
PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Problem 1. Let F be a σ-algebra of subsets of Ω.

(1) Show that F is closed under countable intersections (
⋂
n
An), under set differences (A \ B),

under symmetric differences (A∆B).

(2) If An is a countable sequence of subsets of Ω, the set lim supnAn (respectively lim infnAn)
is defined as the set of all ω ∈ Ω that belongs to infinitely many (respectively, all but finitely
many) of the sets An.

If An ∈ F for all n, show that lim supAn ∈ F and lim inf An ∈ F . [Hint: First express
lim supAn and lim inf An in terms of Ans and basic set operations].

(3) If A1 ⊆ A2 ⊆ A3 ⊆ . . ., what are lim supAn and lim inf An?

Problem 2. Let (Ω,F) be a set with a σ-algebra.

(1) Suppose P is a probability measure on F . If An ∈ F and An increase to A (respectively,
decrease to A), show that P(An) increases to (respectively, decreases to) P(A).

(2) Suppose P : F → [0, 1] is a function such that (a) P(Ω) = 1, (b) P is finitely additive, (c) if
An, A ∈ F and Ans increase to A, then P(An) ↑ P(A). Then, show that P is a probability
measure on F .

Problem 3. Suppose S is a π-system and is further closed under complements (A ∈ S implies
Ac ∈ S). Show that S is an algebra.

Problem 4. Let P be a p.m. on a σ-algebra F and suppose S ⊆ F be a π-system. If Ak ∈ S for
k ≤ n, write P(A1 ∪A2 ∪ . . . ∪An) in terms of probabilities of sets in S.

Problem 5. Let (Ω,F ,P) be a probability space. Let G = {A ∈ F : P(A) = 0 or 1}. Show that G is
a σ-algebra.

Problem 6. Suppose σ(S) = F and P,Q are two probability measure on F . If P(A) = Q(A) for
all A ∈ S, is it necessarily true that P(A) = Q(A) for all A ∈ F? If yes, prove it. If not, give a
counterexample.
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Problem 7. Let F be a sigma-algebra on N that is strictly smaller than the power set. Show that
there exist m 6= n such that elements of F do not separate m and n (i.e., any A ∈ F either contains
both m,n or neither). Is the same conclusion valid if N is replaced by any set Ω?

Problem 8. (1) Let B be the Borel sigma-algebra of R. Show that B contains all closed sets, all
compact sets, all intervals of the form (a, b] and [a, b).

(2) Show that there is a countable family S of subsets of R such that σ(S) = BR.

(3) Let K be the 1/3-Cantor set. Show that µ∗(K) = 0.

Problem 9. Show that each of the following collection of subsets of Rd generate the same sigma-
algebra (which we call the Borel sigma-algebra).

(1) {(a, b] : a < b}.

(2) {[a, b] : a ≤ b and a, b ∈ Q}.

(3) The collection of all open sets.

(4) The collection of all compact sets.

Problem 10. (1) Let X be an arbitrary set. Let S be the collection of all singletons in Ω. De-
scribe σ(S).

(2) Let S = {(a, b] ∪ [−b,−a) : a < b are real numbers}. Show that σ(S) is strictly smaller than
the Borel σ-algebra of R.

(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set
in S either contains a and b both, or contains neither. Let F = σ(S). Show that any set in F
has the same property (either contains both a and b or contains neither).

Problem 11. Let Ω be an infinite set and let A = {A ⊆ Ω : A is finite or Ac is finite }. Define
µ : A → R+ by µ(A) = 0 if A is finite and µ(A) = 1 if Ac is finite.

(1) Show that A is an algebra and that µ is finitely additive on A.

(2) Under what conditions does µ extend to a probability measure on F = σ(A)?

Problem 12. On N = {1, 2, . . .}, let Ap denote the subset of numbers divisible by p. Describe
σ({Ap : p is prime}) as explicitly as possible.

Problem 13. If G ⊆ F are sigma algebras on Ω and F is countably generated, then is it necessarily
true that G is countably generated?
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Problem 14. Let (X,F) and (Y,G) be measure spaces. If T : X → Y is a function, show that

(1) {T−1B : B ∈ G} is a sigma algebra on X and

(2) {B ∈ G : T−1B ∈ F} is sigma-algebra on Y .

Problem 15. Let A1, A2, . . . be a finite or countable partition of a non-empty set Ω (i.e., Ai are
pairwise disjoint and their union is Ω). What is the σ-algebra generated by the collection of subsets
{An}? What is the algebra generated by the same collection of subsets?

Problem 16. Let X = [0, 1]N be the countable product of copies of [0, 1]. We define two sigma
algebras of subsets of X .

(1) Define a metric on X by d(x, y) =
∑

n |xn − yn|2−n. Let BX be the Borel sigma-algebra of
(X, d). [Note: For those who know topology, it is better to define BX as the Borel sigma
algebra for the product topology on X . The point is that the metric is flexible. We can take
many or other things (but not d(x, y) = supn |xn−yn| !!). What matters is only the topology
on X .]

(2) Let CX be the sigma-algebra generated by the collection of all cylinder sets. Recall that
cylinder sets are sets of the form A = U1 × U2 × . . .× Un × R× R× . . . where Ui are Borel
subsets of [0, 1].

Show that BX = CX .

Problem 17. Let µ be the Lebesgue p.m. on the Cartheodary σ-algebra B̄ and let µ∗ be the corre-
sponding outer Lebesgue measure defined on all subsets of [0, 1]. We say that a subset N ⊆ [0, 1]

is a null set if µ∗(N) = 0. Show that

B̄ = {B ∪N : B ∈ B and N is null}

where B is the Borel σ-algebra of [0, 1].
[Note: The point of this exercise is to show how much larger is the Lebesgue σ-algebra than the

Borel σ-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a
Borel set. However, cardinality-wise, there is a difference. The Lebesgue σ-algebra is in bijection
with 2R while the Borel σ-algebra is in bijection with R.]

Problem 18. Suppose (Ω,F ,P) is a probability space. Say that a subset N ⊆ Ω is P-null if there
exists A ∈ F with P(A) = 0 and such that N ⊆ A. Define G = {A ∪N : A ∈ F and N is null}.

(1) Show that G is a σ-algebra.

(2) For A ∈ G, write A = B ∪N with b ∈ F and a null set N , and define Q(A) = P(B). Show
that Q is well-defined, that Q is a probability measure on G and Q

∣∣∣
F

= P.
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[Note: G is called the P-completion of F . It is a cheap way to enlarge the σ-algebra and extend
the measure to the larger σ-algebra. Another description of the extended σ-algebra is G = {A ⊆
Ω : ∃B,C ∈ F such that B ⊆ A ⊆ C and P(B) = P(C)}. Combined with the previous prob-
lem, we see that the Lebesgue σ-algebra is just the completion of the Borel σ-algebra under the
Lebesgue measure. However, note that completion depends on the probability measure (for a dis-
crete probability measure on R, the completion will be the power set σ-algebra!). For this reason,
we prefer to stick to the Borel σ-algebra and not bother to extend it.]

Problem 19. Follow these steps to obtain Sierpinski’s construction of a non-measurable set. Here
µ∗ is the outer Lebesgue measure on R.

(1) Regard R as a vector space over Q and choose a basis H (why is it possible?).

(2) Let A0 = H ∪ (−H) = {x : x ∈ H or − x ∈ H}. For n ≥ 1, define An := An−1 −An−1 (may
also write An = An−1 + An−1 since A0 is symmetric about 0). Show that

⋃
n≥0

⋃
q≥1

1
qAn = R

where 1
qAn is the set {xq : x ∈ An}.

(3) Let N := min{n ≥ 0 : µ∗(An) > 0} (you must show that N is finite!). If AN is measurable,
show that ∪n≥N+1An = R.

(4) Get a contradiction to the fact thatH is a basis and conclude thatAN cannot be measurable.

[Remark: If you start with H which has zero Lebesgue measure, then N ≥ 1 and A := EN−1 is a
Lebesgue measurable set such that A + A is not Lebesgue measurable! That was the motivation
for Sierpinski. To find such a basis H , show that the Cantor set spans R and then choose a basis H
contained inside the Cantor set.]

