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1. INTRODUCTION

In this second part of the course, we shall study independent random variables. Much of what
we do is devoted to the following single question: Given independent random variables with
known distributions, what can you say about the distribution of the sum? In the process of finding
answers, we shall weave through various topics. Here is a guide to the essential aspects that you
might pay attention to.

Firstly, the results. We shall cover fundamental limit theorems of probability, such as the weak
and strong law of large numbers, central limit theorems, poisson limit theorem, in addition to
results on random series with independent summands. We shall also talk about the various modes
of convergence of random variables.

The second important aspect will be the various techniques. These include the first and second
moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and Bernstein
and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention the outstandingly
useful tool of characteristic functions as well as the less profound but very common and useful
techniques of proofs such as truncation and approximation.

Thirdly, we shall try to introduce a few basic problems/constructs in probability that are of
interest in themselves and that appear in many guises in all sorts of probability problems. These
include the coupon collector problem, branching processes, Pélya’s urn scheme and Brownian

motion. Many more could have been included if there was more time'.

2. SOME BASIC TOOLS IN PROBABILITY

We collect three basic tools in this section. Their usefulness cannot be overstated.

2.1. First and second moment methods. In popular language, average value is often mistaken
for typical value. This is not always correct, for example, in many populations, a typical person
has much lower income than the average (because a few people have a large fraction of the total
wealth). For a mathematical example, suppose X = 10% with probability 1072 and X = 0 with
probability 1 — 1073, Then E[X] = 1000 although with probability 0.999 its value is zero. Thus the
typical value is close to zero.

Since it is often easier to calculate expectations and variances (for example, expectation of a
sum is sum of expectations) than to calculate probabilities (example, tail probability of a sum of
random variables), the following inequalities that bound certain probabilities in terms of moments

may be expected to be somewhat useful. In fact, they are extremely useful as we shall shortly see!

"References: Dudley’s book is an excellent source for the first aspect and some of the second but does not have much
of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can touch

upon in this course. Lots of other standard books in probability have various non-negative and non-positive features.
2



Lemma 1: First moment method or Markov’s inequality

Let X > 0bearv. Forany ¢t > 0, we have P(X >t) <t 1E[X].

Lemma 2: Second moment method or Paley-Zygmund inequality

For any non-negative r.v. X, and any 0 < o < 1, we have

E[X]?
P (X > aE[X]) > (1 - a)? :
(X > aBIX]) > (1 - o)’
In particular, P (X > 0) > gglj]
.
Proofs of Lemma 1 and Lemma 2. (1) Foranyt > 0, clearly t1x>; < X. Positivity of expectations

gives the inequality.

(2) E[X]? = E[X1x-¢]? < E[X?]|E[1x>0] = E[X?]P(X > 0). Hence the second inequality fol-
lows. The first one is similar. Let 4 = E[X]. By Cauchy-Schwarz, we have E[X1y+,,]* <
E[X?|P(X > apu). Further, p = E[X1xca,] + E[X1x20,] < ap + E[X1x-,,], whence,
E[X1x>au > (1 — a)p. Thus,

E[X1x5qu)?
E[X?]

Applying these inequalities to other functions of X can give more information. For exam-
ple, if X has finite variance, P(|X — E[X]| > t) = P(|X — E[X]|? > #?) < t~?Var(X), which

is called Chebyshev’s inequality. Higher the moments that exist, better the asymptotic tail
(]

P(X > au) > >(1-a)

bounds that we get. For example, if E < oo for some A > 0, we get exponential tail
bounds by P(X > t) = P(e** > M) < e ME[eM]. Note that X is not assumed to be non-
negative in these examples as Markov’s inequality is applied to the non-negative random
variables (X — E[X])? and e*X.

2.2. Borel-Cantelli lemmas. If A, is a sequence of events in a common probability space, lim sup A4,
consists of all w that belong to infinitely many of these events. Probabilists often write the phrase
“A,, infinitely often” (or “A,, i.0” in short) to mean lim sup A,,.

Lemma 3: Borel Cantelli lemmas

Let A,, be events on a common probability space.
(1) If Y, P(A,) < oo, then P(A4,, infinitely often) = 0.

(2) If A, are independent and ) |, P(A,,) = oo, then P(A,, infinitely often) = 1.




Proof. (1) For any N, P (U2 yAy)
P(limsup 4,) = 0.

IN

Yol y P(A,) which goes to zero as N — co. Hence

n=

(2) Forany N < M, P(UM A,) = 1 — [[M P(4S). Since 3, P(4,) = oo, it follows
that T[M (1 — P(4,)) < [[Mye P@An) - 0, for any fixed N as M — oo. Therefore,
P (U yAp) = 1forall N, implying that P(4,, i.0.) = 1. [

We shall give another proof later, using the first and second moment methods. It will be seen

then that pairwise independence is sufficient for the second Borel-Cantelli lemma!

2.3. Kolmogorov’s zero-one law. If (2, 7, P) is a probability space, the set of all events that have
probability equal to 0 or to 1 form a sigma algebra. Zero-one laws are theorems that (in special
situations) identify specific sub-sigma-algebras of this. Such o-algebras (and events within them)
are sometimes said to be trivial. An equivalent statement is that all random variables measurable

with respect to such a sigma algebra are constants a.s.

Definition 1

Let (2, ) be a measurable space and let F,, be sub-sigma algebras of F. Then the tail o-
algebra of the sequence F,, is defined to be 7 := N, 0 (Uy>,Fi). For a sequence of random
variables X1, X»,..., the tail sigma algebra (also denoted 7 (X1, X2,...)) is the tail of the
sequence o(X,,).

