

## HOMEWORK 1

**Problem 1.** Let  $X_1, X_2, \dots$  be i.i.d. random variables having  $\text{Ber}(1/2)$  distribution. Let  $S_n = X_1 + \dots + X_n$ . Find  $\mathbf{E}[e^{\theta X_1}]$  for  $\theta \in \mathbb{R}$  and use it to show that if  $p > \frac{1}{2}$ , then  $\log \mathbf{P}\{S_n \geq np\} \leq -nH(p)(1 + o(1))$  where  $H(p) = -p \log_2 p - (1-p) \log_2(1-p)$  (it is called the *Shannon entropy* of  $\text{Ber}(p)$  distribution).

**Problem 2.** Let  $X_1, X_2, \dots$  be i.i.d.  $\text{Exp}(1)$  random variables. Analogous to the previous problem, show that if  $t > 1$  then  $\log \mathbf{P}\{S_n \geq nt\} \leq -nI(t)(1 + o(1))$  where  $I(t) = t \log t - t + 1$ . [Note: For those who know the term, this is the *relative entropy* of  $\text{Exp}(1/t)$  (which has mean  $t$ ) w.r.t  $\text{Exp}(1)$ ]

**Problem 3.** Let  $X_1, X_2, \dots$  be i.i.d.  $\text{Exp}(1)$ . Let  $M_n = \max\{X_1, \dots, X_n\}$ . Show that

- (1)  $\mathbf{P}\{M_n \geq (1 + \delta) \log n\} \rightarrow 0$  as  $n \rightarrow \infty$ , for any  $\delta > 0$ .
- (2)  $\mathbf{P}\{M_n \geq (1 - \delta) \log n\} \rightarrow 1$  as  $n \rightarrow \infty$ , for any  $\delta > 0$ .

[Hint: Fix  $t$  and consider the random variable  $Z_n = \#\{k \leq n : X_k \geq t\}$  and observe that  $M_n \geq t$  if and only if  $Z_n > 0$ ]

**Problem 4.** Let  $X$  be a random variable with zero mean and variance  $\sigma^2$ . Show that  $\mathbf{P}\{X \geq t\} \leq \frac{\sigma^2}{t^2 + \sigma^2}$ .

[Hint: Chebyshev's inequality for  $X$  only gives  $\frac{\sigma^2}{t^2}$ . Try using  $X + b$  for some  $b$ ]

**Problem 5.** Suppose  $r$  labelled balls are thrown into  $n$  labelled bins, uniformly at random and independently of each other. Let  $p(r, n)$  be the probability that at least one bin is empty.

- (1) Show that  $p(r_n, n) \rightarrow 0$  if  $\frac{r_n}{n \log n} \rightarrow \infty$ .
- (2) Show that  $p(r_n, n) \rightarrow 1$  if  $\frac{r_n}{n \log n} \rightarrow 0$ .

[Remark: One way is to consider the number of empty bins and apply first and second moment methods.]

**Problem 6.** Let  $X_1, X_2, \dots$  be independent random variables such that  $\mathbf{P}\{X_1 = 0\} = 0$  (for simplicity). Show that the radius of convergence of  $X_0 + X_1 z + X_2 z^2 + \dots$  is almost surely equal to 1 if and only if  $\mathbf{E}[\log_+ |X|] < \infty$  (here  $\log_+ t = \max\{\log t, 0\}$  for  $t > 0$ ).

**Problem 7.** Let  $A_1, A_2, \dots$  be events in a probability space. Let  $Z = \sum_{k=1}^{\infty} \mathbf{1}_{A_k}$  be the number of these events that occur. Use first and second moment methods on  $Z$  to deduce Borel-Cantelli lemma in the following form:

- (1) If  $\sum_n \mathbf{P}(A_n) < \infty$ , then almost surely, only finitely many of the  $A_n$ s occur.
- (2) If  $A_n$  are *pairwise independent* and  $\sum_n \mathbf{P}(A_n) = \infty$ , then almost surely, infinitely many of the  $A_n$ s occur.

**Problem 8.** Let  $X_1, X_2, \dots$  be i.i.d. random variables with mean  $\mu$  and variance  $\sigma^2$ . Let  $S_n = X_1 + \dots + X_n$ . Fix  $\epsilon > 0$  and let  $A_n$  be the event that  $|\frac{1}{n}S_n - \mu| \geq \epsilon$ . Show that almost surely, only finitely many of the events  $A_{k^2}$ ,  $k = 1, 2, \dots$  occur. For what other subsequences  $\{n_k\}$  (in place of  $k^2$ ) can you draw the same conclusion.