```
Midterm 2: Probability theory 29TH MARCH, 10AM-12:30PM
Maximum marks: 50, Duration: 150 minutes
```

Note: Give all justifications but write succinctly and legibly. Ask questions only if there is an ambiguity in the question and not to verify your answers.

1. ($\mathbf{1 0}$ marks). Suppose X_{n} are pairwise independent (but not necessarily identically distributed) random variables on a common probability space. Assume that $\mathbf{E}\left[X_{n}\right]=0$ for all n and that $\left|X_{n}\right| \leq M$ a.s. for all n for some finite number M. Let $S_{n}=X_{1}+\ldots+X_{n}$. Show that $\mathbf{P}\left\{\left|\frac{1}{n} S_{n}\right| \geq \delta\right\} \rightarrow 0$ for every $\delta>0$.
2. (5 x 4 marks). Declare whether the following statements are true or false and provide proofs or counterexamples accordingly.
(1) Let $f:[0,1] \rightarrow[0,1]$ be a Borel measurable function. Define its graph as $G_{f}=$ $\{(x, f(x)): x \in[0,1]\}$. Then, $\lambda_{2}\left(G_{f}\right)=0$, where λ_{2} is the Lebesgue measure on \mathbb{R}^{2}.
(2) If $\mu \in \mathcal{P}(\mathbb{R})$ is absolutely continuous to Lebesgue measure on \mathbb{R}, then F_{μ} must be continuous.
(3) If X_{i} are independent random variables and $T_{n}=\sum_{k=1}^{n} \frac{X_{k}}{n-k}$. Then, $\lim \sup T_{n}$ must be constant, almost surely.
(4) If X_{n} are i.i.d. random variables, then $\frac{1}{n} X_{n} \xrightarrow{\text { a.s. }} 0$.
3. ($\mathbf{1 0}$ marks). A box has n coupons labelled $1,2, \ldots, n$. Coupons are drawn at random and with replacement from the box. Let T_{n} be the number of draws till at least 99% of coupons have been seen at least once. Show that (1) $\mathbf{E}\left[T_{n}\right] \sim C n$ for some constant C and (2) $\operatorname{Var}\left(T_{n}\right)=O(1)$.
4. (10 marks). Suppose X_{n} are independent random variables and $X_{n} \sim \operatorname{Exp}\left(\lambda_{n}\right)$. Show that the series $\sum_{n} X_{n}$ converges almost surely if and only if $\sum_{n} \frac{1}{\lambda_{n}}$ is finite.
5. (5 marks). Let X, Y be i.i.d. random variables. If $\mathbf{P}(X=a)=0$ for all $a \in \mathbb{R}$, then $\mathbf{P}(X=Y)=0$.