Problem 20. We saw that for a Borel probability measure µ on R, the pushforward of Lebesgue
measure on [0, 1] under the map F−1

µ : [0, 1]→ R (as defined in lectures) is precisely µ. This is also
a practical tool in simulating random variables. We assume that a random number generator gives
us uniform random numbers from [0, 1]. Apply the above idea to simulate random numbers from
the following distributions (in matlab/mathematica or a program of your choice) a large number
of times and compare the histogram to the actual density/mass function.

(1) Uniform distribution on [a, b], (2) Exponential(λ) distribution, (3) Cauchy distribution, (4) Poisson(λ)
distribution. What about the normal distribution?

Problem 21. Let Ω = X = R and let T : Ω → X be defined by T (x) = x. We give a pair of
σ-algebras, F on Ω and G on X by taking F and G to be one of 2R or BR or {∅,R}. Decide for each
of the nine pairs, whether T is measurable or not.
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Problem 22. (1) Define T : Ω → Rn by T (ω) = (1A1(ω), . . . ,1An(ω)) where A1, . . . , An are
given subsets of Ω. What is the smallest σ-algebra on Ω for which T becomes a random
variable?

(2) Suppose (Ω,F ,P) is a probability space and assume that Ak ∈ F . Describe the push-
forward measure P ◦ T−1 on Rn.

Problem 23. For k ≥ 0, define the functions rk : [0, 1) → R by writing [0, 1) =
⊔

0≤j<2k
I

(k)
j where

I
(k)
j is the dyadic interval [j2−k, (j + 1)2−k) and setting

rk(x) =

−1 if x ∈ I(k)
j for odd j,

+1 if x ∈ I(k)
j for even j.

Fix n ≥ 1 and define Tn : [0, 1)→ {−1, 1}n by Tn(x) = (r0(x), . . . , rn−1(x)). Find the push-forward
of the Lebesgue measure on [0, 1) under Tn

Problem 24. (1) If T : Rn → Rm, show that T is Borel measurable if it is (a) continuous or
(b) right continuous or (c) lower semicontinuous or (d) non-decreasing (take m = n = 1

for the last one).

(2) If Rn and Rm are endowed with the Lebesgue sigma-algebra, show that even if T is con-
tinuous, it need not be measurable! Just do this for n = m = 1.

Problem 25. Show that composition of random variables is a random variable. Show that real-
valued random variables on a given (Ω,F) are closed under linear combinations, under multipli-
cation, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

Problem 26. Let µn = 1
n

n∑
k=1

δk/n and let µ be the uniform p.m. on [0, 1]. Show directly by definition

that d(µn, µ)→ 0 as n→∞.

Problem 27 (Change of variable for densities). (1) Let µ be a p.m. on R with density f by
which we mean that its CDF Fµ(x) =

∫ x
−∞ f(t)dt (you may assume that f is continuous,

non-negative and the Riemann integral
∫
R f = 1). Then, find the (density of the) push

forward measure of µ under (a) T (x) = x + a (b) T (x) = bx (c) T is any increasing and
differentiable function.

(2) If X has N(µ, σ2) distribution, find the distribution of (X − µ)/σ.
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Problem 28. (1) Let X = (X1, . . . , Xn). Show that X is an Rd-valued r.v. if and only if
X1, . . . , Xn are (real-valued) random variables. How does σ(X) relate to σ(X1), . . . , σ(Xn)?

(2) Let X : Ω1 → Ω2 be a random variable. If X(ω) = X(ω′) for some ω, ω′ ∈ Ω1, show that
there is no set A ∈ σ(X) such that ω ∈ A and ω′ 6∈ A or vice versa. [Extra! If Y : Ω1 → Ω2

is another r.v. which is measurable w.r.t. σ(X) on Ω1, then show that Y is a function of X].

Problem 29 (Lévy metric). (1) Show that the Lévy metric on P(Rd) defined in class is actually
a metric.

(2) Show that under the Lévy metric, P(Rd) is a complete and seperable metric space.

Problem 30. Let µ, ν be probability measures on R. Let C be the collection of all probability mea-
sures on R2 whose marginals are µ and ν. Show that C is tight in the space of probability measures
on R2.

Problem 31 (Lévy-Prohorov metric). If (X, d) is a metric space, let P(X) denote the space of Borel
probability measures on X . For µ, ν ∈ P(X), define

D(µ, ν) = inf{r ≥ 0 : µ(Ar) + r ≥ ν(A) and ν(Ar) + r ≥ µ(A) for all closed sets A}.

Here Ar = {y ∈ X : d(x, y) ≤ r for some x ∈ A} is the closed r-neighbourhood of A.

(1) Show that D is a metric on P(X).

(2) When X is Rd, show that this agrees with the definition of Lévy metric given in class (i.e.,
for any µn, µ, we have that µn → µ in both metrics or neither).

Problem 32 (Lévy metric). Let P([−1, 1]) ⊆ P(R) be the set of all Borel probability measures µ
such that µ([−1, 1]) = 1. For ε > 0, find a finite ε-net for P([−1, 1]). [Note: Recall that an ε-net
means a subset such that every element of P([−1, 1]) is within ε distance of some element of the
subset. Since P([−1, 1]) is compact, we know that a finite ε-net exists for all ε > 0.]

Problem 33. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).
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[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 34 (Coin tossing space). Continuing with the previous example, consider the mapping
X : [0, 1] → {0, 1}N defined by X(t) = (X1(t), X2(t), . . .). With the Borel σ-algebra on [0, 1] and
the σ-algebra generated by cylinder sets on {0, 1}N, show that X is a random variable and find the
push-foward of the Lebesue measure under X .

Problem 35 (Equivalent conditions for weak convergence). Show that the following statements

are equivalent to µn
d→ µ (you may work in P(R)).

(1) lim supn→∞ µn(F ) ≤ µ(F ) if F is closed.

(2) lim infn→∞ µn(G) ≥ µ(G) if G is open.

(3) lim supn→∞ µn(A) = µ(A) if A ∈ F and µ(∂A) = 0.

Problem 36. Fix µ ∈ P(R). For s ∈ R and r > 0, let µr,s ∈ P(R) be defined as µr,s(A) = µ(rA+ s)

where rA+s = {rx+s : x ∈ A}. For whichR ⊆ (0,∞) and S ⊆ R is it true that {µr,s : r ∈ R, s ∈ S}
a tight family? [Remark: If not clear, just take µ to be the Lebesgue measure on [0, 1].]

Problem 37. (1) Show that the family of Normal distributions {N(µ, σ2) : µ ∈ R and σ2 > 0}
is not tight.

(2) For what A ⊆ R and B ⊆ (0,∞) is the restricted family {N(µ, σ2) : µ ∈ A and σ2 ∈ B}
tight?

Problem 38. (1) Show that the family of exponential distributions {Exp(λ) : λ > 0} is not
tight.

(2) For what A ⊆ R is the restricted family {Exp(λ) : λ > 0} tight?

Problem 39. Suppose µn, µ ∈ P(R) and that the distribution function of µ is continuous. If µn
d→ µ,

show that Fµn(t) − Fµ(t) → 0 uniformly over t ∈ R. [Restatement: When Fµ is continuous, con-
vergence to µ in Lévy-Prohorov metric also implies convergence in Kolmogorov-Smirnov metric.
]

Problem 40. Show that the statement in the previous problem cannot be quantified. That is,
Given any εn ↓ 0 (however fast) and δn ↓ 0 (however slow), show that there is some µn, µ with

Fµ continuous, such that dLP (µn, µ) ≤ εn and dKS(µn, µ) ≥ δn.
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Problem 41. Consider the family of Normal distributions, {N(µ, σ2) : µ ∈ R, σ2 > 0}. Show that
the map (µ, σ2)→ N(µ, σ2) from R× R+ to P(R) is continuous. (Complicated way of saying that

if (µn, σ
2
n)→ (µ, σ2), then N(µn, σ

2
n)

d→ N(µ, σ2)).
Do the same for other natural families if distributions, (1) Exp(λ), (2) Uniform[a, b], (3) Bin(n, p)

(fix n and show continuity in p), (4) Pois(λ).