How to think of it? If A is in the tail of (X);>1, then A € o(X,,, Xp41,...) for any n. That is,
the tail of the sequence is sufficient to tell you whether the even occurred or not. For example, A

could be the event that infinitely many X}, are positive.

Theorem 4: Kolmogorov’s zero-one law

Let (Q2, F, P) be a probability space.
(1) If 7, is a sequence of independent sub-sigma algebras of F, then the tail o-algebra

is trivial.

(2) If X,, are independent random variables, and A is a tail event, then P(A4) = 0 or
P(A)=1.

Proof. The second statement follows immediately from the first. To prove the first, define 7, :=
0 (UksnFk). Then, F1, ..., F,, T, are independent. Since 7 C 7, it follows that Fi,...,F,, T are
independent. Since this is true for every n, we see that 7, F1, F», ... are independent. Hence, 7
and o (U, F,,) are independent. But 7 C o (U, F},), hence, T is independent of itself. This implies
that for any A € 7, we must have P(4)? = P(AN A) = P(A) which forces P(A) tobeOor1. W

Independence is crucial (but observe that X, need not be identically distributed). If X}, = X; for

all k£, then the tail sigma-algebra is the same as ¢ (X;) which is not trivial unless X is constant a.s.
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As a more non-trivial example, let £, k > 1 beii.d. N(0.1,1) and let n ~ Ber+(1/2). Set X, = né&.
Intuitively it is clear that a majority of {;s are positive. Hence, by looking at (X, X;,41,...) and
checking whether positive or negatives are in majority, we ought to be able to guess 7. In other
words, the non-constant random variable 7 is in the tail of the sequence (X})x>1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial
conclusions. Another interesting application (but not relevant to the course) will be given in a

later section.

Let X; be independent random variables. Which of the following random variables must

necessarily be constant almost surely? lim sup X,,, lim inf X, lim sup n~=1S,, liminf S,,.

Remark 2: Reformulation on product space

We may reformulate Kolmogorov’s zero-one law as follows. Let (€2, Fj) be measure spaces
and consider ) = Q1 x {23 x ... endowed with the product sigma-algebra F = 71 ® /2 ®.. ..
Let ITj, : © — €y, be projection maps. Let Gy, = o{Il;,IIx41,...} and let 7 = N, Gs.

Kolmogorov’s zero-one law is the statement that under any product probability measure

on (2, the sigma-algebra 7 is trivial (check the equivalence of this statement with the earlier

one).

2.4. Ergodicity of i.i.d. sequence. We now prove another zero-one law now, which covers more
events, but for i.i.d. sequences only. We formulate it in the language of product spaces first. Let
(Q2, F) be a measure space and consider the product space QO with the product sigma algebra
FON. Let Pij be the projection onto the kth co-ordinate. For k € N, let 0, : QY — QN denote the
shift map defined by II,, 0 6, = I, for all n > 1. In other words, (6xw)(n) = w(n + k) where

w=(w(l),w(2),...).

Definition 2: Invariant sigma-algebra

An event A € F®N is said to be invariant if w € A if and only 6yw € A for any k > 1. The
collection of all invariant events forms a sigma algebra that is called the invariant sigma
algebra and denoted Z. An invariant random variable is one that is measurable with respect
toZ.

Note that a random variable X is invariant if and only if X o 6, = X for all £ > 1. We could
also have taken this as the definition of an invariant random variable and then defined A to be an

invariant event if 1 4 is an invariant random variable.



Let A be the set of all w such that lim,,_, w, = 0 and let B be the set of all w such that

lwr| < 1forall & > 1. Then A is an invariant event as well as a tail event while B is an

invariant event but not a tail event.

In the setting above, show that 7 C 7.

Lemma 5: Ergodicity of i.i.d. measures

Let P be a probability measure on (£2, F). Then the invariant sigma algebra Z on QF is

trivial under P®Y,

Proof. Let u = P®N. Suppose A € Z. Since A := |, o{Ily,...,II,} is an algebra that generates
the sigma algebra F*N, for any ¢ > 0, there is some B € A such that u(AAB) < e. Let N
be large enough that B € o{Il;,...,IIy}. Then OyB € o{lln+1,...,Ion}. Under the product
measure, II;s are independent, hence p(B N Ox(B)) = w(B)u(0n(B)). But p = p(B) = u(0n(B))
(because the measure is an i.i.d. product measure and hence invariant under the shift 6). Thus,
w(BNOnB) = u(B)?% Now, u(BAA) < e and hence

(BN ON(B)) — n(ANOn(A))] < u(BAA) + u((OnB)A(ONA)) < 2,

1(B)? = p(A)?| < |u(B) = u(A)||n(B) + n(A)| < 2e.
This shows that (A N Oy A) and p(A)? are within 4e of each other. But A € Z, meaning that
OnA = A. Therefore, uu(A) is within 4e of 1(A)%. As e is arbitrary, u(A) = p(A)?2. This forces that
uw(A) =00of u(A) = 1. [

2.5. Bernstein/Hoeffding inequality. Chebyshev’s inequality tells us that the probability for a
random variable to differ from its mean by k multiples of its standard deviation is at most 1/k?.
Its power comes from its generality, but the bound is rather weak. If we know more about the
random variable under consideration, we can improve upon the bound considerably. Here is one
such inequality that is very useful. Sergei Bernstein was the first to exploit the full power of the
Chebyshev inequality (by applying it to powers or exponential of a random variable), but the
precise lemma given here is due to Hoeffding.

