HOMEWORK 2: DUE 5TH FEB SUBMIT THE FIRST FOUR PROBLEMS ONLY

- **1.** (1) Let A_1, \ldots, A_n be subsets of Ω and define $T : \Omega \to \mathbb{R}^n$ by $T(\omega) = (\mathbf{1}_{A_1}(\omega), \ldots, \mathbf{1}_{A_n}(\omega))$. What is the smallest σ -algebra on Ω for which T becomes a random variable?
 - (2) Suppose $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space and assume that $A_k \in \mathcal{F}$. Describe the push-forward measure $\mathbf{P} \circ T^{-1}$ on \mathbb{R}^n .
- **2.** (1) Let $X : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function. Show that *X* is a random variable. Show that *X* is a r.v. if it is (a) right continuous or (b) lower semicontinuous or (c) non-decreasing (take m = n = 1 for the last one).
 - (2) If μ is a Borel p.m. on \mathbb{R} with CDF *F*, then find the push-forward of μ under *F*.

3. For $k \ge 0$, define the functions $r_k : [0,1) \to \mathbb{R}$ by writing $[0,1) = \bigsqcup_{0 \le j < 2^k} I_j^{(k)}$ where $I_j^{(k)}$ is the dyadic interval $[j2^{-k}, (j+1)2^{-k})$ and setting

$$r_k(x) = \begin{cases} -1 & \text{if } x \in I_j^{(k)} \text{ for odd } j, \\ +1 & \text{if } x \in I_j^{(k)} \text{ for even } j. \end{cases}$$

Fix $n \ge 1$ and consider the function $T_n : [0,1) \to \{-1,1\}^n$ defined by $T_n(x) = (r_0(x), \dots, r_{n-1}(x))$. Find the pusforward of the Lebesgue measure on [0,1) under T_n ?

4. Let $\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{k/n}$ and let μ be the uniform p.m. on [0,1]. Show directly by definition that $d(\mu_n, \mu) \to 0$ as $n \to \infty$.

5. Show that composition of random variables is a random variable. Show that real-valued random variables on a given (Ω, \mathcal{F}) are closed under linear combinations, under multiplication, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

6. Let $\Omega = X = \mathbb{R}$ and let $T : \Omega \to X$ be defined by T(x) = x. We give a pair of σ -algebras, \mathcal{F} on Ω and \mathcal{G} on X by taking \mathcal{F} and \mathcal{G} to be one of $2^{\mathbb{R}}$ or $\mathcal{B}_{\mathbb{R}}$ or $\{\emptyset, \mathbb{R}\}$. Decide for each of the nine pairs, whether T is measurable or not.

7. Follow the steps below to obtain Sierpinski's construction of a non-measurable set. Here μ_* is the outer Lebesgue measure on \mathbb{R} .

- (1) Regard \mathbb{R} as a vector space over \mathbb{Q} and choose a basis *H* (why is it possible?).
- (2) Let $A_0 = H \cup (-H) = \{x : x \in H \text{ or } -x \in H\}$. For $n \ge 1$, define $A_n := A_{n-1} A_{n-1}$ (may also write $A_n = A_{n-1} + A_{n-1}$ since A_0 is symmetric about 0). Show that $\bigcup_{n\ge 0} \bigcup_{q\ge 1} \frac{1}{q}A_n = \mathbb{R}$ where $\frac{1}{q}A_n$ is the set $\{\frac{x}{q} : x \in A_n\}$.
- (3) Let $N := \min\{n \ge 0 : \mu_*(A_n) > 0\}$ (you must show that *N* is finite!). If A_N is measurable, show that $\bigcup_{n \ge N+1} A_n = \mathbb{R}$.
- (4) Get a contradiction to the fact that *H* is a basis and conclude that A_N cannot be measurable.

[Remark: If you start with *H* which has zero Lebesgue measure, then $N \ge 1$ and $A := E_{N-1}$ is a Lebesgue measurable set such that A + A is not Lebesgue measurable! That was the motivation for Sierpinski. To find such a basis *H*, show that the Cantor set spans \mathbb{R} and then choose a basis *H* contained inside the Cantor set.]

8. We saw that for a Borel probability measure μ on \mathbb{R} , the pushforward of Lebesgue measure on [0,1] under the map $F_{\mu}^{-1}:[0,1] \to \mathbb{R}$ (as defined in lectures) is precisely μ . This is also a practical tool in simulating random variables. We assume that a random number generator gives us uniform random numbers from [0,1]. Apply the above idea to simulate random numbers from the following distributions (in matlab/mathematica or a program of your choice) a large number of times and compare the histogram to the actual density/mass function.

(1) Uniform distribution on [a,b], (2) Exponential(λ) distribution, (3) Cauchy distribution, (4) Poisson(λ) distribution. (5) What about the normal distribution?

- **9.** Change of variable formula for densities.
 - Let μ be a p.m. on ℝ with density *f* by which we mean that its CDF F_μ(x) = ∫^x_{-∞} f(t)dt (you may assume that *f* is continuous, non-negative and the Riemann integral ∫_ℝ f = 1). Then, find the (density of the) push forward measure of μ under (a) T(x) = x + a (b) T(x) = bx (c) T is any increasing and differentiable function.
 - (2) If *X* has $N(\mu, \sigma^2)$ distribution, find the distribution of $(X \mu)/\sigma$.
- **10.** (1) Let $X = (X_1, ..., X_n)$. Show that X is an \mathbb{R}^d -valued r.v. if and only if $X_1, ..., X_n$ are (real-valued) random variables. How does $\sigma(X)$ relate to $\sigma(X_1), ..., \sigma(X_n)$?

- (2) Let $X : \Omega_1 \to \Omega_2$ be a random variable. If $X(\omega) = X(\omega')$ for some $\omega, \omega' \in \Omega_1$, show that there is no set $A \in \sigma(X)$ such that $\omega \in A$ and $\omega' \notin A$ or vice versa. [Extra! If $Y : \Omega_1 \to \Omega_2$ is another r.v. which is measurable w.r.t. $\sigma(X)$ on Ω_1 , then show that *Y* is a function of *X*].
- **11.** (1) Show that the Lévy metric on $\mathcal{P}(\mathbb{R}^d)$ defined in class is actually a metric.
 - (2) Show that under the Lévy metric, $\mathcal{P}(\mathbb{R}^d)$ is a complete and seperable metric space.