Homework 1: Due 27th Jan Submit the first four problems only

- **1.** Let \mathcal{F} be a σ -algebra of subsets of Ω .
 - (1) Show that \mathcal{F} is closed under countable intersections $(\bigcap_n A_n)$, under set differences $(A \setminus B)$, under symmetric differences $(A \Delta B)$.
 - (2) If A_n is a countable sequence of subsets of Ω , the set $\limsup_n A_n$ (respectively $\liminf_n A_n$) is defined as the set of all $\omega \in \Omega$ that belongs to infinitely many (respectively, all but finitely many) of the sets A_n .

If $A_n \in \mathcal{F}$ for all *n*, show that $\limsup A_n \in \mathcal{F}$ and $\liminf A_n \in \mathcal{F}$. [**Hint:** First express $\limsup A_n$ and $\liminf A_n$ in terms of A_n s and basic set operations].

- (3) If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$, what are $\limsup A_n$ and $\liminf A_n$?
- **2.** Let (Ω, \mathcal{F}) be a set with a σ -algebra.
 - (1) Suppose **P** is a probability measure on \mathcal{F} . If $A_n \in \mathcal{F}$ and A_n increase to A (respectively, decrease to A), show that $\mathbf{P}(A_n)$ increases to (respectively, decreases to) $\mathbf{P}(A)$.
 - (2) Suppose $\mathbf{P} : \mathcal{F} \to [0,1]$ is a function such that (a) $\mathbf{P}(\Omega) = 1$, (b) \mathbf{P} is finitely additive, (c) if $A_n, A \in \mathcal{F}$ and A_n s increase to A, then $\mathbf{P}(A_n) \uparrow \mathbf{P}(A)$. Then, show that \mathbf{P} is a probability measure on \mathcal{F} .
- **3.** (1) Let \mathcal{B} be the Borel sigma-algebra of \mathbb{R} . Show that \mathcal{B} contains all closed sets, all compact sets, all intervals of the form (a,b] and [a,b).
 - (2) Show that there is a countable family S of subsets of \mathbb{R} such that $\sigma(S) = \mathcal{B}_{\mathbb{R}}$.
 - (3) Let *K* be the 1/3-Cantor set. Show that $\mu_*(K) = 0$.
- **4.** (1) Let *X* be an arbitrary set. Let *S* be the collection of all singletons in Ω . Describe $\sigma(S)$.
 - (2) Let $S = \{(a,b] \cup [-b,-a) : a < b \text{ are real numbers}\}$. Show that $\sigma(S)$ is strictly smaller than the Borel σ -algebra of \mathbb{R} .
 - (3) Suppose *S* is a collection of subsets of *X* and *a*, *b* are two elements of *X* such that any set in *S* either contains *a* and *b* both, or contains neither. Let $\mathcal{F} = \sigma(S)$. Show that any set in \mathcal{F} has the same property (either contains both *a* and *b* or contains neither).

5. Let Ω be an infinite set and let $\mathcal{A} = \{A \subseteq \Omega : A \text{ is finite or } A^c \text{ is finite } \}$. Define $\mu : \mathcal{A} \to \mathbb{R}_+$ by $\mu(A) = 0$ if *A* is finite and $\mu(A) = 1$ if A^c is finite.

(1) Show that \mathcal{A} is an algebra and that μ is finitely additive on \mathcal{A} .

(2) Under what conditions does μ extend to a probability measure on $\mathcal{F} = \sigma(\mathcal{A})$?

6. Let $X = [0,1]^{\mathbb{N}}$ be the countable product of copies of [0,1]. We define two sigma algebras of subsets of *X*.

- (1) Define a metric on X by $d(x,y) = \sup_n |x_n y_n|$. Let \mathcal{B}_X be the Borel sigma-algebra of (X,d). [Note: For those who know topology, it is better to define \mathcal{B}_X as the Borel sigma algebra for the product topology on X. The point is that the metric is flexible. We can take $d(x,y) = \sum_n |x_n - y_n|^{2^{-n}}$ or many or other things. What matters is only the topology on X.]
- (2) Let C_X be the sigma-algebra generated by the collection of all cylinder sets. Recall that cylinder sets are sets of the form $A = U_1 \times U_2 \times \ldots \times U_n \times \mathbb{R} \times \mathbb{R} \times \ldots$ where U_i are Borel subsets of [0,1].

Show that $\mathcal{B}_X = \mathcal{C}_X$.

7. Let μ be the Lebesgue p.m. on the Cartheodary σ -algebra $\overline{\mathcal{B}}$ and let μ_* be the corresponding outer Lebesgue measure defined on all subsets of [0, 1]. We say that a subset $N \subseteq [0, 1]$ is a null set if $\mu_*(N) = 0$. Show that

$$\overline{\mathcal{B}} = \{B \cup N : B \in \mathcal{B} \text{ and } N \text{ is null}\}$$

where \mathcal{B} is the Borel σ -algebra of [0, 1].

[Note: The point of this exercise is to show how much larger is the Lebesgue σ -algebra than the Borel σ -algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a Borel set. However, cardinality-wise, the Lebesgue σ -algebra in bijection with $2^{\mathbb{R}}$ while the Borel σ -algebra is in bijection with \mathbb{R} .]