HOMEWORK 5: DUE 20TH MAR SUBMIT THE FIRST FOUR PROBLEMS ONLY

- **1.** (1) If *X*, *Y* are independent random variables, show that Cov(X, Y) = 0.
 - (2) Give a counterexample to the converse by giving an infinite sequence of random variables X_1, X_2, \ldots such that $Cov(X_i, X_j) = 0$ for any $i \neq j$ but such that X_i are not independent.
- **2.** (1) Suppose $2 \le k < n$. Give an example of *n* random variables X_1, \ldots, X_n such that any subset of *k* of these random variables are independent but no subset of k + 1 of them is independent.
 - (2) Suppose (X_1, \ldots, X_n) has a multivariate Normal distribution. Show that if X_i are pairwise independent, then they are independent.
- **3.** Suppose (X_1, \ldots, X_n) has density f (w.r.t Lebesgue measure on \mathbb{R}^n).
 - (1) If $f(x_1,...,x_n)$ can be written as $\prod_{k=1}^n g_k(x_k)$ for some one-variable functions g_k , $k \leq n$. Then show that $X_1,...,X_n$ are independent. (Don't assume that g_k is a density!)
 - (2) If X_1, \ldots, X_n are independent, then $f(x_1, \ldots, x_n)$ can be written as $\prod_{k=1}^n g_k(x_k)$ for some one-variable densities g_1, \ldots, g_n .

4. If $A \in \mathcal{B}(\mathbb{R}^2)$ has positive Lebesgue measure, show that for some $x \in \mathbb{R}$ the set $A_x := \{y \in \mathbb{R} : (x, y) \in A\}$ has positive Lebesgue measure in \mathbb{R} .

Do not submit the following problems but recommended to try them or at least read them!

5. Let X_i , $i \ge 1$ be random variables on a common probability space. Let $f : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ be a measurable function (with product sigma algebra on $\mathbb{R}^{\mathbb{N}}$ and Borel sigma algebra on \mathbb{R}) and let $Y = f(X_1, X_2, ...)$. Show that the distribution of Y depends only on the joint distribution of $(X_1, X_2, ...)$ and not on the original probability space. [**Hint:** We used this idea to say that if X_i are independent Bernoulli random variables, then $\sum_{i\ge 1} X_i 2^{-i}$ has uniform distribution on [0, 1], irrespective of the underlying probability space.] **6.** Let \mathcal{G} be the countable-cocountable sigma algebra on \mathbb{R} . Define the probability measure μ on \mathcal{G} by $\mu(A) = 0$ if A is countable and $\mu(A) = 1$ if A^c is countable. Show that μ is *not* the push-forward of Lebesgue measure on [0, 1], i.e., there does not exist a measurable function $T : [0, 1] \mapsto \Omega$ (w.r.t. the σ -algebras \mathcal{B} and \mathcal{G}) such that $\mu = \lambda \circ T^{-1}$.

7. Show that it is not possible to define uncountably many independent Ber(1/2) random variables on the probability space ($[0, 1], \mathcal{B}, \lambda$).

8 (Existence of Markov chains). Let *S* be a countable set (with the power set sigma algebra). Two ingredients are given: (1) A transition matrix, that is, a function $p: S \times S \rightarrow [0,1]$ be a function such that $p(x, \cdot)$ is a probability mass function on *S* for each $x \in S$. (2) An initial distribution, that is a probability mass function μ_0 on *S*.

For $n \ge 0$ define the probability mass function ν_n on S^{n+1} (with the product sigma algebra) by

$$\nu_n(x_0,\ldots,x_n) = \mu_0(x_0) \prod_{j=0}^{n-1} p(x_j,x_{j+1}).$$

Show that ν_n is a valid probability mass function and that they form a consistent family. Conclude that a Markov chain with initial distribution μ_0 and transition matrix p exists.