Homework 1: Due 27th Jan Submit the first four problems only

1. Let \mathcal{F} be a σ-algebra of subsets of Ω.
(1) Show that \mathcal{F} is closed under countable intersections $\left(\bigcap_{n} A_{n}\right)$, under set differences $(A \backslash B)$, under symmetric differences $(A \Delta B)$.
(2) If A_{n} is a countable sequence of subsets of Ω, the set $\limsup _{n} A_{n}$ (respectively $\liminf _{n} A_{n}$) is defined as the set of all $\omega \in \Omega$ that belongs to infinitely many (respectively, all but finitely many) of the sets A_{n}.

If $A_{n} \in \mathcal{F}$ for all n, show that $\lim \sup A_{n} \in \mathcal{F}$ and $\liminf A_{n} \in \mathcal{F}$. [Hint: First express $\lim \sup A_{n}$ and $\liminf A_{n}$ in terms of $A_{n} \mathrm{~s}$ and basic set operations].
(3) If $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$, what are $\lim \sup A_{n}$ and $\liminf A_{n}$?
2. Let (Ω, \mathcal{F}) be a set with a σ-algebra.
(1) Suppose \mathbf{P} is a probability measure on \mathcal{F}. If $A_{n} \in \mathcal{F}$ and A_{n} increase to A (respectively, decrease to A), show that $\mathbf{P}\left(A_{n}\right)$ increases to (respectively, decreases to) $\mathbf{P}(A)$.
(2) Suppose $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ is a function such that (a) $\mathbf{P}(\Omega)=1$, (b) \mathbf{P} is finitely additive, (c) if $A_{n}, A \in \mathcal{F}$ and $A_{n} \mathrm{~s}$ increase to A, then $\mathbf{P}\left(A_{n}\right) \uparrow \mathbf{P}(A)$. Then, show that \mathbf{P} is a probability measure on \mathcal{F}.
3. (1) Let \mathcal{B} be the Borel sigma-algebra of \mathbb{R}. Show that \mathcal{B} contains all closed sets, all compact sets, all intervals of the form $(a, b]$ and $[a, b)$.
(2) Show that there is a countable family \mathcal{S} of subsets of \mathbb{R} such that $\sigma(\mathcal{S})=\mathcal{B}_{\mathbb{R}}$.
(3) Let K be the $1 / 3$-Cantor set. Show that $\mu_{*}(K)=0$.
4. (1) Let X be an arbitrary set. Let S be the collection of all singletons in Ω. Describe $\sigma(S)$.
(2) Let $S=\{(a, b] \cup[-b,-a): a<b$ are real numbers $\}$. Show that $\sigma(S)$ is strictly smaller than the Borel σ-algebra of \mathbb{R}.
(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set in S either contains a and b both, or contains neither. Let $\mathcal{F}=\sigma(S)$. Show that any set in \mathcal{F} has the same property (either contains both a and b or contains neither).
5. Let Ω be an infinite set and let $\mathcal{A}=\left\{A \subseteq \Omega: A\right.$ is finite or A^{c} is finite $\}$. Define $\mu: \mathcal{A} \rightarrow \mathbb{R}_{+}$by $\mu(A)=0$ if A is finite and $\mu(A)=1$ if A^{c} is finite.
(1) Show that \mathcal{A} is an algebra and that μ is finitely additive on \mathcal{A}.
(2) Under what conditions does μ extend to a probability measure on $\mathcal{F}=\sigma(\mathcal{A})$?
6. Let $X=[0,1]^{\mathbb{N}}$ be the countable product of copies of $[0,1]$. We define two sigma algebras of subsets of X.
(1) Define a metric on X by $d(x, y)=\sup _{n}\left|x_{n}-y_{n}\right|$. Let \mathcal{B}_{X} be the Borel sigma-algebra of (X, d). [Note: For those who know topology, it is better to define \mathcal{B}_{X} as the Borel sigma algebra for the product topology on X. The point is that the metric is flexible. We can take $d(x, y)=$ $\sum_{n}\left|x_{n}-y_{n}\right| 2^{-n}$ or many or other things. What matters is only the topology on X.]
(2) Let \mathcal{C}_{X} be the sigma-algebra generated by the collection of all cylinder sets. Recall that cylinder sets are sets of the form $A=U_{1} \times U_{2} \times \ldots \times U_{n} \times \mathbb{R} \times \mathbb{R} \times \ldots$ where U_{i} are Borel subsets of $[0,1]$.
Show that $\mathcal{B}_{X}=\mathcal{C}_{X}$.
7. Let μ be the Lebesgue p.m. on the Cartheodary σ-algebra $\overline{\mathcal{B}}$ and let μ_{*} be the corresponding outer Lebesgue measure defined on all subsets of $[0,1]$. We say that a subset $N \subseteq[0,1]$ is a null set if $\mu_{*}(N)=0$. Show that

$$
\overline{\mathcal{B}}=\{B \cup N: B \in \mathcal{B} \text { and } N \text { is null }\}
$$

where \mathcal{B} is the Borel σ-algebra of $[0,1]$.
[Note: The point of this exercise is to show how much larger is the Lebesgue σ-algebra than the Borel σ-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a Borel set. However, cardinality-wise, the Lebesgue σ-algebra in bijection with $2^{\mathbb{R}}$ while the Borel σ-algebra is in bijection with \mathbb{R}.]