Lemma 6: Hoeffding’s inequality

Let X1,..., X, be independent random variables having zero mean. Assume that | X} | < a;

a.s. for some positive numbers aj. Then, writing S = X;+...+X,,and A = /a% + ...+ ai,

we have P{S > tA} < e~z for any ¢t > 0.




Before going to the proof, let us observe the following simple extensions.
(1) Applying the same to —X}s, we can get the two-sided bound P{|S| > tA} < 2¢7*°/2,

(2) If | Xy| < aj, are independent but do not necessarily have mean zero, then we can apply
Hoeffding’s inequality to Y, = X — E[X}]. Since |X;| < ax, we also have |E[X]| < ai
and hence |Y};| < 2a;. This gives a conclusion that is slightly weaker but qualitatively no
different: With S = X; + ... + X,,,

P{S—E[S] Zt\/a%—l—...—kaﬁ} < st

Proof. Fix # > 0 and observe that

(1) P{S>tA} = P{QGS > 6GtA} <e etAE[ GS c—OHAR

#[]

Ox

The inequality in the middle is Markov’s, applied to ¢?%. Since = — €% is convex, on the interval

[—ax, ax], it lies below the line z > %= ap—to—bar 4 ‘HZ’“ ef%. Since —aj, < X}, < aj, we get that

X < oy, + B Xy, where ay, = ( Oar 4 e=0a%) and B, = lk (e9% — e=0ak), Plug this into (1) to get

[T+ 5ka)] = e "]

k=1 k=1

P{S >tA} < e U1E

since all terms in the expansion of the product that involve at least one Xjs vanishes upon tak-
ing expectation (as they are independent and have zero mean). We now wish to optimize this
bound over 6, but that is too complicated (note that a;s depend on 6). We simplify the bound by
observing that o, < ¢929%/2 This follows from the following observation:

1 o0 2n
§(ey +e V) = Z (12/71)' (the odd powers cancel)
n=0
(as(2n)! >2n x (2n —2) x ... x 2=2"nl)
=e /2.

n
Consequently, we get that [] aj, < e?’4°/2 Thus, P{S > tA} < e #4294’ Now it is easy to see
k=1

that the bound is minimized when 6 = ¢/A and that gives the bound e /2, u

Clearly the Hoeffding bound is much better than the bound 1/t? got by a direct application of

—t*/2 is a bound for the tail of the stan-

Chebyshev’s inequality. It is also a pleasing fact that e
dard Normal distribution. In many situations, we shall see later that a sum of independent ran-
dom variables behaves like a Gaussian, but that is a statement of convergence in distribution
which does not say anything about the tail behaviour at finite n. Hoeffding’s inequality is a non-

asymptotic statement showing that S behaves in some ways like a Gaussian.
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2.6. Lovasz’s local lemma. One of the recurring difficulties in probability is to get lower bounds
of probabilities of events. In many cases, one can find many events whose occurrence would
imnply the occurrence of the event of interest and also get a bound on the individual probabilities,
but how to get a lower bound for the probability of their intersection? Two very simple bounds

are
1) PAIN...NA,)=1-P((AfU...UA,) >1->7_,(1—P(Ag)), by the union bound.
(2) P(Ain...NnA,) =P(A1)...P(A,) if A;s are independent.

The first one is often too weak (entirely useless if ), P(Ay) > 1) and the second is often inapplica-
ble because the assumption of independence is too strong. The following lemma is one of several

such statements that relaxes the independence assumption but still gives a positive lower bound.

Lemma 7: Lovasz’s local lemma

Let Ay, ..., A, be events in a common probability space. Assume that each Ay, is indepen-
dent of all except at most d of the other A;s. Further assume that P(A;) > 1 — p for all k. If
4dp < 1,thenP(A;N...NA,) > (1—2p)™. In particular, the intersection has strictly positive

probability.

Proof. We write

n—1
P(Al n...N Ak—f—l)
PAiNn...NA,) = .
(A ) kl_[lP(Alm...AkmAgH)
Fix k and consider the kth term in the product. Let S C {1, ..., k} be the set of indices ¢ for which
A, is not independent of Ay . Then |S| < d and [

2.7. Kolmogorov’s maximal inequality. It remains to prove the inequality invoked earlier about
the maximum of partial sums of X;s. Note that the maximum of n random variables can be
much larger than any individual one. For example, if Y}, are independent Exponential(1), then
P(Y; > t) = e, whereas P(maxy<, Y; > t) = 1 — (1 — e~*)” which is much larger. However,
when we consider partial sums S1, 52, ..., Sy, the variables are not independent and it is not clear
how to get a bound for the maximum. Kolmogorov found an amazing inequality - there seems to

be no reason to expect a priori that such an inequality must hold!

Lemma 8: Kolmogorov’s maximal inequality

Let X,, be independent random variables with finite variance and E[X,,] = 0 for all n. Then,
P {manzSn ’Sk‘ > t} < T ZZ:1 Var(Xk).

Observe that the right hand side is the bound that Chebyshev’s inequality gives for the proba-
bility that |S,,| > ¢. Here the same quantity is giving an upper bound for the (presumably) much

larger probability that one of |S], ..., |S,]| is greater than or equal to ¢.
8



Proof. The second inequality follows from the first by considering Xjs and their negatives. Hence
it suffices to prove the first inequality.

Fix n and let 7 = inf{k < n : |Sk| > t} where it is understood that 7 = n if |Si| < t forall k¥ < n.
Then, by Chebyshev’s inequality,

) P(max |Si| > t) = P(|S;] > t) <t *E[S7].
We control the second moment c_)f Sr by that of S, as follows.
E[S}] = E [(S: + (Sn — 5r))?]
= E[S] + E [(Sn — S-)°] + 2E[S(Sy — S7)]
3) > E[S?] + 2E[S-(S, — 7).