Problem 42. Suppose µn, µ are discrete probability measures supported on Z having probability

mass functions (pn(k))k∈Z and (p(k))k∈Z. Show that µn
d→ µ if and only if pn(k) → p(k) for each

k ∈ Z.

Problem 43. Given a Borel p.m. µ on R, show that it can be written as a convex combination
αµ1 + (1 − α)µ2 with α ∈ [0, 1], where µ1 is a purely atomic Borel p.m and µ2 is a Borel p.m with
no atoms.

Problem 44. Let F be the CDF of a Borel probability measure µ on the line.

(1) Show that F is continuous at x if and only if µ({x}) = 0.

(2) Show that F can have at most countably many discontinuities.

(3) Show that given any countable set {x1, x2, . . .} and any number p1, p2, . . . such that
∑

i pi ≤
1, there is a probability measure whose CDF has a jump of magnitude pi at xi for each i,
and no other discontinuities.

Problem 45. LetX be a random variable with distribution µ andXn are random variables defined
as follows. If µn is the distribution of Xn, in each case, show that µn

d→ µ as n→∞.

(1) (Truncation). Xn = (X ∧ n) ∨ (−n).

(2) (Discretization). Xn = 1
nbnXc.

Problem 46. Consider the spaceX = [0, 1]N := {x = (x(1), x(2), . . .) : 0 ≤ x(i) ≤ 1 for each i ∈ N}.
Define the metric d(x,y) = supi

|x(i)−y(i)|
i .

(1) Show that xn → x in (X, d) if and only if xn(i)→ x(i) for each i, as n→∞.
[Note: What matters is this pointwise convergence criterion, not the specific metric. The

resulting topology is called product topology. The same convergence would hold if we had
defined the metric as d(x,y) =

∑
i 2−i|x(i) − y(i)| or d(x,y) =

∑
i i
−2|x(i) − y(i)| etc.,

But not the metric supi |x(i) − y(i)| as convergence in this metric is equivalent to uniform
convergence over all i ∈ N].

(2) Show that X is compact.
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[Note: What is this problem doing here? The purpose is to reiterate a key technique we used in
the proof of Helly’s selection principle!]

Problem 47. Recall the Cantor set C =
⋂
nKn where K0 = [0, 1], K1 = [0, 1/3] ∪ [2/3, 1], etc. In

general, Kn =
⋃

1≤j≤2n [an,j , bn,j ] where bn,j − an,j = 3−n for each j.

(1) Let µn be the uniform probability measure on Kn. Describe its CDF Fn.

(2) Show that Fn converges uniformly to a CDF F .

(3) Let µ be the probability measure with CDF equal to F . Show that µ(C) = 1.

Problem 48. Let µ ∈ P(R).

(1) For any n ≥ 1, define a new probability measure by µn(A) = µ(n.A) where n.A = {nx : x ∈
A}. Does µn converge as n→∞?

(2) Let µn be defined by its CDF

Fn(t) =


0 if t < −n,

F (t) if − n ≤ t < n,

1 if t ≥ n.

Does µn converge as n→∞?

(3) In each of the cases, describe µn in terms of random variables. That is, ifX has distribution
µ, describe a transformation Tn(X) that has the distribution µn.

Problem 49. (Bernoulli convolutions) For any λ > 1, defineXλ : [0, 1]→ R byX(ω) =
∑∞

k=1 λ
−kXk(ω).

Check that Xλ is measurable, and define µλ = µX−1
λ . Show that for any λ > 2, show that µλ is

singular w.r.t. Lebesgue measure.

Problem 50. For p = 1, 2,∞, check that ‖X−Y ‖p is a metric on the space Lp := {[X] : ‖X‖p <∞}
(here [X] denotes the equivalence class of X under the above equivalence relation).

Problem 51. (1) Give an example of a sequence of r.v.sXn such that lim inf E[Xn] < E[lim inf Xn].

(2) Give an example of a sequence of r.v.s Xn such that Xn
a.s.→ X , E[Xn] = 1, but E[X] = 0.
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Problem 52. (Alternate construction of Cantor measure) Let K1 = [0, 1/3] ∪ [2/3, 1], K2 =

[0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1], etc., be the decreasing sequence of compact sets whose
intersection is K. Observe that Kn is a union of 2n intervals each of length 3−n. Let µn be the
p.m. which is the “renormalized Lebesgue measure” on Kn. That is, µn(A) := 3n2−nµ(A∩Kn) for

A ∈ BR. Then each µn is a Borel p.m. Show that µn
d→ µ, the Cantor measure (which was defined

differently in class).

Problem 53. (A quantitative characterization of absolute continuity) Suppose µ � ν. Then,
show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε. (The converse
statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 54. Suppose f : [a, b] → R is a Borel measurable function. Then, show that g(x) :=∫ x
0 f(u)du is a continuous function on [0, 1]. [Note: It is in fact true that g is differentiable at almost

every x and that g′ = f a.s., but that is a more sophisticated fact, called Lebesgue’s differentiation
theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be
covered in your measure theory class].

Problem 55. (Differentiating under the integral). Let f : [a, b] × R → R, satisfy the following
assumptions.

(1) x→ f(x, θ) is Borel measurable for each θ.

(2) θ → f(x, θ) is continuously differentiable for each x.

(3) f(x, θ) and ∂f
∂θ (x, θ) are uniformly bounded functions of (x, θ).

Then, justify the following “differentiation under integral sign” (including the fact that the inte-
grals here make sense).

d

dθ

∫ b

a
f(x, θ)dx =

∫ b

a

∂f

∂θ
(x, θ) dx

[Hint: Remember that derivative is the limit of difference quotients, h′(t) = limε→0
h(t+ε)−h(t)

ε .

Problem 56. (1) Let X ≥ 0 be a r.v on (Ω,F ,P) with 0 < E[X] < ∞. Then, define Q(A) =

E[X1A]/E[X] for any A ∈ F . Show that Q is a probability measure on F . Further, show
that for any bounded random variable Y , we have EQ[Y ] = E[Y X]

E[X] .

(2) If µ and ν are Borel probability measures on the line with continuous densities f and g

(respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that µ has a
density w.r.t ν? In that case, what is that density?
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Problem 57. For p = 1, 2,∞, check that ‖X−Y ‖p is a metric on the space Lp := {[X] : ‖X‖p <∞}
(here [X] denotes the equivalence class of X under the equivalence relation X ∼ Y if P(X = Y ) =

1).

Problem 58. IfX is an integrable random variable, show that there are bounded random variables
Xn such that E[|Xn −X|]→ 0 as n→∞.

Problem 59. Let 0 < p < q.

(1) If X ∈ Lq, show that X ∈ Lp.

(2) If E[|Xn|q]→ 0 show that E[|Xn|p]→ 0.

Problem 60. Find integrable random variables Xn, X for each of the following situations.

(1) Xn → X a.s. but E[Xn] 6→ E[X].

(2) Xn → X a.s. and E[Xn]→ E[X] but there is no dominating integrable random variable Y
for the sequence {Xn}.

[Remark: That is, the domination condition cannot be removed but can perhaps be weakened.]

Problem 61. Let X be a non-negative random variable.

(1) Show that E[X] =
∫∞

0 P{X > t}dt (in particular, if X is a non-negative integer valued,
then E[X] =

∑∞
n=1 P(X ≥ n)).

(2) Show that E[Xp] =
∫∞

0 ptp−1P{X ≥ t}dt for any p > 0.

Problem 62. Let X be a non-negative random variable. If E[X] is finite, show that
∑∞

n=1 P{X ≥
an} is finite for any a > 0. Conversely, if

∑∞
n=1 P{X ≥ an} is finite for some a > 0, show that

E[X] is finite.

Problem 63. Show that the values E[f ◦ X] as f varies over the class of all smooth (infinitely
differentiable), compactly supported functions determine the distribution of X .

Problem 64. (i) Express the mean and variance of of aX + b in terms of the same quantities for X
(a, b are constants).

(ii) Show that Var(X) = E[X2]−E[X]2.
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Problem 65. Compute mean, variance and moments (as many as possible!) of the Normal(0,1),
exponential(1), Beta(p,q) distributions.

Problem 66. (1) SupposeXn ≥ 0 andXn → X a.s. If E[Xn]→ E[X], show that E[|Xn−X|]→
0.

