HOMEWORK 4: DUE 5TH MAR SUBMIT THE FIRST FOUR PROBLEMS ONLY

1. (1) Suppose $X_n \ge 0$ and $X_n \to X$ a.s. If $\mathbf{E}[X_n] \to \mathbf{E}[X]$, show that $\mathbf{E}[|X_n - X|] \to 0$. (2) If $\mathbf{E}[|X|] < \infty$, then $\mathbf{E}[|X|\mathbf{1}_{|X|>A}] \to 0$ as $A \to \infty$.

2. Let *X* be a non-negative random variable.

- (1) Show that $\mathbf{E}[X] = \int_0^\infty \mathbf{P}\{X > t\} dt$. In particular, if X is a non-negative integer valued, then $\mathbf{E}[X] = \sum_{n=1}^\infty \mathbf{P}(X \ge n)$.
- (2) Show that $\mathbf{E}[X^p] = \int_0^\infty p t^{p-1} \mathbf{P}\{X \ge t\} dt$ for any p > 0.

3. Let *X* be a non-negative random variable with all moments (i.e., $\mathbf{E}[X^p] < \infty$ for all $p < \infty$). Show that $\log \mathbf{E}[X^p]$ is a convex function of *p*.

4. Compute mean and variance of the N(0,1), Exp(1), and $Pois(\lambda)$ distributions.

- **5.** (1) Give an example of a sequence of r.v.s X_n such that $\liminf \mathbf{E}[X_n] < \mathbf{E}[\liminf X_n]$.
 - (2) Give an example of a sequence of r.v.s X_n such that $X_n \xrightarrow{a.s.} X$, $\mathbf{E}[X_n] = 1$, but $\mathbf{E}[X] = 0$.

6. If 0 , give example to show that Minkowski's inequality may fail.

7 (Moment matrices). Let $\mu \in \mathcal{P}(\mathbb{R})$ and let $\alpha_k = \int x^k d\mu(x)$ (assume that all moments exist). Then, for any $n \ge 1$, show that the matrix $(\alpha_{i+j})_{0 \le i,j \le n}$ is non-negative definite. [Suggestion: First solve n = 1].

8. Suppose $f : [a,b] \to \mathbb{R}$ is a Borel measurable function. Then, show that $g(x) := \int_0^x f(u) du$ is a continuous function on [0,1].

[Note: It is in fact true that g is differentiable at almost every x and that g' = f a.s., but that is a more sophisticated fact, called *Lebesgue's differentiation theorem*. In this course, we only need Lebesgue integration, not differentiation. The latter may be covered in your measure theory class].

9. (Differentiating under the integral). Let $f : [a, b] \times \mathbb{R} \to \mathbb{R}$, satisfy the following assumptions.

(1) $x \to f(x, \theta)$ is Borel measurable for each θ .

(2) $\theta \to f(x,\theta)$ is continuously differentiable for each x.

(3) $f(x,\theta)$ and $\frac{\partial f}{\partial \theta}(x,\theta)$ are uniformly bounded functions of (x,θ) .

Then, justify the following "differentiation under integral sign" (including the fact that the integrals here make sense).

$$\frac{d}{d\theta} \int_{a}^{b} f(x,\theta) dx = \int_{a}^{b} \frac{\partial f}{\partial \theta}(x,\theta) \ dx$$

[**Hint:** Derivative is the limit of difference quotients, $h'(t) = \lim_{\epsilon \to 0} \frac{h(t+\epsilon)-h(t)}{\epsilon}$.] Contrast with the complicated conditions for the Riemann integral.