We evaluate the second term by splitting according to the value of 7. Note that S, — S; = 0 when

7 = n. Hence,

i
L

E[S:(Sn— S-)] =) E[1,255(Sn — Sk)]

S =
—_

Z E 1,5, E[S,, — Sk] (because of independence)
k=1

=0 (because E[S,, — Si] =0).

In the second line we used the fact that S;1,—; depends on X, ..., X} only, while S,, — Sj, de-
pends only on X1,..., X,. From (3), this implies that E[S2] > E[S2]. Plug this into (2) to get
P (maxg<, Sk > t) < t?E[S2]. [ |

In proving this theorem, Kolmogorov implicitly introduced stopping times and martingale
property (undefined terms for now). When martingales were defined later by Doob, the
same proof could be carried over to what is called Doob’s maximal inequality. In simple

language, it just means that Kolmogorov’s maximal inequality remains valid if instead of

independence of X}s, we only assume that E[X}, | X1,..., X;_1] = 0.

2.8. Coupling of random variables. Coupling is the name probabilists give to constructions of
random variables on a common probability space with given marginals and joint distribution

according to the need at hand. We illustrate it with a few examples.

Getting bounds on the distance between two measures: Suppose i and v are two probability
measures on R and we wish to get an upper bound on their Lévy-Prohorov distance. One way
is to use the definition and work with the measures. Here is another: Suppose we are able to

construct two random variables X,Y on some probability space such that X ~ p, Y ~ v and



|X — Y] <ra.s. Then we can claim that d(p, v) < r. Indeed,
Ft)=P{Y <t} >P{X <t—r}=F,(t—r)
and similarly F),(t) > F,(t — ).

Similar ideas can be used for other distances. For example, on a finite set [n] = {1,2,...,n},
let u, v be two probability measures. Their total variation distance is defined as dry (u,v) =

frlna[x] |n(A) — v(A)|. One way to get a bound on the total variation distance is to construct two
Cln

random variables X, Y on some probability space such that X ~ p, Y ~ vand P{X # Y} = r.
Then dry (i, v) < r. Indeed, for any A, we have

WA =P{X €A} <P{Y € A} +P{Y € A, X € A} < v(A) + P{X £Y).

Getting the inequality with i and v reversed, we see that dry (1, v) < P{X # Y}. Itis not
hard (in fact a nice exercise) to show that there is a coupling (X,Y’) that achieves equality, i.e.,

P{X # Y} = dpv(,v).

Proving inequalities between numbers by coupling: Sometimes to show that a < b, it turns out
to be convenient to construct random variables X, Y such that X < Y a.s. and E[X]| = a and
E[Y] = b. That of course implies a < b but the interesting point is that it can often be done by
this method but not directly. Coupling method has been effectively used to show that a set is
non-empty by showing that is has positive probability under some measure! This is called the
probabilistic method.

[lustration of coupling: Let X ~ Bin(100,3/4) and Y ~ Bin(100, 1/2). Then it must be true that
P{X > 71} > P{Y > 71}, but can you show it by writing out the probabilities? It is possible, but
here is a less painful way. Let Uy, . . ., Ujgo be i.i.d. Unif[0, 1] random variables on some probability
space. Let X' = Y7, 1y, <3;a and Y/ = >~ 1y, <1/5. Then X’ > Y”, hence the event {Y' > 71} is a
subset of { X’ > 71} showing that P{X’ > 71} > P{Y’ > 71}. But 2/ has the same distribution as
X and Y has the same distribution as Y, showing the inequality we wanted!

More generally, if X ~ pand Y ~ vand X > Y a.s., then F,(t) < F,(t) for all t € R. If the

latter relationship holds, we say that v is stochastically dominated by .

If v is stochastically dominated by p, show that there is a coupling of X ~ p with Y ~ v in

such a way that X > Y a.s.

Other instances of coupling: If you have studied Markov chains, then you would have perhaps
seen a proof of convergence to stationarity by a coupling method due to Doeblin. In this method,
two Markov chains are run, one starting from the stationary distribution and another starting at

an arbitrary state. It is shown that the two Markov chains eventually meet. Once they meet, when

10



they separate, it is impossible to tell which is which (by Markov property), hence the second chain

“must have reached stationarity too”.

3. APPLICATIONS OF FIRST AND SECOND MOMENT METHODS

The first and second moment methods are immensely useful. This is somewhat surprising,
given the very elementary nature of these inequalities, but the following applications illustrate

the ease with which they give interesting results.

3.1. Borel-Cantelli lemmas. If X takes values in R U {4+o00} and E[X] < oo then X < oo a.s. (if
you like you may see it as a consequence of Markov’s inequality!). Apply thisto X = > 72, 14,
which has E[X] = )72, P(A4;) which is given to be finite. Therefore X < oo a.s. which implies
that for a.e. w, only finitely many 14, (w) are non-zero. This is the first Borel-Cantelli lemma.

The second one is more interesting. Fix n < m and define X = > " 14,. Then E[X]| =

> e, P(Ag). Also,

e

E[X?| =E

> 1Ak1Ae] = P(Ap) + Y _P(AP(A)
k=n

k=n f=n k#L

m 2 m
< (Z P<Ak>) + Y P(A).
k=n k=n

Apply the second moment method to see that for any fixed n, as m — oo (note that X > 0 is the
same as X > 1),
(X ken P(AR))™ + 22k, P(Ag)
1
L+ (T, P(A)
which converges to 1 as m — oo, because of the assumption that ) P(A;) = co. This shows that

P(Ug>pAg) = 1 for any n and hence P(limsup 4,,) = 1.
Note that this proof used independence only to claim that P(A;NA,;) = P(Ax)P(Ay). Therefore,
not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma holds

for pairwise independent events too!