(2) If E[|X|] <∞, then E[|X|1|X|>A]→ 0 as A→∞.

Problem 67. (1) Suppose (X,Y ) has a continuous density f(x, y). Find the density of X/Y .
Apply to the case when (X,Y ) has the standard bivariate normal distribution with density
f(x, y) = (2π)−1 exp{−x2+y2

2 }.

(2) Find the distribution of X + Y if (X,Y ) has the standard bivariate normal distribution.

(3) Let U = min{X,Y } and V = max{X,Y }. Find the density of (U, V ).

Problem 68. Let µn, µ ∈ P(Rn). Show that µn
d→ µ if and only if

∫
fdµn →

∫
fdµ for every

f ∈ Cb(R). What if we only assume
∫
fdµn →

∫
fdµ for all f ∈ Cc(Rn) - can we conclude that

µn
d→ µ?

Problem 69. Let µn, µ ∈ P(Rn) having densities fn, f with respect to Lebesgue measure. If fn → f

a.e. (w.r.t. Lebesgue measure), show that µn
d→ µ.

Problem 70 (Moment matrices). Let µ ∈ P(R) and let αk =
∫
xkdµ(x) (assume that all moments

exist). Then, for any n ≥ 1, show that the matrix (αi+j)0≤i,j≤n is non-negative definite. [Sugges-
tion: First solve n = 1].

Problem 71. Let X be a non-negative random variable with all moments (i.e., E[Xp] < ∞ for all
p <∞). Show that logE[Xp] is a convex function of p.

Problem 72. (1) Let µn, µ ∈ P(Rd). Assume that µn has density fn and µ has density f w.r.t

Lebesgue measure on Rn. If fn(t)→ f(t) for all t, then show that µn
d→ µ.

(2) Show that N(µn, σ
2
n)

d→ N(µ, σ) if and only if µn → µ and σ2
n → σ2.

Problem 73. (1) Let X ∼ Γ(α, 1) and Y ∼ Γ(α′, 1) be independent random variables on a
common probability space. Find the distribution of X

X+Y .
12



(2) If U, V are independent and have uniform([0,1]) distribution, find the distribution of U+V .

Problem 74. Let Ω = {1, 2, . . . , n}. For a probability measure P on Ω, we define it “entropy”
H(P) := −

∑n
k=1 pk log pk where pk = P{k} and it is understood that x log x = 0 if x = 0. Show

that among all probability measures on Ω, the uniform probability measure (the one with pk = 1
n

for each k) is the unique maximizer of entropy.

Problem 75. (1) If µn � ν for each n and µn
d→ µ, then is it necessarily true that µ � ν? If

µn ⊥ ν for each n and µn
d→ µ, then is it necessarily true that µ ⊥ ν? In either case, justify

or give a counterexample.

(2) Suppose X,Y are independent (real-valued) random variables with distribution µ and ν

respectively. If µ and ν are absolutely continuous w.r.t Lebesgue measure, show that the
distribution of X + Y is also absolutely continuous w.r.t Lebesgue measure.

Problem 76. Suppose {µα : α ∈ I} and {νβ : α ∈ J} are two families of Borel probability measures
on R. If both these families are tight, show that the family {µα ⊗ νβ : α ∈ I, β ∈ J} is also tight.

Problem 77. Let X be a non-negative random variable. If E[X] ≤ 1, then show that E[X−1] ≥ 1.

Problem 78. Suppose X,Y are independent random variables and X + Y has finite expectation.
Then show that X has finite expectation. [Hint: Assume that Y has symmetric distribution to get
a possibly simpler version of the problem]

Problem 79. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 80. If A ∈ B(R2) has positive Lebesgue measure, show that for some x ∈ R the set
Ax := {y ∈ R : (x, y) ∈ A} has positive Lebesgue measure in R.

13



Problem 81 (A quantitative characterization of absolute continuity). Suppose µ � ν. Then,
show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε. (The converse
statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 82. Let Z1, . . . , Zn be i.i.d N(0, 1) and write Z for the vector with components Z1, . . . , Zn.
Let A be an m × n matrix and let µ be a vector in Rm. Then the m-dimensional random vector
X = µ + AZ is said to have distribution Nm(µ,Σ) where Σ = AAt (‘Normal distribution with
mean vector µ and covariance matrix Σ’).

(1) Ifm ≤ n andA has rankm, show that X has density (2π)−
m
2 exp{−1

2x
tA−1x}w.r.t Lebesgue

measure on Rm. In particular, note that the distribution depends only on µ andAAt. ( Note:
If m > n or if rank(A) < m, then satisfy yourself that X has no density w.r.t Lebesgue mea-
sure on Rm - you do not need to submit this).

(2) Check that E[Xi] = µi and Cov(Xi, Xj) = Σi,j .

(3) What is the distribution of (i) (X1, . . . , Xk), for k ≤ n? (ii) BX, where B is a p×m matrix?
(iii) X1 + . . .+Xm?

Problem 83. (1) If X,Y are independent random variables, show that Cov(X,Y ) = 0.

(2) Give a counterexample to the converse by giving an infinite sequence of random variables
X1, X2, . . . such that Cov(Xi, Xj) = 0 for any i 6= j but such that Xi are not independent.

(3) Suppose (X1, . . . , Xm) has (joint) normal distribution (see the first question). If Cov(Xi, Xj) =

0 for all i ≤ k and for all j ≥ k + 1, then show that (X1, . . . , Xk) is independent of
(Xk+1, . . . , Xm).

Problem 84. Decide whether the following are true or false and explain why.

(1) If X is independent of itself, X is constant a.s.

(2) If X is independent X2 then X is a constant a.s.

(3) If X,Y,X + Y are independent, then X and Y are constants a.s.

(4) If X and Y are independent and also X + Y and X − Y are independent, then X and Y

must be constants a.s.

Problem 85. (1) Suppose 2 ≤ k < n. Give an example of random variables X1, . . . , Xn such
that any subset of k of these random variables are independent but no subset of k + 1 of
them is independent.

(2) Suppose (X1, . . . , Xn) has a multivariate Normal distribution. Show that ifXi are pairwise
independent, then they are independent.

14



Problem 86. Show that it is not possible to define uncountably many independent Ber(1/2) ran-
dom variables on the probability space ([0, 1],B, λ).

Problem 87. Let Ω = {1, 2, . . . , n} with the power set sigma-algebra and uniform probability
measure. Let Xp(k) = 1p divides k. Are X2 and X3 independent? [Note: The answer may depend on
n.]

Problem 88. Let Xi, i ≥ 1 be random variables on a common probability space. Let f : RN → R
be a measurable function (with product sigma algebra on RN and Borel sigma algebra on R) and
let Y = f(X1, X2, . . .). Show that the distribution of Y depends only on the joint distribution
of (X1, X2, . . .) and not on the original probability space. [Hint: We used this to say that if Xi

are independent Bernoulli random variables, then
∑

i≥1Xi2
−i has uniform distribution on [0, 1],

irrespective of the underlying probability space.]

Problem 89. Let (Ω1,F1, µ), (Ω2,F2, ν) be probability spaces and let θbe a probability measure on
(Ω = Ω1 × Ω2,F1 ⊗F2). We write z ∈ Ω as z = (x, y) (i.e., x = Π1(z) and y = Π2(z)).

(1) Show that θ has marginals µ and ν if and only if,∫
Ω

(f(x) + g(y))dθ(z) =

∫
Ω1

fdµ+

∫
Ω2

gdν.

for every f, g bounded random variables on Ω1 and Ω2 respectively.

(2) Show that θ = µ⊗ ν if and only if∫
Ω
f(x)g(y)dθ(z) =

(∫
Ω1

fdµ

)
×
(∫

Ω2

gdν

)
for every f, g bounded random variables on Ω1 and Ω2 respectively.

Problem 90. Suppose (X1, . . . , Xn) has density f (w.r.t Lebesgue measure on Rn).

(1) If f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some one-variable functions gk, k ≤ n.

Then show that X1, . . . , Xn are independent. (Don’t assume that gk is a density!)

(2) If X1, . . . , Xn are independent, then f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some

one-variable densities g1, . . . , gn.

