1. (Chung-Erdös inequality). Let A_{i} be events in a probability space. Show that

$$
\mathbf{P}\left\{\bigcup_{k=1}^{n} A_{k}\right\} \geq \frac{\left(\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\right)^{2}}{\sum_{k, \ell=1}^{n} \mathbf{P}\left(A_{k} \cap A_{\ell}\right)}
$$

2. (1) Suppose $X_{i}, i \in I$ are are random variables on a probability space and that some $p>0$ and $M<\infty$ we have $\mathbf{E}\left[\left|X_{i}\right|^{p}\right] \leq M$ for all $i \in I$. Show that the family $\left\{X_{i}: i \in I\right\}$ is tight (by which we mean that $\left\{\mu_{X_{i}}: i \in I\right\}$ is tight, where $\mu_{X_{i}}$ is the distribution of X_{i}).
(2) Let X_{i} be i.i.d. random variables with zero mean and finite variance. Let $S_{n}=$ $X_{1}+\ldots+X_{n}$. Show that the collection $\left\{\frac{1}{\sqrt{n}} S_{n}: n \geq 1\right\}$ is tight.
3. Let ξ, ξ_{n} be i.i.d. random variables with $\mathbf{E}\left[\log _{+} \xi\right]<\infty$ and $\mathbf{P}(\xi=0)<1$.
(1) Show that $\lim \sup _{n \rightarrow \infty}\left|\xi_{n}\right|^{\frac{1}{n}}=1$ a.s.
(2) Let c_{n} be (non-random) complex numbers. Show that the radius of convergence of the random power series $\sum_{n=0}^{\infty} c_{n} \xi_{n} z^{n}$ is almost surely equal to the radius of convergence of the non-random power series $\sum_{n=0}^{\infty} c_{n} z^{n}$.
4. Give example of an infinite sequence of pairwise independent random variables for which Kolmogorov's zero-one law fails.

Do not submit the following problems but recommended to try them or at least read them! -xxxxxxxxxxxxxxxxxxx
5. Place r_{m} balls in m bins at random and count the number of empty bins Z_{m}. Fix $\delta>0$. If $r_{m}>(1+\delta) m \log m$, show that $\mathbf{P}\left(Z_{m} \geq 1\right) \rightarrow 0$ while if $r_{m}<(1-\delta) m \log m$, show that $\mathbf{P}\left(Z_{m} \geq 1\right) \rightarrow 1$.
6. Let $\left(\Omega_{i}, \mathcal{F}_{i}, \mathbf{P}_{i}\right), i \in I$, be probability spaces and let $\Omega=\times_{i} \Omega_{i}$ with $\mathcal{F}=\otimes_{i} \mathcal{F}_{i}$ and $\mathbf{P}=\otimes_{i} \mathbf{P}_{i}$. If $A \in \mathcal{F}$, show that for any $\epsilon>0$, there is a cylinder set B such that $\mathbf{P}(A \Delta B)<\epsilon$.
7. (Ergodicity of product measure). This problem guides you to a proof of a different zero-one law.
(1) Consider the product measure space $\left(\mathbb{R}^{\mathbb{Z}}, \mathcal{B}\left(\mathbb{R}^{\mathbb{Z}}\right), \otimes_{\mathbb{Z}} \mu\right)$ where $\mu \in \mathcal{P}(\mathbb{R})$. Define $\tau: \mathbb{R}^{\mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z}}$ by $(\tau \omega)_{n}=\omega_{n+1}$. Let $\mathcal{I}=\left\{A \in \mathcal{B}\left(\mathbb{R}^{\mathbb{Z}}\right): \tau(A)=A\right\}$. Then, show that \mathcal{I} is a sigma-algebra (called the invariant sigma algebra) and that every event in \mathcal{I} has probability equal to 0 or 1 .
(2) Let $X_{n}, n \geq 1$ be i.i.d. random variables on a common probability space. Suppose $f: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ is a measurable function such that $f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{2}, x_{3}, \ldots\right)$ for any $\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$. Then deduce from the first part that the random variable $f\left(X_{1}, X_{2}, \ldots\right)$ is a constant, a.s.
[Hint: Approximate A by cylinder sets as in the previous problem. Use translation by τ^{m} to prove that $\mathbf{P}(A)=\mathbf{P}(A)^{2}$.]
8. Consider the invariant sigma algebra and the tail sigma algebra. Show that neither is contained in the other.