3.2. Coupon collector problem. A bookshelf has (a large number) n books numbered 1,2,...,n.
Every night, before going to bed, you pick one of the books at random to read. The book is
replaced in the shelf in the morning. How many days pass before you have picked up each of the

books at least once?

Theorem 9: Coupon collector problem

Let T;, denote the number of days till each book is picked at least once. Then 7T, is con-

centrated around nlog n in a window of size n by which we mean that for any sequence of

11



numbers 0,, — oo, we have

P(|T,, — nlogn| < nb,) — 1.

The proof will proceed by computing the expected value of 7;, and then showing that T, is
typically near its expected value.

A very useful elementary inequality: In the following proof and many other places, we shall

have occasion to make use of the elementary estimate
1
1—z<e™® foralluz, 1—2> e for lz| < 3

To see the first inequality, observe that e ™ — (1 — ) is equal to 0 for = 0, has positive derivative

for x > 0 and negative derivative for z < 0. To prove the second inequality, recall the power series

expansion log(1 — z) = —z — 2%/2 — 23/3 — ... which is valid for |2| < 1. Hence, if |z| < 1, then
log(1 —z) > —x — 2 + 13:2 - li ||*
- 2 2
k=3
> —r — z2

since Y% g [of? < 2% Y22 0278 < Ja?

Proof of Theorem 9. Fix an integer ¢ > 1 and let X, ; be the indicator that the kth book is not picked
up on the first ¢ days. Then, P(T;, > t) = P(S;, > 1) where S;,, = X;1 + ...+ Xy, is the number
of books not yet picked in the first ¢ days. As E[X; ;] = (1 —1/n)" and E[X, ; X, ¢] = (1 —2/n)" for

k # £, we also compute that thefirst two moments of S; ,, and use (??) to get

¢
4) ne n w2 < E[Sin] =n <1 — i) < o
and
t t
©) E[SE"] =n <1 - i) +n(n—1) <1 - i) < ne=r +n(n — l)e_%_

The left inequality on the first line is valid only for n > 2 which we assume.

Now set t = nlogn + n, and apply Markov’s inequality to get
(6) P(T, > nlogn +nby) = P(Sp, > 1) < E[Sy] < ne™ 55 < e = o(1).
On the other hand, taking ¢t = nlogn — n#,, (where we take 6,, < logn, of course!), we now apply
the second moment method. For any n > 2, by using (5) we get E[S?, ] < e + . The first

Hn* logn—0n

inequality in (4) gives E[S; ,] > e n . Thus,

B[S, 2 -2t
E[St?n} = efn 4 200

as n — oo. From (6) and (7), we get the sharp bounds

(7) P(T, > nlogn —nb,) =P (S, > 1) > =1-0(1)

P (|T,, — nlog(n)| > nb,) — 0 for any 6,, — cc. [ |
12



Here is an alternate approach to the same problem. It brings out some other features well. But

we shall use elementary conditioning and appeal to some intuitive sense of probability.

Alternate proof of Theorem 9. Let 71 = 1 and for k > 2, let 7, be the number of draws after £ — 1
distinct coupons have been seen till the next new coupon appears. Then, ), = 71 + ... + 7.
We make two observations about 7s. Firstly, they are independent random variables. This is

intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the

n—k+1

distribution of 73 is Geo("=

). This is so since, after having seen (k — 1) coupons, in every draw,
there is a chance of (n — k + 1)/n to see a new (unseen) coupon.

If £ ~ Geo(p) (this means P(¢ = k) = p(1 — p)*~! for k > 1), then E[¢] = % and Var(¢) = 1});25”,

by direct calculations. Therefore,
- n
ET,)=)Y ——— =nl )
(T5) ;n—k+1 nlogn + O(n)

k-1 “n—j
V TTL = —_— =
ar(T),) nk:1 CEVEE n; 7

< Cn?

with C = Zjoil ]% Thus, if 8,, 1 oo, then fix N such that |E[T},] — nlogn| < %n@n for n > N. Then,

1
([T, —nlogn| > nd,} < P {|7, ~ B{L,) > Lo, }

Var(T,)
1n202
4C
-0

which goes to zero as n — oo, proving the theorem. |

3.3. Branching processes: Consider a Galton-Watson branching process with offsprings that are
i.i.d & We quickly recall the definition informally. The process starts with one individual in the 0th
generation who has &; offsprings and these comprise the first generation. Each of the offsprings
(if any) have new offsprings, the number of offsprings being independent and identical copies of

¢. The process continues as long as there are any individuals left>.

th

Let Z,, be the number of offsprings in the n*'' generation. Take Z; = 1.

2For those who are not satisfied with the informal description, here is a precise definition: Let V' = |3, N% be the
collection of all finite tuples of positive integers. For k > 2, say that (v1,...,v) € N¥ isachild of (v1,...,vk—1) € Ni 1.
This defines a graph G with vertex set V' and edges given by connecting vertices to their children. Let G1 be the
connected component of G containing the vertex (1). Note that G is a tree where each vertex has infinitely many
children. Given any n : V' — N (equivalently, n € NY), define T, as the subgraph of G consisting of all vertices
(v1,...,vx) for which v; < n((vi,...,vj-1)) for 2 < j < k. Also define Z,_1(n) = #{(v1,...,vx) € T} for k > 2 and
let Zy = 1. Lastly, given a probability measure p on N, consider the product measure 1®V on N, Under this measure,
the random variables n(u), u € V areii.d. and denote the offspring random variables. The random variable Z; denotes

the number of individuals in the kth generation. The random tree T, is called the Galton-Watson tree.
13



Theorem 10: The fundamental theorem on Branching processes

Let m = E[{] be the mean of the offspring distribution.