Problem 91. (1) Let S be the set of all x ∈ [0, 1] whose base b-expansion contains all the digits
0, 1, . . . , b − 1, for every b ∈ {2, 3, 4 . . .}. Show that λ(S) = 1, where λ is the Lebesgue
measure on [0, 1].

(2) Let S be the set of all points in R2 that can be written as a convex combination of two
rational points (a rational point is one whose co-ordinates are all rational numbers). Show
that S has zero Lebesgue measure.
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Problem 92. Among all n! permutations of [n], pick one at random with uniform probability. Show
that the probability that this random permutation has no fixed points is at most 1

2 for any n.

Problem 93. Suppose each of r = λn balls are put into n boxes at random (more than one ball can
go into a box). If Nn denotes the number of empty boxes, show that for any δ > 0, as n→∞,

P

(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 94. Let Xn be i.i.d random variables such that E[|X1|] < ∞. Define the random power
series f(z) =

∑∞
k=0Xnz

n. Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series

∑
cnz

n is given
by (lim sup |cn|

1
n )−1].

Problem 95. (1) LetX be a real values random variable with finite variance. Show that f(a) :=

E[(X − a)2] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X − a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 96. If X is a positive random variable, show that E[Xp]
1
p is increasing in p ∈ [0,∞).

Problem 97. Let f : R+ → R+ be a decreasing, continuous probability density function and let
mp =

∫∞
0 xpf(x)dx be its pth moment. Show that ((p+ 1)mp)

1
p+1 is increasing in p ∈ [0,∞).

[Hint: Consider a measure ν such that ν[x,∞) = f(x) and relate mp to ν.]

Problem 98 (Existence of Markov chains). Let S be a countable set (with the power set sigma
algebra). Two ingredients are given: A transition matrix, that is, a function p : S × S → [0, 1]

be a function such that p(x, ·) is a probability mass function on S for each x ∈ S. (1) An initial
distribution, that is a probability mass function µ0 on S.

For n ≥ 0 define the probability measure νn on Sn+1 (with the product sigma algebra) by

νn(A0 ×A1 × . . .×An) =
∑

(x0,...,xn)∈A0×...×An

µ0(x0)

n−1∏
j=0

p(xj , xj+1).

Show that νn form a consistent family of probability distributions and conclude that a Markov
chain with initial distribution µ0 and transition matrix p exists.
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Problem 99. Show that it is not possible to define uncountably many independent Ber(1/2) ran-
dom variables on the probability space ([0, 1],B, λ).

Problem 100. Let (Ωi,Fi,Pi), i ∈ I , be probability spaces and let Ω = ×iΩi with F = ⊗iFi and
P = ⊗iPi. If A ∈ F , show that for any ε > 0, there is a cylinder set B such that P(A∆B) < ε.

Problem 101. Let ξ, ξn be i.i.d. random variables with E[log+ ξ] <∞ and P(ξ = 0) < 1.

(1) Show that lim sup
n→∞

|ξn|
1
n = 1 a.s.

(2) Let cn be (non-random) complex numbers. Show that the radius of convergence of the
random power series

∑∞
n=0 cnξnz

n is almost surely equal to the radius of convergence of
the non-random power series

∑∞
n=0 cnz

n.

Problem 102. Let Xn be independent random variables with Xn ∼ Ber(pn). For k ≥ 1, find a
sequence (pn) so that almost surely, the sequence X1, X2, . . . has infinitely many segments of ones
of length k but only finitely many segments of ones of length k + 1. By a segment of length k we
mean a consecutive sequence Xi, Xi+1, . . . , Xi+k−1.

Problem 103. (Ergodicity of product measure). This problem guides you to a proof of a different
zero-one law.

(1) Consider the product measure space (RZ,B(RZ),⊗Zµ) where µ ∈ P(R). Define τ : RZ →
RZ by (τω)n = ωn+1. Let I = {A ∈ B(RZ) : τ(A) = A}. Then, show that I is a sigma-
algebra (called the invariant sigma algebra) and that every event in I has probability equal
to 0 or 1.

(2) LetXn, n ≥ 1 be i.i.d. random variables on a common probability space. Suppose f : RN →
R is a measurable function such that f(x1, x2, . . .) = f(x2, x3, . . .) for any (x1, x2, . . .) ∈ RN.
Then deduce from the first part that the random variable f(X1, X2, . . .) is a constant, a.s.

[Hint: Approximate A by cylinder sets. Use translation by τm to show that P(A) = P(A)2.]

Problem 104. Let v1, . . . , vn be unit vectors in Rn. Show that there are xi ∈ {−1, 1} such that
‖x1v1 + . . .+ xnvn‖ ≤

√
n. [Hint: Probabilistic method]

Problem 105. If X ≥ 0 and E[X] = m, then show that P{X ≤ m} > 0. Is there is an absolute
lower bound (meaning, the bound does not depend on X) for P{X ≤ m}?
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Problem 106. Assume σ2 := Var(X) < ∞ and E[X] = 0. Show that P{X ≥ t} ≤ σ2

σ2+t2
for t > 0.

[Hint: Consider (X − t)±.].
[Note: Compare with direct application of Chebyshev’s inequality. ]

Problem 107. Let X be a random variable with mean 0. Assume that τ = ‖X‖4 and let σ = ‖X‖2
are finite. Let γ = τ/σ. Show that

P{|X| ≥ kσ} ≤

 1
k2

for any k ≥ 1,

γ4−1
γ4+k4−2k2

if k ≥ γ2.

[Remark: Strengthening of Chebyshev for high deviations, assuming 4th moment. ]

Problem 108. (Chung-Erdös inequality).

(1) Let Ai be events in a probability space. Show that

P

{
n⋃
k=1

Ak

}
≥

(
∑n

k=1 P(Ak))
2∑n

k,`=1 P(Ak ∩A`)

(2) Place rm balls in m bins at random and count the number of empty bins Zm. Fix δ > 0. If
rm > (1 + δ)m logm, show that P(Zm > 0) → 0 while if rm < (1 − δ)m logm, show that
P(Zm > 0)→ 1.

Problem 109. Give example of an infinite sequence of pairwise independent random variables for
which Kolmogorov’s zero-one law fails.

Problem 110. Let Xi, i ∈ I be random variables on a probability space. Suppose that for some
p > 0 and M < ∞ we have E[|Xi|p] ≤ M for all i ∈ I . Show that the family {Xi : i ∈ I} is tight
(by which we mean that {µXi : i ∈ I} is tight, where µXi is the distribution of Xi).

Problem 111. Let Xi be i.i.d. random variables with zero mean and finite variance. Let Sn =

X1 + . . . + Xn. Show that the collection { 1√
n
Sn : n ≥ 1} is tight. [Note: Tightness is essential for

convergence in distribution. In the case at hand, convergence in distribution to N(0, 1) is what is
called central limit theorem. We shall see it later.]

Problem 112. Suppose each of r = λn balls are put into n boxes at random (more than one ball
can go into a box). If Nn denotes the number of empty boxes, show that for any δ > 0, as n→∞,

P

(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0
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Problem 113. Let ξ1, . . . , ξn be i.i.d. tosses of a p-coin. If ξk+1 = ξk+1 = . . . = ξk+m = 1 but
ξk = ξk+m+1 = 0, we say that (k, . . . , k +m+ 1) is a run of heads of length exactly equal to m. Let
Tn,m denote the number of runs of length exactly equal to m.

(1) For fixed m, show that Tn,mn
P→ q2pm as n→∞.

(2) Does your proof work for m = mn increasing with n? If so how fast can it grow?

Problem 114. A random graph Gn with vertex set [n] = {1, . . . , n} is built by connecting every
pair of distinct vertices with probability pn. Show that for any ε > 0,

P{Gn has an isolated vertex} →

1 if pn < (1− ε) logn
n

0 if pn > (1 + ε) logn
n .

[Hint: Consider the number of isolated vertices.]

Problem 115. Let A1, A2, . . . be i.i.d. uniform random subsets of [n] (i.e., P(A1 = S) = 2−n for
each S ⊆ [n]). Imagine sampling A1, A2, . . . suvvessively and let Tn be the first time when we
have two subsets that are disjoint from each other. Show that Tn ≈ (2/

√
3)n in the sense that

P{Tn ≥
(

2√
3

)n
hn} →

0 if hn →∞,

1 if hn → 0.

