MIDTERM 1: PROBABILITY THEORY 21ST FEB MAXIMUM MARKS: 50, DURATION: 120 MINUTES

Note: Give all justifications but write succinctly. Ask questions only if there is an ambiguity in the question and not to verify your answers.

1. (**4 x 4 marks**). Declare whether the following statements are true or false and provide proofs or counterexamples accordingly.

- (1) Let *S* be the collection of all singleton subsets of \mathbb{R} . Then, $\sigma(S)$ is the equal to the power set of \mathbb{R} .
- (2) A finite union of σ -algebras is a σ -algebra.
- (3) Let μ be the N(0,1) distribution. Then there exists a unique measurable function $T: [0,1] \to \mathbb{R}$ such that $\lambda \circ T^{-1} = \mu$. (As usual, λ is the Lebesgue measure on [0,1]).
- (4) Suppose (Ω, \mathcal{F}) is a measurable space and $A_0 \in \mathcal{F}$ is a subset with the property that for any $A \in \mathcal{F}$, either $A \supseteq A_0$ or $A \cap A_0 = \emptyset$. Then every random variable $X : \Omega \to \mathbb{R}$ is constant on A_0 .
- **2.** (10 marks). Let (Ω, \mathcal{F}) be a measurable space.
 - (1) If $X : \Omega \to \mathbb{R}$ is such that $X^{-1}(I) \in \mathcal{F}$ for every open interval I in \mathbb{R} , show that $X^{-1}(A) \in \mathcal{F}$ for every Borel set $A \in \mathcal{B}_{\mathbb{R}}$.
 - (2) If X and Y are real-valued random variables, show that XY is also a random variable.

3. (10 marks). Find the distribution of the following random variables defined on the probability space ([0, 1], \mathcal{B} , λ). (1) $X(t) = \sin(2\pi t)$ and (2) $Z(t) = \lfloor \log \frac{1}{t} \rfloor$.

4. (10 marks). Suppose $\mu_n, \mu \in \mathcal{P}(\mathbb{R})$ and $F_{\mu_n}(t) \to F_{\mu}(t)$ for all $t \in D$, where *D* is a dense subset of \mathbb{R} . Then, show that $\mu_n \stackrel{d}{\to} \mu$.

5. (10 marks). Suppose X_n, Y_n are random variables on a common probability space such that $\{\mu_{X_n}\}$ and $\{\mu_{Y_n}\}$ are tight families (here μ_X denotes the distribution of X).

- (1) Let $Z_n = X_n + Y_n$ Show that $\{\mu_{Z_n}\}$ is tight.
- (2) Assume that $Y_n > 0$ a.s., and let $W_n = X_n/Y_n$. Show that $\{\mu_{W_n}\}$ may not be tight.