MIDTERM 2: PROBABILITY THEORY 29TH MARCH, 10AM-12:30PM MAXIMUM MARKS: 50, DURATION: 150 MINUTES

Note: Give all justifications but write succinctly and legibly. Ask questions only if there is an ambiguity in the question and not to verify your answers.

1. (10 marks). Suppose X_n are pairwise independent (but not necessarily identically distributed) random variables on a common probability space. Assume that $\mathbf{E}[X_n] = 0$ for all n and that $|X_n| \leq M$ a.s. for all n for some finite number M. Let $S_n = X_1 + \ldots + X_n$. Show that $\mathbf{P}\{|\frac{1}{n}S_n| \geq \delta\} \to 0$ for every $\delta > 0$.

2. (**5 x 4 marks**). Declare whether the following statements are true or false and provide proofs or counterexamples accordingly.

- (1) Let $f : [0,1] \to [0,1]$ be a Borel measurable function. Define its graph as $G_f = \{(x, f(x)) : x \in [0,1]\}$. Then, $\lambda_2(G_f) = 0$, where λ_2 is the Lebesgue measure on \mathbb{R}^2 .
- (2) If $\mu \in \mathcal{P}(\mathbb{R})$ is absolutely continuous to Lebesgue measure on \mathbb{R} , then F_{μ} must be continuous.
- (3) If X_i are independent random variables and $T_n = \sum_{k=1}^n \frac{X_k}{n-k}$. Then, $\limsup T_n$ must be constant, almost surely.
- (4) If X_n are i.i.d. random variables, then $\frac{1}{n}X_n \stackrel{a.s.}{\rightarrow} 0$.

3. (10 marks). A box has *n* coupons labelled 1, 2, ..., n. Coupons are drawn at random and with replacement from the box. Let T_n be the number of draws till at least 99% of coupons have been seen at least once. Show that (1) $\mathbf{E}[T_n] \sim Cn$ for some constant *C* and (2) $\operatorname{Var}(T_n) = O(1)$.

4. (10 marks). Suppose X_n are independent random variables and $X_n \sim \text{Exp}(\lambda_n)$. Show that the series $\sum_n X_n$ converges almost surely if and only if $\sum_n \frac{1}{\lambda_n}$ is finite.

5. (5 marks). Let X, Y be i.i.d. random variables. If $\mathbf{P}(X = a) = 0$ for all $a \in \mathbb{R}$, then $\mathbf{P}(X = Y) = 0$.