Problem 116. Same setting as the previous problem, but now let Tn be the first time some subset
contains another. Analyse Tn as in that problem.

Problem 117. Let Xn be i.i.d random variables such that E[|X1|] < ∞. Define the random power
series f(z) =

∑∞
k=0Xnz

n. Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series

∑
cnz

n is given
by (lim sup |cn|

1
n )−1].

Problem 118. Let X1, X2, . . . be i.i.d. fair coin tosses. Let Ln be the length of the longest run of
heads in X1, . . . , Xn (a run is a segment of consecutive tosses). Show that for any ε > 0,

P{(1− ε) log2 n ≤ Ln ≤ (1 + ε) log2 n} → 1.

Problem 119. How does the analysis in the coupon collector problem change if one waits till each
coupon is seen at least two times?

Problem 120. (1) Let X be a real values random variable with finite variance. Show that
f(a) := E[(X − a)2] is minimized at a = E[X].
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(2) What is the quantity that minimizes g(a) = E[|X − a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 121. Let Xi be i.i.d. Cauchy random variables with density 1
π(1+t2)

. Show that 1
nSnfils

the weak law of large numbers by completing the following steps.

(1) Show that tP{|X1| > t} → c for some constant c.

(2) Show that if δ > 0 is small enough, then P{| 1
n−1Sn−1| ≥ δ} + P{| 1

n−1Sn−1| ≥ δ} does not
go to 0 as n→∞ [Hint: Consider the possibility that |Xn| > 2δn].

(3) Conclude that 1
nSn

P→ 0. [Extra: With a little more effort, you can try showing that there

does not exist deterministic numbers an such that 1
nSn − an

P→ 0].

Problem 122. Let Xn, X be random variables on a common probability space.

(1) If Xn
P→ X , show that some subsequence Xnk

a.s.→ X .

(2) If every subsequence of Xn has a further subsequence that converges almost surely to X ,

show that Xn
P→ X .

Problem 123. For Rd-valued random vectors Xn, X , the notions of convergence almost surely, in
probability and in distribution are well-defined. If Xn = (Xn,1, . . . , Xn,d) and X = (X1, . . . , Xd),
which of the following is true? Justify or give counterexamples.

(1) Xn
a.s.→ X if and only if Xn,k

a.s.→ Xk for 1 ≤ k ≤ d.

(2) Xn
P→ X if and only if Xn,k

P→ Xk for 1 ≤ k ≤ d.

(3) Xn
d→ X if and only if Xn,k

d→ Xk for 1 ≤ k ≤ d.

Problem 124. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn + bYn
P→

aX+ bY and XnYn
P→ XY . [Hint: You could try showing more generally that f(Xn, Yn)→

f(X,Y ) for any continuous f : R2 → R.]

Problem 125. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) Suppose that Xn is independent of Yn for each n (no assumptions about independence

across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U d

= X , V d
= Y and U, V

are independent. Further, aXn + bYn
d→ aU + bV .

(2) Give counterexample to show that the previous statement is false if the assumption of
independence of Xn and Yn is dropped.
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Problem 126. If Xn are independent random variables and Xn
P→ X . Show that X is a constant

random variable.

Problem 127. IfXn, Yn are independent for each n andXn+Yn
P→ 0. Show that there are numbers

yn such that Xn + yn
P→ 0.

Problem 128. Let an, a ∈ R and an → a. Let µn = 1
n(δa1 + . . . + δan) be the probability measure

that puts mass 1
n at each ak, k ≤ n (with appropriate multiplicity). Show that µn converges in

distribution and find the limit.

Problem 129. Let µn = 1
n−1

∑n−1
k=1 δf( k

n
), where f : (0, 1) → R is some continuous function. Show

that µn converges in distribution and describe the limit. Find the limit explicitly when f(x) = xp.

Problem 130. Suppose µn
d→ µ. Let cn,k ≥ 0 for 1 ≤ k ≤ n such that cn,1 + . . . + cn,n = 1 for each

n and such that cn,j → 0 as n→∞ for each j. Let νn = cn,1µ1 + . . .+ cn,nµn. Show that νn
d→ µ.

Problem 131. For Rd-valued random vectorsXn, X , we say thatXn
P→ X if P(‖Xn−X‖ > δ)→ 0

for any δ > 0 (here you may take ‖ · ‖ to denote the usual norm, but any norm on Rd gives the
same definition).

(1) If Xn
P→ X and Yn

P→ Y , show that (Xn, Yn)
P→ (X,Y ).

(2) If Xn
P→ X and Yn

P→ Y , show that Xn + Yn
P→ X + Y and 〈Xn, Yn〉

P→ XY . [Hint:
Show more generally that f(Xn, Yn)

P→ f(X,Y ) for any continuous function f by using the
previous problem for random vectors].

Problem 132. (1) If Xn, Yn are independent random variables on the same probability space

and Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U d

= X , V d
= Y and U, V are

independent.

(2) If Xn
d→ X and Yn −Xn

P→ 0, then show that Yn
d→ X .

Problem 133. Let Yn = |Xn|
1+|Xn| . Show that Xn

P→ 0 if and only if Yn
L1

→ 0.

Problem 134. Show that the the following are equivalent conditions for tightness of a sequence
{Xn}.

(1) cnXn
P→ 0 whenever cn → 0.
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(2) P{|Xn| > Mn} → 0 whenever Mn →∞.

Problem 135. Show that the the following are equivalent conditions for uniform integrability of a
sequence {Xn}.

(1) cnXn
L1

→ 0 whenever cn → 0.

(2) E[|Xn|1|Xn|>Mn
]→ 0 whenever Mn →∞.

Problem 136. For each mode of convergence (almost sure, in probability, in distribution, in Lp),
decide whether the following statement is true: “If Xn → X then 1

nSn → X”, where Sn = X1 +

. . .+Xn.
[Remark: The question is motivated by the analogous fact for convergence of numbers.]

Problem 137. Suppose Xn are i.i.d with E[|X1|4] < ∞. Show that there is some constant C (de-
pending on the distribution of X1) such that P

(
|n−1Sn −E[X1]| > δ

)
≤ Cn−2. (What is your

guess if we assume E[|X1|6] <∞? You don’t need to show this in the homework).

Problem 138. (1) (Skorokhod’s representation theorem) IfXn
d→ X , then show that there is a

probability space with random variables Yn, Y such that Yn
d
= Xn and Y d

= X and Yn
a.s.→ Y .

[Hint: Try to construct Yn, Y on the canonical probability space ([0, 1],B, µ)]

(2) If Xn
d→ X , and f : R → R is continuous, show that f(Xn)

d→ f(X). [Hint: Use the first
part]

Problem 139. SupposeXi are i.i.d with the Cauchy distribution (density π−1(1+x2)−1 on R). Note
that X1 is not integrable. Then, show that Sn

n does not converge in probability to any constant.
[Hint: Try to find the probability P(X1 > t), and then use it].

Problem 140. Let U ∼ Uniform[0, 1] and Xn = sin(nU). Show that Xn converges in distribution
and find the limit.

Problem 141. Show that for any p ≥ 1,

lim
n→∞

∫
[0,1]n

xp1 + . . .+ xpn
x1 + . . .+ xn

dx1 . . . dxn =
2

p+ 1
.

[Hint: Do it without having to flex your muscles too much. Use probability!]
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Problem 142. Let {Xi}i∈I be a family of r.v on (Ω,F ,P).

(1) If {Xi}i∈I is uniformly integrable, then show that supiE|Xi| <∞. Give a counterexample
to the converse statement.

(2) Suppose h : R+ → R+ such that h(x) → ∞ as x → ∞. If supiE[|Xi|h(|Xi|)] < ∞, show
that {Xi}i∈I is uniformly integrable. In particular, if supiE[|Xi|p] <∞ for some p > 1, then
{Xi} is uniformly integrable.

Problem 143. Let Xn be i.i.d with P(X1 = +1) = P(X1 = −1) = 1
2 . Show that for any γ > 1

2 ,

Sn
nγ

a.s.→ 0.

