1. (1) Suppose $X_{n} \geq 0$ and $X_{n} \rightarrow X$ a.s. If $\mathbf{E}\left[X_{n}\right] \rightarrow \mathbf{E}[X]$, show that $\mathbf{E}\left[\left|X_{n}-X\right|\right] \rightarrow 0$. (2) If $\mathbf{E}[|X|]<\infty$, then $\mathbf{E}\left[|X| \mathbf{1}_{|X|>A}\right] \rightarrow 0$ as $A \rightarrow \infty$.
2. Let X be a non-negative random variable.
(1) Show that $\mathbf{E}[X]=\int_{0}^{\infty} \mathbf{P}\{X>t\} d t$. In particular, if X is a non-negative integer valued, then $\mathbf{E}[X]=\sum_{n=1}^{\infty} \mathbf{P}(X \geq n)$.
(2) Show that $\mathbf{E}\left[X^{p}\right]=\int_{0}^{\infty} p t^{p-1} \mathbf{P}\{X \geq t\} d t$ for any $p>0$.
3. Let X be a non-negative random variable with all moments (i.e., $\mathbf{E}\left[X^{p}\right]<\infty$ for all $p<\infty)$. Show that $\log \mathbf{E}\left[X^{p}\right]$ is a convex function of p.
4. Compute mean and variance of the $N(0,1), \operatorname{Exp}(1)$, and $\operatorname{Pois}(\lambda)$ distributions.

Do not submit the following problems but highly recommended to try them
\qquad
5. (1) Give an example of a sequence of r.v.s X_{n} such that $\liminf \mathbf{E}\left[X_{n}\right]<\mathbf{E}\left[\lim \inf X_{n}\right]$.
(2) Give an example of a sequence of r.v.s X_{n} such that $X_{n} \xrightarrow{\text { a.s. }} X, \mathbf{E}\left[X_{n}\right]=1$, but $\mathbf{E}[X]=0$.
6. If $0<p<1$, give example to show that Minkowski's inequality may fail.

7 (Moment matrices). Let $\mu \in \mathcal{P}(\mathbb{R})$ and let $\alpha_{k}=\int x^{k} d \mu(x)$ (assume that all moments exist). Then, for any $n \geq 1$, show that the matrix $\left(\alpha_{i+j}\right)_{0 \leq i, j \leq n}$ is non-negative definite. [Suggestion: First solve $n=1$].
8. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a Borel measurable function. Then, show that $g(x):=$ $\int_{0}^{x} f(u) d u$ is a continuous function on $[0,1]$.
[Note: It is in fact true that g is differentiable at almost every x and that $g^{\prime}=f \quad$ a.s., but that is a more sophisticated fact, called Lebesgue's differentiation theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be covered in your measure theory class].
9. (Differentiating under the integral). Let $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$, satisfy the following assumptions.
(1) $x \rightarrow f(x, \theta)$ is Borel measurable for each θ.
(2) $\theta \rightarrow f(x, \theta)$ is continuously differentiable for each x.
(3) $f(x, \theta)$ and $\frac{\partial f}{\partial \theta}(x, \theta)$ are uniformly bounded functions of (x, θ).

Then, justify the following "differentiation under integral sign" (including the fact that the integrals here make sense).

$$
\frac{d}{d \theta} \int_{a}^{b} f(x, \theta) d x=\int_{a}^{b} \frac{\partial f}{\partial \theta}(x, \theta) d x
$$

[Hint: Derivative is the limit of difference quotients, $h^{\prime}(t)=\lim _{\epsilon \rightarrow 0} \frac{h(t+\epsilon)-h(t)}{\epsilon}$.] Contrast with the complicated conditions for the Riemann integral.

