Final exam: Probability theory
 26TH ApriL, 10AM-1:00PM
 Maximum marks: 50, Duration: 180 minutes

Note: Give all relevant justifications but write succinctly and legibly. Ask questions only if there is an ambiguity in the question and not to verify your answers.

1. [4 marks each] For each of the following statements, state whether they are true or false, and justify or give counterexample accordingly.
(1) Let $\mu_{n} \in \mathcal{P}(\mathbb{R})$. If $F_{\mu_{n}}(t) \rightarrow F(t)$ for all t for some function $F: \mathbb{R} \rightarrow(0,1)$, then F is necessarily the CDF of a Borel probability measure on \mathbb{R}.
(2) If μ, ν, θ are Borel probability measures on \mathbb{R} and $\mu \perp \nu$ and $\nu \perp \theta$ and $\mu \perp \theta$, then there exist pairwise disjoint sets $A, B, C \in \mathcal{B}(\mathbb{R})$ such that $\mu(A)=1, \nu(B)=1$ and $\theta(C)=1$.
(3) If $\mu, \nu \in \mathcal{P}(\mathbb{R})$, then there exists a Borel measurable $T: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mu \circ T^{-1}=\nu$.
(4) Let X_{n} be independent random variables with $\mathbf{E}\left[X_{n}\right]=0$ and $\operatorname{Var}\left(X_{n}\right) \leq 1$ for all n. Let $T_{n}=\left(X_{1}+\ldots+X_{n}\right) / \sqrt{n}$. Then, $\left\{T_{n}\right\}$ is tight.
(5) If X_{n} are independent random variables and $X_{n} \xrightarrow{P} X$, then X is a constant, a.s.
(6) If $X_{n} \xrightarrow{L^{p}} X$, then $X_{n} \xrightarrow{L^{q}} X$ for any $q \in(0, p)$.
2. [5 marks] Suppose $X_{n} \geq 0, \mathbf{E}\left[X_{n}\right]=1$ for all n, and $X_{n} \xrightarrow{\text { a.s. }} X$. Show that the possible values of $\mathbf{E}[X]$ are all numbers in $[0,1]$.
3. [$\mathbf{5}$ marks] Let X be an integrable random variable on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Show that for any $\epsilon>0$, there exists $\delta>0$ such that for any event $A \in \mathcal{F}$ with $\mathbf{P}(A)<\delta$, we have $\mathbf{E}\left[X 1_{A}\right]<\epsilon$.
4. [5 marks] On the probability space $([0,1], \mathcal{B}, \lambda)$, define the random variables $X(t)=$ $\sin (2 \pi t)$ and $Y(t)=\cos (2 \pi t)$.
(1) Describe the sigma-algebra generated by X and the sigma-algebra generated by X and Y.
(2) Are X and Y independent?
5. [5 marks] Let X_{n} be i.i.d. unif[$\left.-1,1\right]$ and let $a_{n}>0$ be given numbers such that $\sum_{n=1}^{\infty} a_{n}^{2}=\infty$. Let $T_{n}=\sum_{k=1}^{n} a_{k} X_{k}$. Show that $\left\{T_{n}\right\}$ is asymptotically normal, i.e., $\frac{1}{\sigma_{n}}\left(T_{n}-\right.$ $\left.\mu_{n}\right) \rightarrow N(0,1)$ for some (non-random) numbers $\mu_{n} \in \mathbb{R}$ and $\sigma_{n}>0$.
6. [5 marks] Let X_{k} be i.i.d. $\operatorname{Exp}(1)$ random variables and let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $\frac{1}{\log n} M_{n} \xrightarrow{P} 1$.
7. [5 marks] Suppose X_{n} are i.i.d., symmetric random variables such that $\left|X_{1}\right| \leq 1$ a.s. Show that $n^{-\gamma} S_{n} \xrightarrow{\text { a.s. }} 0$ for any $\gamma>\frac{1}{2}$.