[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you write the
proof correctly, it should go for any random variable which has moments of all orders. You do not
need to show this for the homework].

Problem 144. Let Xn be independent real-valued random variables.

(1) Show by example that the event {
∑
Xn converges to a number in [1,3]} can have proba-

bility strictly between 0 and 1.

(2) Show that the event {
∑
Xn converges to a finite number} has probability zero or one.

Problem 145. Let Xn be i.i.d exponential(1) random variables.

(1) If bn is a sequence of numbers that converge to 0, show that lim sup bnXn is a constant (a.s.).
Find a sequence bn so that lim sup bnXn = 1 a.s.

(2) LetMn be the maximum ofX1, . . . , Xn. If an →∞, show that lim sup Mn
an

is a constant (a.s.).
Find an so that lim sup Mn

an
= 1 (a.s.).

[Remark: Can you do the same if Xn are i.i.d N(0,1)? Need not show this for the homework,
but note that the main ingredient is to find a simple expression for P(X1 > t) asymptotically as
t→∞].

Problem 146. Let Xn be i.i.d real valued random variables with common distribution µ. For each
n, define the random probabilty measure µn as µn := 1

n

∑n
k=1 δXk . Let Fn be the CDF of µn. Show

that

sup
x∈R
|Fn(x)− F (x)| a.s.→ 0 a.s.
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Problem 147. Let Xn be independent and P(Xn = na) = 1
2 = P(Xn = −na) where a > 0 is fixed.

For what values of a does the series
∑
Xn converge a.s.? For which values of a does the series

converge absolutely, a.s.?

Problem 148. (Random series) Let Xn be i.i.d N(0, 1) for n ≥ 1.

(1) Show that the random series
∑
Xn

sin(nπt)
n converges a.s., for any t ∈ R.

(2) Show that the random series
∑
Xn

tn√
n!

converges for all t ∈ R, a.s.

[Note: The location of the phrase “a.s” is all important here. Let At and Bt denote the event that
the series converges for the fixed t in the first or second parts of the question, respectively. Then,
the first part is asking you to show that P(At) = 1 for each t ∈ R, while the second part is asking
you to show that P(∩t∈RBt) = 1. It is also true (and very important!) that P(∩t∈RAt) = 1 but
showing that is not easy.]

Problem 149. Suppose Xn are i.i.d random variables with finite mean. Which of the following
assumptions guarantee that

∑
Xn converges a.s.?

(1) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ 1] <∞.

(2) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ |Xn|] <∞.

Problem 150. (Large deviation for Bernoullis). Let Xn be i.i.d Ber(1/2). Fix p > 1
2 .

(1) Show that P(Sn > np) ≤ e−npλ
(
eλ+1

2

)n
for any λ > 0.

(2) Optimize over λ to get P(Sn > np) ≤ e−nI(p) where I(p) = −p log p − (1 − p) log(1 − p).
(Observe that this is the entropy of the Ber(p) measure introduced in the first class test).

(3) Recall that Sn ∼ Binom(n, 1/2), to write P(Sn = dnpe) and use Stirling’s approximation to
show that

P(Sn ≥ np) ≥
1√

2πnp(1− p)
e−nI(p).

(4) Deduce that P(Sn ≥ np) ≈ e−nI(p) for p > 1
2 and P(Sn < np) ≈ e−nI(p) for p < 1

2 where the
notation an ≈ bn means log an

log bn
→ 1 as n → ∞ (i.e., asymptotic equality on the logarithmic

scale).

Problem 151. Carry out the same program for i.i.d exponential(1) random variables and deduce
that P(Sn > nt) ≈ e−nI(t) for t > 1 and P(Sn < nt) ≈ e−nI(t) for t < 1 where I(t) := t− 1− log t.

Problem 152. Let Y1, . . . , Yn be independent random variables. A random variable τ taking values
in {1, 2, . . . , n} is called a stopping time if the event {τ ≤ k} ∈ σ (Y1, . . . , Yk) for all k (equivalently
{τ = k} ∈ σ (Y1, . . . , Yk) for all k).
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(1) Which of the following are stopping times? τ1 := min{k ≤ n : Sk ∈ A} (for some fixed
A ⊆ R). τ2 := max{k ≤ n : Sk ∈ A}. τ3 := min{k ≤ n : Sk = max

j≤n
Sj}. In the first two cases

set τ = n if the desired event does not occur.

(2) Assuming eachXk has zero mean, show that E[Sτ ] = 0 for any stopping time τ . Assuming
that each Xk has zero mean and finite variance, show that E[S2

1 ] ≤ E[S2
τ ] ≤ E[S2

n] for any
stopping time τ .

(3) Give examples of random τ that are not stopping times and for which the results in the
second part of the question fail.

Problem 153. Let Xk be independent random variables with zero mean and unit variance. As-
sume that E[|Xk|2+δ] ≤M for some δ < 0 and M <∞. Show that Sn is asymptotically normal.

Problem 154. Let Xn be independent random variables with Xn = ±
√
n with probability 1/2.

Show that Sn satisfies the central limit theorem but not the law of large numbers.

Problem 155. Fix α > 0.

(1) If X,Y are i.i.d. random variables such that X+Y

2
1
α

d
= X , then show that X must have

characteristic function ϕX(λ) = e−c|λ|
α

for some constant c.

(2) Show that for α = 2 we get N(0, σ2) and for α = 1 we get symmetric Cauchy.

[Note: Only for 0 < α ≤ 2 is e−c|λ|
α

a characteristic function. Hence a distribution with the desired
property exists only for this range of α].

Problem 156. Suppose X,Y are i.i.d. and X+Y
21/α

d
= X .

(1) If 0 < Var(X) <∞, show that α = 2 and X ∼ N(0, σ2) for some σ2 ≥ 0.

(2) If X has characteristic function e−c|t|
α

with α > 2, deduce that Var(X) < ∞ and conclude
that X = 0 (i.e., Stable-α distributions do not exist for α > 2).

Problem 157. Let Xk be independent Ber(pk) random variables. If Var(Sn) stays bounded, show
that Sn cannot be asymptotically normal.

Problem 158. LetXn be independent random variables with zero mean and unit variance. If {X2
n}

is uniformly integrable, show that Sn√
n

d→ N(0, 1).
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Problem 159. Let U1, U2, . . . be i.i.d. uniform[0, 1] random variables. Fix 0 < q < 1 and let M (q)
n be

the qth quantile, i.e., the bnqcth largest of the Xis (e.g., if q = 1/2, this is essentially the median).

Show that
√
n(M

(q)
n − q)

d→ N(0, q(1− q)).

Problem 160. A simple model for grinding particles down: Start with a particle of size 1. After
one cycle of grinding, it breaks into two particles of sizes X and 1 − X , where X ∼ µ, a non-
degenerate probability measure on [0, 1]. Each particle of size s similarly breaks into two particles
of sizes Y s and (1− Y )s, where Y ∼ µ. The random variables indicating the breaking proportion
are assumed independent.

If the particle sizes are Xn,j , j ≤ 2n, after n cycles of grinding, show that the proportion of j for
which

√
n logXn,j ≤ t converges to P{Z ≤ t}where Z ∼ N(0, 1).

[Note: Perhaps easier, show the same for the expected proportion of j for which
√
n logXn,j ≤ t.

This problem is a simplification of a model first proposed by Kolmogorov, where he allows each
particle to subdivide into an arbitrary number of particles.]

Problem 161. Out of the n! permutations of the set [n] = {1, 2, . . . , n}, pick one at random and call
it Π. Let Cn be the number of cycles in the cycle decomposition of Π.

(1) Define Ak be the event that k is the lowest element in its cycle. Show that A1, . . . , An are
independent and that P(Ak) = (n− k + 1)/n.

(2) Show that Cn
logn

P→ 1.

(3) Show that Cn−logn√
logn

d→ N(0, 1).

Problem 162. Let Xn be independent, and let Xn ∼ (1
2 − 2εn)δ±1 + εnδ±Mn where εn ↓ 0 and

Mn ↑ ∞.

(1) Find a condition on Mn, εn that allows to apply Lindeberg-Feller theorem directly to prove

that Sn√
n

d→ N(0, 1).

