµ̂(t)dθσ(t) =

∫
θ̂σ(x− α)dµ(x)

=
√

2π
σ

∫
ϕ 1
σ

(α− x)dµ(x)

where the last line comes by the explicit Gaussian form of θ̂σ. Let fσ(α) := σ√
2π

∫
e−iαtµ̂(t)dθσ(t)

and integrate the above equation to get that for any finite a < b,∫ b

a
fσ(α)dα =

∫ b

a

∫
R
ϕ 1
σ

(α− x) dµ(x) dα

=
∫

R

∫ b

a
ϕ 1
σ

(α− x) dα dµ(x) (by Fubini)

=
∫

R

(
Φ 1
σ

(b− x)− Φ 1
σ

(a− x)
)
dµ(x).

Now, we let σ →∞, and note that

Φ 1
σ

(u)→


0 if u < 0.

1 if u > 0.
1
2 if u = 0.

Further, Φσ−1 is bounded by 1. Hence, by DCT, we get

lim
σ→∞

∫ b

a
fσ(α)dα =

∫ [
1(a,b)(x) +

1
2
1{a,b}(x)

]
dµ(x) = µ(a, b) +

1
2
µ{a, b}.

Now we make two observations: (a) that fσ is determined by µ̂, and (b) that the measure µ is

determined by the values of µ(a, b) + 1
2µ{a, b} for all finite a < b. Thus, µ̂ determines the measure

µ. �

Corollary 62 (Fourier inversion formula). Let µ ∈ P(R).

(1) For all finite a < b, we have

(24) µ(a, b) +
1
2
µ{a}+

1
2
µ{b} = lim

σ→∞

1
2π

∫
R

e−iat − e−ibt

it
µ̂(t)e−

t2

2σ2 dt
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(2) If
∫

R |µ̂(t)|dt <∞, then µ has a continuous density given by

f(x) :=
1

2π

∫
R
µ̂(t)e−ixtdt.

Proof. (1) Recall that the left hand side of (24) is equal to lim
σ→∞

∫ b
a fσ where

fσ(α) :=
σ√
2π

∫
e−iαtµ̂(t)dθσ(t).

Writing out the density of θσ we see that

∫ b

a
fσ(α)dα =

1
2π

∫ b

a

∫
R
e−iαtµ̂(t)e−

t2

2σ2 dtdα

=
1

2π

∫
R

∫ b

a
e−iαtµ̂(t)e−

t2

2σ2 dα dt (by Fubini)

=
1

2π

∫
R

e−iat − e−ibt

it
µ̂(t)e−

t2

2σ2 dt.

Thus, we get the first statement of the corollary.

(2) With fσ as before, we have fσ(α) := 1
2π

∫
e−iαtµ̂(t)e−

t2

2σ2 dt. Note that the integrand con-

verges to e−iαtµ̂(t) as σ → ∞. Further, this integrand is bounded by |µ̂(t)| which is as-
sumed to be integrable. Therefore, by DCT, for any α ∈ R, we conclude that fσ(α)→ f(α)

where f(α) := 1
2π

∫
e−iαtµ̂(t)dt.

Next, note that for any σ > 0, we have |fσ(α)| ≤ C for all α where C =
∫
|µ̂(t)|dt.

Thus, for finite a < b, using DCT again, we get
∫ b
a fσ →

∫ b
a f as σ → ∞. But the proof of

Theorem 61 tells us that

lim
σ→∞

∫ b

a
fσ(α)dα = µ(a, b) +

1
2
µ{a}+

1
2
µ{b}.

Therefore, µ(a, b) + 1
2µ{a}+ 1

2µ{b} =
∫ b
a f(α)dα. Fixing a and letting b ↓ a, this shows that

µ{a} = 0 and hence µ(a, b) =
∫ b
a f(α)dα. Thus f is the density of µ.

