HOMEWORK 6: DUE 31ST MAR SUBMIT THE FIRST FOUR PROBLEMS ONLY

1. (Chung-Erdös inequality). Let A_i be events in a probability space. Show that

$$\mathbf{P}\left\{\bigcup_{k=1}^{n} A_k\right\} \ge \frac{\left(\sum_{k=1}^{n} \mathbf{P}(A_k)\right)^2}{\sum_{k,\ell=1}^{n} \mathbf{P}(A_k \cap A_\ell)}$$

- **2.** (1) Suppose X_i , $i \in I$ are are random variables on a probability space and that some p > 0 and $M < \infty$ we have $\mathbf{E}[|X_i|^p] \leq M$ for all $i \in I$. Show that the family $\{X_i : i \in I\}$ is tight (by which we mean that $\{\mu_{X_i} : i \in I\}$ is tight, where μ_{X_i} is the distribution of X_i).
 - (2) Let X_i be i.i.d. random variables with zero mean and finite variance. Let $S_n = X_1 + \ldots + X_n$. Show that the collection $\{\frac{1}{\sqrt{n}}S_n : n \ge 1\}$ is tight.
- **3.** Let ξ, ξ_n be i.i.d. random variables with $\mathbf{E}[\log_+ \xi] < \infty$ and $\mathbf{P}(\xi = 0) < 1$.
 - (1) Show that $\limsup_{n\to\infty} |\xi_n|^{\frac{1}{n}} = 1$ a.s.
 - (2) Let c_n be (non-random) complex numbers. Show that the radius of convergence of the random power series $\sum_{n=0}^{\infty} c_n \xi_n z^n$ is almost surely equal to the radius of convergence of the non-random power series $\sum_{n=0}^{\infty} c_n z^n$.

4. Give example of an infinite sequence of pairwise independent random variables for which Kolmogorov's zero-one law fails.

Do not submit the following problems but recommended to try them or at least read them!

5. Place r_m balls in m bins at random and count the number of empty bins Z_m . Fix $\delta > 0$. If $r_m > (1 + \delta)m \log m$, show that $\mathbf{P}(Z_m \ge 1) \to 0$ while if $r_m < (1 - \delta)m \log m$, show that $\mathbf{P}(Z_m \ge 1) \to 1$.

6. Let $(\Omega_i, \mathcal{F}_i, \mathbf{P}_i)$, $i \in I$, be probability spaces and let $\Omega = \times_i \Omega_i$ with $\mathcal{F} = \otimes_i \mathcal{F}_i$ and $\mathbf{P} = \otimes_i \mathbf{P}_i$. If $A \in \mathcal{F}$, show that for any $\epsilon > 0$, there is a cylinder set B such that $\mathbf{P}(A\Delta B) < \epsilon$.

7. (Ergodicity of product measure). This problem guides you to a proof of a different zero-one law.

- (1) Consider the product measure space $(\mathbb{R}^{\mathbb{Z}}, \mathcal{B}(\mathbb{R}^{\mathbb{Z}}), \otimes_{\mathbb{Z}} \mu)$ where $\mu \in \mathcal{P}(\mathbb{R})$. Define $\tau : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$ by $(\tau \omega)_n = \omega_{n+1}$. Let $\mathcal{I} = \{A \in \mathcal{B}(\mathbb{R}^{\mathbb{Z}}) : \tau(A) = A\}$. Then, show that \mathcal{I} is a sigma-algebra (called the invariant sigma algebra) and that every event in \mathcal{I} has probability equal to 0 or 1.
- (2) Let X_n, n ≥ 1 be i.i.d. random variables on a common probability space. Suppose f : ℝ^N → ℝ is a measurable function such that f(x₁, x₂,...) = f(x₂, x₃,...) for any (x₁, x₂,...) ∈ ℝ^N. Then deduce from the first part that the random variable f(X₁, X₂,...) is a constant, a.s.

[**Hint:** Approximate *A* by cylinder sets as in the previous problem. Use translation by τ^m to prove that $\mathbf{P}(A) = \mathbf{P}(A)^2$.]

8. Consider the invariant sigma algebra and the tail sigma algebra. Show that neither is contained in the other.