(2) If
∑

n εn < ∞, show that Sn√
n

d→ N(0, 1) even if Mn are chosen to violate the condition in
the first part.

Problem 163. Produce an example of independent random variables Xn so that Sn√
n

d→ N(0, 1),
but Var(Sn/

√
n)→ 2. Can you make Var(Sn/

√
n)→∞?

Problem 164 (Weak law using characteristic functions). Let Xk be i.i.d. random variables having
characteristic function ϕ.
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(1) If ϕ′(0) = iµ, show that the characteristic function of Sn/n converges to the characteristic
function of δµ. Conclude that weak law holds for Sn/n.

(2) If 1
nSn

P→ µ for some µ, then show that ϕ is differentiable at 0 and ϕ′(0) = iµ.

Problem 165. Find the characteristic functions of the distributions with the given densities.
(1) e−|x| for x ∈ R, (2) 1

2

(
1− |x|2

)
+

.

Problem 166. Find the distributions whose characteristic functions are (1) t 7→ cos(t), (2) t 7→ 1
1+it .

Problem 167. Show 1
2sech(πx2 )dx is a probability measure whose characteristic function is sech(t).

Problem 168. If xn ∈ R and eitxn → 1 for all t ∈ R, then show that xn → 0.

Problem 169. If ϕ is a characteristic function, show that the following are also characteristic func-
tions as a function of t. (1) |ϕ(t)|2, (2) eϕ(t)−1, (3) 1

t

∫ t
0 ϕ(s)ds

Problem 170. Suppose µn, µ are probability measures on R with characteristic functions ϕn, ϕ. If
ϕn(t)→ ϕ(t) for all t ∈ Q, is it true that µn → µ weakly?

Problem 171. If ψ is a real-valued characteristic function, show that

1− ψ(2t) ≤ 4(1− ψ(t)).

Deduce that if ϕ is any characteristic function, then

1− |ϕ(2t)| ≤ 8(1− |ϕ(t)|).

Problem 172. A random variable X has characteristic function

exp


n∑
j=1

θj(e
itxj − 1− itxj)


for some xi ∈ R and θi > 0. Describe/construct X in terms of familiar random variables.

Problem 173. Let X ∼ µ be a random variable with characteristic function ϕ. Show that the
following are equivalent.

(1) X d
= Y1 + Y2 for some i.i.d. random variables Y1, Y2.
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(2) ϕ = ψ2 for a characteristic function ψ.

Problem 174. Let µ be a probability measure with non-negative characteristic function µ̂ ≥ 0.

(1) If µ is supported on integers, show that µ{0} ≥ µ{k} for all k ∈ Z.

(2) If µ̂ is integrable, show that the density of µ exists and attains its maximum at 0.

Remark (for the next three problems): The characteristic function of a Rd-valued random vec-
torX is the function u 7→ E[ei〈u,X〉] from Rd → C. Assume the following facts: IfX and Y have the

same characteristic functions, then X d
= Y . If E[ei〈u,Xn〉]→ E[ei〈u,X〉] for all u ∈ Rd, then Xn

d→ X .

Problem 175. Show that the measures of half-spaces (i.e., P{〈X, v〉 ≤ r}, where v ∈ Rd, r ∈ R)

determine the distribution of X . Similarly, show that if 〈Xn, v〉
d→ 〈X, v〉 for each v ∈ Rd, then

Xn
d→ X .

Problem 176. If Xn are independent random vectors in Rd with E[Xn] = 0 and E[XnX
t
n] = Σ,

then show that Sn√
n

d→ Nd(0,Σ), which is the defined as the distribution with the characteristic

function t 7→ e−
1
2
utΣu.

Problem 177. If Σ is invertible, show that Nd(0,Σ) has density 1

(2π)d/2
√

det(Σ)
e−

1
2
xtΣ−1x.

Problem 178. Let Xn be i.i.d. random variables with a non-degenerate distribution. If Sn =

X1 + . . .+Xn, show that P{|Sn| ≤M} → 0 for any M <∞.

Problem 179. For a real valued random variable X , its concentration function is defined as QX(t) =

sup{P{X ∈ [a, a+ t] : a ∈ R}, for t ≥ 0 (so QX(0) is the largest atom size in the distribution of X).
If X,Y are independent and Z = X + Y , show that QX+Y (t) ≤ QX(t) for all t ≥ 0.

Problem 180. [3 marks each] For each of the following statements, state whether they are true or
false, and justify or give counterexample accordingly.

(1) If µ, ν are Borel probability measures on R and µ� ν, then either ν ⊥ µ or ν � µ.

(2) If
∑
n
Xn converges a.s. and P(Yn = Xn) = 1− 1

n2 . Then
∑
n
Yn converges a.s.

(3) If {Xn} is an L2 bounded sequence of random variables, and E[Xn] = 1 for all n, then Xn

cannot converge to zero in probability.

(4) If Xn
d→ X , then X2

n
d→ X2.
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(5) Suppose Xn are independent with E[Xn] = 0 and
∑

Var(Xn) = ∞. Then, almost surely∑
Xn does not converge.

(6) Suppose Xn, Yn are random variables such that |Xn| ≤ |Yn| for all n. If
∑
Yn converges

almost surely, then
∑
Xn converges almost surely.

Problem 181. [2 marks+4 marks + 4 marks] Let X,Y be random variables on a common proba-
bility space. Assume that both X and Y have finite variance.

(1) Show that E[(X − a)2] is minimized uniquely at a = E [X].

(2) Find values of a, b that minimize f(a, b) = E
[
(Y − a− bX)2

]
. Are they unique?

(3) Suppose P(X = k) = 1
10 for k = 1, 2 . . . , 10. At what value(s) of a is E [|X − a|] minimized?

Is the minimizer unique?

Problem 182. [10 marks] LetG1, G2, . . . be i.i.d Geometric(p) random variables (this means P(G1 =

k) = p(1 − p)k−1 for k ≥ 1). Let X1, X2, . . . be i.i.d random variables with E [|X1|] < ∞. Define
Nk := G1 +G2 + . . .+Gk. Show that as k →∞,

X1 +X2 + . . .+XNk

k

P→ 1

p
E [X1]

Problem 183. [5 marks+5 marks] Let Uk, Vk be i.i.d Uniform([0,1]) random variable.

(1) Show that
∑
k

U
1
k
k − V

1
k
k converges a.s.

(2) Let Sn = U1 +U2
2 + . . .+Unn . Show that Sn satisfies a CLT. In other words, find an, bn such

that Sn−anbn

d→ N(0, 1).

Problem 184. [5 marks+5 marks] Let Z(n) = (Z
(n)
1 , . . . , Z

(n)
n ) be a point sampled uniformly from

the sphere Sn−1 (this means that P(Z(n) ∈ A) = area(A)/area(Sn−1) for any Borel set A ⊆ Sn−1).

(1) Find the density of Z(n)
1 .

(2) Using (1) or otherwise, show that
√
nZ

(n)
1

d→ N(0, 1) as n→∞.

[Hint: One way to generate Z(n) is to sampleX1, . . . , Xn i.i.d N(0,1) and to set Z(n) = 1
‖X‖(X1, . . . , Xn)

where ‖X‖ =
√
X2

1 +X2
2 + . . .+X2

n. You may assume this fact without having to justify it].

Problem 185. [5 marks+5 marks]

(1) Let µ be a probability measure on R with characteristic function µ̂(t). Then, show that
for any t1, t2, . . . , tn ∈ R, the n × n matrix A with entries ai,j = µ̂(ti − tj) is non-negative
definite.
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(2) Suppose |µ̂(t0)| = 1 for some t0 6= 0. Then, µ is supported on a lattice, that is, µ(aZ+ b) = 1

for some a, b ∈ R. [Hint: Use part (1) with n = 2 and appropriate t1, t2].

Problem 186. [10 marks] Let X1, X2, . . . be i.i.d Bernoulli
(

1
2

)
random variables. For each n ≥ 1,

define Ln to be the longest run of ones in (X1, . . . , Xn), that is,

Ln := max{k : ∃j ≤ n− k such that Xj+1 = Xj+2 = . . . = Xj+k = 1}.

Prove that Ln
logn

P→ 1
log 2 .
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