Homework 2: Due 5th Feb

 SUBMIT THE FIRST FOUR PROBLEMS ONLY1. (1) Let A_{1}, \ldots, A_{n} be subsets of Ω and define $T: \Omega \rightarrow \mathbb{R}^{n}$ by $T(\omega)=\left(\mathbf{1}_{A_{1}}(\omega), \ldots, \mathbf{1}_{A_{n}}(\omega)\right)$. What is the smallest σ-algebra on Ω for which T becomes a random variable?
(2) Suppose $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space and assume that $A_{k} \in \mathcal{F}$. Describe the push-forward measure $\mathbf{P} \circ T^{-1}$ on \mathbb{R}^{n}.
2. (1) Let $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a continuous function. Show that X is a random variable. Show that X is a r.v. if it is (a) right continuous or (b) lower semicontinuous or (c) non-decreasing (take $m=n=1$ for the last one).
(2) If μ is a Borel p.m. on \mathbb{R} with CDF F, then find the push-forward of μ under F.
3. For $k \geq 0$, define the functions $r_{k}:[0,1) \rightarrow \mathbb{R}$ by writing $[0,1)=\bigsqcup_{0 \leq j<2^{k}} I_{j}^{(k)}$ where $I_{j}^{(k)}$ is the dyadic interval $\left[j 2^{-k},(j+1) 2^{-k}\right)$ and setting

$$
r_{k}(x)= \begin{cases}-1 & \text { if } x \in I_{j}^{(k)} \text { for odd } j \\ +1 & \text { if } x \in I_{j}^{(k)} \text { for even } j\end{cases}
$$

Fix $n \geq 1$ and consider the function $T_{n}:[0,1) \rightarrow\{-1,1\}^{n}$ defined by $T_{n}(x)=\left(r_{0}(x), \ldots, r_{n-1}(x)\right)$. Find the pusforward of the Lebesgue measure on $[0,1)$ under T_{n} ?
4. Let $\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{k / n}$ and let μ be the uniform p.m. on [0,1$]$. Show directly by definition that $d\left(\mu_{n}, \mu\right) \rightarrow 0$ as $n \rightarrow \infty$.

Do not submit the following problems but highly recommended to try them
\qquad
5. Show that composition of random variables is a random variable. Show that realvalued random variables on a given (Ω, \mathcal{F}) are closed under linear combinations, under multiplication, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.
6. Let $\Omega=X=\mathbb{R}$ and let $T: \Omega \rightarrow X$ be defined by $T(x)=x$. We give a pair of σ-algebras, \mathcal{F} on Ω and \mathcal{G} on X by taking \mathcal{F} and \mathcal{G} to be one of $2^{\mathbb{R}}$ or $\mathcal{B}_{\mathbb{R}}$ or $\{\emptyset, \mathbb{R}\}$. Decide for each of the nine pairs, whether T is measurable or not.
7. Follow the steps below to obtain Sierpinski's construction of a non-measurable set. Here μ_{*} is the outer Lebesgue measure on \mathbb{R}.
(1) Regard \mathbb{R} as a vector space over \mathbb{Q} and choose a basis H (why is it possible?).
(2) Let $A_{0}=H \cup(-H)=\{x: x \in H$ or $-x \in H\}$. For $n \geq 1$, define $A_{n}:=A_{n-1}-A_{n-1}$ (may also write $A_{n}=A_{n-1}+A_{n-1}$ since A_{0} is symmetric about 0). Show that $\bigcup_{n \geq 0} \bigcup_{q \geq 1} \frac{1}{q} A_{n}=\mathbb{R}$ where $\frac{1}{q} A_{n}$ is the set $\left\{\frac{x}{q}: x \in A_{n}\right\}$.
(3) Let $N:=\min \left\{n \geq 0: \mu_{*}\left(A_{n}\right)>0\right\}$ (you must show that N is finite!). If A_{N} is measurable, show that $\cup_{n \geq N+1} A_{n}=\mathbb{R}$.
(4) Get a contradiction to the fact that H is a basis and conclude that A_{N} cannot be measurable.
[Remark: If you start with H which has zero Lebesgue measure, then $N \geq 1$ and $A:=E_{N-1}$ is a Lebesgue measurable set such that $A+A$ is not Lebesgue measurable! That was the motivation for Sierpinski. To find such a basis H, show that the Cantor set spans \mathbb{R} and then choose a basis H contained inside the Cantor set.]
8. We saw that for a Borel probability measure μ on \mathbb{R}, the pushforward of Lebesgue measure on $[0,1]$ under the $\operatorname{map} F_{\mu}^{-1}:[0,1] \rightarrow \mathbb{R}$ (as defined in lectures) is precisely μ. This is also a practical tool in simulating random variables. We assume that a random number generator gives us uniform random numbers from $[0,1]$. Apply the above idea to simulate random numbers from the following distributions (in matlab/mathematica or a program of your choice) a large number of times and compare the histogram to the actual density/mass function.
(1) Uniform distribution on $[a, b]$, (2) Exponential(λ) distribution, (3) Cauchy distribution, (4) Poisson(λ) distribution. (5) What about the normal distribution?
9. Change of variable formula for densities.
(1) Let μ be a p.m. on \mathbb{R} with density f by which we mean that its $\operatorname{CDF} F_{\mu}(x)=\int_{-\infty}^{x} f(t) d t$ (you may assume that f is continuous, non-negative and the Riemann integral $\int_{\mathbb{R}} f=1$). Then, find the (density of the) push forward measure of μ under (a) $T(x)=x+a$ (b) $T(x)=b x$ (c) T is any increasing and differentiable function.
(2) If X has $N\left(\mu, \sigma^{2}\right)$ distribution, find the distribution of $(X-\mu) / \sigma$.
10. (1) Let $X=\left(X_{1}, \ldots, X_{n}\right)$. Show that X is an \mathbb{R}^{d}-valued r.v. if and only if X_{1}, \ldots, X_{n} are (real-valued) random variables. How does $\sigma(X)$ relate to $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$?
(2) Let $X: \Omega_{1} \rightarrow \Omega_{2}$ be a random variable. If $X(\omega)=X\left(\omega^{\prime}\right)$ for some $\omega, \omega^{\prime} \in \Omega_{1}$, show that there is no set $A \in \sigma(X)$ such that $\omega \in A$ and $\omega^{\prime} \notin A$ or vice versa. [Extra! If $Y: \Omega_{1} \rightarrow \Omega_{2}$ is another r.v. which is measurable w.r.t. $\sigma(X)$ on Ω_{1}, then show that Y is a function of X].
11. (1) Show that the Lévy metric on $\mathcal{P}\left(\mathbb{R}^{d}\right)$ defined in class is actually a metric.
(2) Show that under the Lévy metric, $\mathcal{P}\left(\mathbb{R}^{d}\right)$ is a complete and seperable metric space.