(1) If m < 1, then wp.l, the branching process dies out. That is P(Z, =
0 for all large n) = 1.

Y

(2) If m > 1, then the process survives with positive probability, i.e., P(Z,
1 for all n) > 0.

Proof. In the proof, we compute E[Z,,] and Var(Z,,) using elementary conditional probability con-
cepts. By conditioning on what happens in the (n — 1)st generation, we write Z,, as a sum of
Zp—1 independent copies of £. From this, one can compute that E[Z,,|Z,,_1] = mZ,—; and if
we assume that ¢ has variance o2 we also get Var(Z,|Z,-1) = w_102. Therefore, E[Z,] =
EE[Z,|Z,-1]] = mE[Z,,_]| from which we get E[Z,,] = m". Similarly, from the formula Var(Z,,) =
E[Var(Z,|Z,-1)| + Var(E[Z,,| Z,,—1]) we can compute that

Var(Z,) = m" 'o? + m*Var(Z,_,)

2

=Mt +m"+. . +m" o (by repeating the argument)

2 n—lmn+1 —1

—om m—1
(1) By Markov’s inequality, P(Z, > 0) < E[Z,,] = m"™ — 0. Since the events {Z,, > 0} are

decreasing, it follows that P (extinction) = 1.

(2) If m = E[¢{] > 1, then as before E[Z,,] = m" which increases exponentially. But that is not
enough to guarantee survival. Assuming that ¢ has finite variance o2, apply the second
moment method to write

2
N E[Z,] L
~ Var(Z,)+E[Z,)? T 14+ <

m—1

P(Z, >0)

which is a positive number (independent of n). Again, since {Z,, > 0} are decreasing
events, we get P(non-extinction) > 0.

The assumption of finite variance of £ can be removed as follows. Since E[{] = m > 1,
we can find A large so that setting » = min{{, A}, we still have E[n] > 1. Clearly, n has
finite variance. Therefore, the branching process with 7 offspring distribution survives
with positive probability. Then, the original branching process must also survive with
positive probability! (A coupling argument is the best way to deduce the last statement:
Run the original branching process and kill every child after the first A. If inspite of the

violence the population survives, then ...) [

14



Remark 4: The “critical” case m = 1

Strictly speaking, the fundamental theorem of branching processes also asserts that extinc-
tion occurs almost surely when m = 1. However, to get it by these methods, one will have
to refine the first moment method as follows. If X is a random variable taking values in N,
then P{X > 1} < E[X]|/E[X|X > 1], where the denominator on the right is a conditional
expectation. Clearly the bound is at least as good as Markov’s inequality, but it can be much
better in some situations. For example, in the branching process with m = 1, one can show
that E[Z,,|Z,, > 1] — oo as n — oo (intuitively, if the branching process has to survive as

long as n generations, it has to do it by spawning many offsprings). Since E[Z,,] = 1, this

shows that P{Z,, > 1} — 0, proving almost sure extinction.

3.4. How many prime divisors does a number typically have? For a natural number £, let v(k)
be the number of (distinct) prime divisors of n. What is the typical size of v(n) as compared
to n? We have to add the word typical, because if p is a prime number then v(p) = 1 whereas
v(2 x 3 x ... x p) = p. Thus there are arbitrarily large numbers with » = 1 and also numbers for
which v is as large as we wish. To give meaning to “typical”, we draw a number at random and
look at its v-value. As there is no natural way to pick one number at random, the usual way of

making precise what we mean by a “typical number” is as follows.

Formulation: Fix n > 1 and let [n] := {1,2,...,n}. Let u, be the uniform probability measure on
[n], i.e., un{k} = 1/n for all k£ € [n]. Then, the function v : [n] — R can be considered a random
variable, and we can ask about the behaviour of these random variables. Below, we write E,, to

denote expectation w.r.t fiy,.

Theorem 11: Hardy-Ramanujan

With the above setting, for any § > 0, as n — oo we have

8) un{ke[n]:‘bgi&—l’>5}—>0.

Proof. (Turan). Fix n and for any prime p define X, : [n] — R by X;,(k) = 1,. Then, v(k) =

> Xp(k). Wedefine ¢(k) := > X,(k). Then, ¢(k) < v(k) < (k) + 4 since there can be at most
p<k p<Vk
four primes larger than v/k that divide k. From this, it is clearly enough to show (8) for ¢ in place

of v (why?).
We shall need the first two moments of 1) under p,,. For this we first note that E,, [X,] = bJ

|7

n

3

.Observethat;—rllgmg;andplq—l<w< 1

n n—n—ﬁ'

and E, [ X, X,] =

15



By linearity E,[¢] = Y. E[X,]= > ]% + O(n*%). Similarly

p<n p<V/n
Var,[¢ Z Var[X,] + Z Cov(X,, Xy)
p<Vn p#Aq<Vn
1
= > < — = +0(n > > om™
<{‘f pov p#Aq<Vn
-y - x Aeon
p<f p<\f
We make use of the following two facts. Here, a,, ~ b,, means that a,,/b,, — 1.
1 1
Z — ~ loglogn Z—Q < 00.
1P — D
p<Vn p=1

The second one is obvious, while the first one is not hard, (see exercise 4 below)). Thus, we get
E,[¢)] = loglogn + O(n_%) and Varn [¢] = loglogn + O(1). Thus, by Chebyshev’s inequality,

Y(k) — En[¢] Var, (¢) 1
'un{ ‘ loglogn ‘ > 6} = 52(loglogn)? © <loglogn) )

From the asymptotics E,,[¢)] = loglogn + O(n_%) we also get (for n large enough)

' P(k) Var,, (v) _ 1
Ln {k: €[n]: log log 1 -1 ‘ > 5} < W =0 (loglogn> .