The proof that a c.f. is continuous carries over verbatim to show that f is continuous
(since f is the Furier trnasform of µ̂, except for a change of sign in the exponent). �

An application of Fourier inversion formula Recall the Cauchy distribution µ with with density
1

π(1+x2)
whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is

a way to compute this integral).
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Consider the seemingly unrelated p.m ν with density 1
2e
−|x| (a symmetrized exponential, this is

also known as Laplace’s distribution). Its c.f is easy to compute and we get

ν̂(t) =
1
2

∫ ∞
0

eitx−xdx+
1
2

∫ 0

−∞
eitx+xdx =

1
2

(
1

1− it
+

1
1 + it

)
=

1
1 + t2

.

By the Fourier inversion formula (part (b) of the corollary), we therefore get

1
2
e−|x| =

1
2π

∫
ν̂(t)eitxdt =

1
2π

∫
1

1 + t2
eitxdt.

This immediately shows that the Cauchy distribution has c.f. e−|t| without having to compute the
integral!

(D) Continuity theorem. Now we come to the key result that was used in the proof of central limit
theorems. This is the equivalence between convergence in distribution and pointwise convergence
of characteristic functions.

Theorem 63. Let µn, µ ∈ P(R).

(1) If µn
d→ µ then µ̂n(t)→ µ̂(t) pointwise for all t.

(2) If µ̂n(t)→ ψ(t) pointwise for all t, then ψ = µ̂ for some µ ∈ P(R) and µn
d→ µ.

Proof. (1) If µn
d→ µ, then

∫
fdµn →

∫
fdµ for any f ∈ Cb(R) (bounded continuous function).

Since x→ eitx is a bounded continuous function for any t ∈ R, it follows that µ̂n(t)→ µ̂(t)
pointwise for all t.

(2) Now suppose µ̂n(t) → µ̂(t) pointwise for all t. We first claim that the sequence {µn} is
tight. Assuming this, the proof can be completed as follows.

Let µnk be any subsequence that converges in distribution, say to ν. By tightness, ν ∈
P(R). Therefore, by the first part, µ̂nk → ν̂ pointwise. But obviously, µ̂nk → µ̂ since
µ̂n → µ̂. Thus, ν̂ = µ̂ which implies that ν = µ. That is, any convergent subsequence of

{µn} converges in distribution to µ. This shows that µn
d→ µ.

It remains to show tightness. From Lemma 64 below, as n→∞,

µn ([−2/δ, 2/δ]c) ≤ 1
δ

δ∫
−δ

(1− µ̂n(t))dt −→ 1
δ

δ∫
−δ

(1− µ̂(t))dt

where the last implication follows by DCT (since 1 − µ̂n(t) → 1 − µ̂(t) for each t and also

|1−µ̂n(t)| ≤ 2 for all t). Further, as δ ↓ 0, we get 1
δ

∫ δ
−δ(1−µ̂(t))dt→ 0 (because, 1−µ̂(0) = 0

and µ̂ is continuous at 0).
Thus, given ε > 0, we can find δ > 0 such that lim supn→∞ µn ([−2/δ, 2/δ]c) < ε. This

means that for some finite N , we have µn ([−2/δ, 2/δ]c) < ε for all n ≥ N . Now, find
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A > 2/δ such that for any n ≤ N , we get µn ([−2/δ, 2/δ]c) < ε. Thus, for any ε > 0, we have
produced an A > 0 so that µn ([−A,A]c) < ε for all n. This is the definition of tightness. �

Lemma 64. Let µ ∈ P(R). Then, for any δ > 0, we have

µ

([
−2
δ
,
2
δ

]c)
≤ 1
δ

δ∫
−δ

(1− µ̂(t))dt.

Proof. We write ∫ δ

−δ
(1− µ̂(t))dt =

∫ δ

−δ

∫
R

(1− eitx)dµ(x)dt

=
∫

R

∫ δ

−δ
(1− eitx)dtdµ(x)

=
∫

R

(
2δ − 2 sin(xδ)

x

)
dµ(x)

= 2δ
∫

R

(
1− sin(xδ)

xδ

)
dµ(x).

When δ|x| > 2, we have sin(xδ)
xδ ≤ 1

2 (since sin(xδ) ≤ 1). Therefore, the integrand is at least 1
2 when

|x| > 2
δ and the integrand is always non-negative since | sin(x)| ≤ |x|. Therefore we get∫ δ

−δ
(1− µ̂(t))dt ≥ δµ ([−2/δ, 2/δ]c) . �
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