> ;1) ~ loglogn. [Note: This is not trivial although not too hard. Consult some Number

p<¥n
theory book. ].

3.5. Arandom graph question. The complete graph K, has vertex set [n] = {1,2,...,n} and edge
set E = {{i,j} : 1 <i<j <n}. Wenow define a random graph model as a random sub-graph of
K,,. This model has been studied extensively by probabilists in the last fifty years.

Definition 3: Erdos-Rényi random graph

Fix0 <p <1 LetX;;, 1 <i<j<n,beiid. Ber(p) random variables. Let G be the graph

with vertex set [n] and edge-set {{i,j} : X; ; = 1}. Then G is called the Erdos-Rényi random
graph with parameter p and denoted G(n, p).

There are many interesting questions about G(n, p). Here we ask only one: If G(n, p) connected?
If p = 1, the answer is clearly yes, and if p = 0, the answer is clearly no. Where does the change

from disconnected to connected take place? The answer is given in the following theorem.
16



Theorem 12: Connectivity threshold for Erdés-Renyi random graph

Fix § > 0 and let p;- = (1 £ 6)1°g". Then, as n — oo,

n

P{G(n,p,})is connected } -+ 1 and P{G(n,p,) is connected } — 0.

Unlike in the other problems, here the second moment method is easier, because we show dis-
connection by showing that there is at least one isolated vertex (i.e., a vertex that is not connected

to any other vertex). To show connectedness, we must go over all proper subsets of vertices.

Proof that G(n, p;, ) is unlikely to be connected. Let Y be the number of isolated vertices, ie., Y =
>, Y;, where Y] is the indicator of the event that vertex i is not connected to any other vertex.
Then,

BIY] = 3 B[] = nll - p) ! 2 ne
=1

ifp < % (sothat1l—p > e*p*pQ). Further, Y;Y; = 1 if and only if all the 2n — 3 edges coming out of

i or j (including the one connecting ¢ and j) are absent (i.e., X; 1, X, ;. are all 0). Therefore,

E[Y?] = zn:E[Yi] +2) E[V]E[Y]]
i=1 i<j
=n(1—p)" ' +n(n—1)(1—p)*?

< ne—p(n—l) + n2€—(2n—3)p'

When p = p,,, by the second moment method that

2 2 2np—2np? —2np?
P{YZl}ZE[Y] > n<e _ e
E[Y2] ne—P(n—1) 1 n2e—(2n-3)p %ep(n-i-l) 4 e3p

which goes to 1 as n — oo (as p, — 0 and %e"”” — 0). When Y > 1, G(n,p) is disconnected,
completing the proof. [ |

Proof that G(n, p;}) is unlikely to be disconnected. We get a crude estimate as follows. Suppose A C
[n]. Then A is disconnected from A° if and only if X; ; = 0 for alli € A and all j € A°. This has
probability (1 — p)l4I(»=I4])_If the graph is disconnected, then there must be some such set A with
|A| < n/2. Thus, by the union bound,

[n/2]
n
p . < . k(nfk)
{G(n, p) is not connected } < kg_l <k> (1-p)

Now, we set p = p; and divide the sum into k£ < en and k > en.
In the second sum, we use the simple bounds (}) < 2" and k(n — k) > e(1 — e)n®. Since

1 —p < e P, and there are at most n terms, we get (recall the definition of p;)

Z <Z> (1 — p)k(n—k) < n2ne—e(1—e)(1+5)nlogn‘
k>en
17



Obviously this goes to zero as n — oo (for any choice of € > 0, which will be made later).

The sum over k < € is handled by setting (}) < nFand 1 — p < e™?. We get

Z (Z)u _p)k(n—k) < Z o~ kl(n—k)p—logn]

1<k<en k<en

< Z e—klogn[(l-‘r(s)(l—%)_l}

1<k<en

< Z e—klogn[(l—&-&)(l—e)—l].
k=1

If € > 0 is chosen small enough that (1+6)(1—¢)—1 > 14, then the above sum becomes a geometric

series whose sum is

—15logn
A 7
1— e—%&logn - 2 ’

the inequality holding for large n. Thus, P{G(n,p;}) is connected } — 1. [ |

4. APPLICATIONS OF BOREL-CANTELLI LEMMAS AND KOLMOGOROV’S ZERO-ONE LAW

We already mentioned a few direct consequences of Kolmogorov’s zero-one law, such as the
Yy

constancy of lim sup,,_,, % Let us give a couple more.

4.1. Random series. Let X,, be independent random variables. The event that the series >, X,
converges is clearly a tail event, hence has probability zero or one. Is it zero or one? Depends on
the variables.

Let X,, ~ Ber(py). Then the series converges if and only if X,, = 0 for all but finitely many n.
By the Borel-Cantelli lemma,

0 if Y pn < o0,
1 if Y pp = 0.
Thus, the series ), X,, converges almost surely if ) p, < oo and diverges almost surely if

Zn Dbn = 0.

Since p, = E[X,], this may give the impression that what matters is the sum of expectations.
Not entirely correct. For example, let X,, be independent with P{X,, =1} = P{X,, = -1} = p,/2
and P{X,, = 0} = 1 — p,. Then again, the random series converges if and only if X,, # 0 only

P{X,=1i0}=

finitely often. Again by Borel-Cantelli lemma, this is equivalent to the convergence of ), p,,. Here
E[X,,] = 0 for all n, what p,, measures is the variance.

In general, Kolmogorov (after Khinchine and others) found a complete and satisfactory answer
to the general question. His answer is that the random series converges almost surely if and only
if three (non-random) series constructed from the distributions of X,,s converge. We shall prove

Kolmogorov’s three series theorem later.
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4.2. Random series of functions. One can similarly ask about convergence of > X, u,, where
X, are independent random variables and u,, are elements of a Banach space. In particular, let
fn [0,1] — R be given continuous functions and consider the series ) X,, f,(¢). The following

events are clearly tail events.
e The event C that the series converges uniformly on [0, 1].

o The event ND that the sum is a nowhere differentiable function (it makes sense to ask this
only if P(C) = 1).
Again, whether these events have probability 0 or 1 depends on the variables X,,s and the func-
tions fy,s. For example, if f,,(t) = sin(7nt)/n and X,, are ii.d. N(0,1), then Wiener showed that
P(C)=1and P(ND) = 1.
We shall see this in the next part of the course on Brownian motion. For now, you may simply
compare it with Weierstrass’ nowhere differentiable function ) sin(3"nt)/3". In contrast, the

random series does not require such rapid increase of frequencies. However, although P(C' N
sin(7nt)
n

ND) = 1, it is not easy to produce a particular sequence x,, € R such that the function ) |, x,

converges uniformly but gives a nowhere differentiable function!

4.3. Random power series. Let X,, be i.i.d. Exp(1). As a special case of the previous examples,
consider the random power series Y - ; X, (w)z". For fixed w, we know that the radius of con-
vergence is R(w) = (limsup | X,,(w)|*/™)~!. Since this is a tail random variable, by Kolmogorov’s
zero-one law, it must be constant. In other words, there is a number ry such that R(w) = rg a.s.
But what is the radius of convergence? It cannot be determined by the zero-one law. We may
use Borel-Cantelli lemma to determine it. Observe that P(\Xn]% >t) = e " forany t > 0. If
t = 1+ e with € > 0, this decays very fast and is summable. Hence, \Xnﬁ <1+ €a.s.. and hence
R <1+ € a.s. Take intersection over rational € to get R < 1 a.s.. For the other direction, if t < 1,

" — 1and hence Y, e " = oco. Since X, are independent, so are the events {|Xn]% > t}.

then e~
By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n
such that |Xn|% > 1 — e. Again, take intersection over rational € to conclude that R > 1 a.s. This
proves that the radius of convergence is equal to 1 almost surely.

In a homework problem, you are asked to show the same for a large class of distributions and

also to find the radius of convergence for more general random series of the form >~ ; ¢, X,,2".

4.4. Percolation on alattice. This application is really an excuse to introduce a beautiful object of
probability. Consider the lattice Z?, points of which we call vertices. By an edge of this lattice we
mean a pair of adjacent vertices {(z,y), (p,q)} where x = p,|y —¢| =1lory = q,|x — p| = 1. Let
E denote the set of all edges. X,, e € E beii.d Ber(p) random variables indexed by E. Consider
the subset of all edges e for which X, = 1. This gives a random subgraph of Z? called the bond
percolation graph at level p. We denote the subgraph by G, for w in the probability space.
Question: What is the probability that in the percolation subgraph, there is an infinite connected

component?
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Let A = {w : G, has an infinite connected component}. If there is an infinite component, chang-
ing X, for finitely many e cannot destroy it. Conversely, if there was no infinite cluster to start
with, changing X, for finitely many e cannot create one. In other words, A is a tail event for the
collection X, e € E! Hence, by Kolmogorov’s 0-1 law?, P,(A)isequaltoOor 1. Isit 0 orisit 1?

In a pathbreaking work of Harry Kesten, it was proved in 1980s that P,,(A) = 0 if p <  and
P,(A) =1ifp > % The same problem can be considered on G = Z3, keeping each edge with
probability p and deleting it with probability 1 — p, independently of all other edges. It is again
known (and not too difficult to show) that there is some number p. € (0, 1) such that P,(4) =0
if p < p. and P,(A) = 1if p > p.. The value of p. is not known, and more importantly, it is not
known whether P, (A) is 0 or 1! This is a typical situation - Kolmogorov’s law may tell us that the

probability of an event is 0 or 1, but deciding between these two possibilities can be very difficult!

45. Random walk. Let X; beii.d. Ber+(1/2) and let S, = X1+ ...+ X,, forn > 1land Sy = 0
(S = (Sy) is called simple, symmetric random walk on integers). Let A be the event that the random
walk returns to the origin infinitely often, i.e., A = {w : S, (w) = 0 infinitely often}.

Then A is not a tail event. Indeed, suppose Xj(w) = (—1)* for k > 2. Then, if X;(w) = —1, the
event A occurs (i.e., A 5 w) while if X;(w) = +1, then A does not occur (i.e., A # w). This proves
that A € 0(Xa, X3,...) and hence, it is not a tail event.

Alternately, you may write A = limsup A,, where A4,, = {w: S,(w) = 0} and try to use Borel-
Cantelli lemmas. It can be shown with some effort that P(As),) < ﬁ and hence ), P(A4,) = oc.
However, the events A,, are not independent (even pairwise), and hence we cannot apply the
second Borel-Cantelli to conclude that P(A) = 1.

Nevertheless, the last statement that P(A) = 1 is true. It is a theorem of Pdlya that the random
walk returns to the origin in one and two dimensions but not necessarily in three and higher
dimensions! If you like a challenge, use the first or second moment methods to show it in the
one-dimensional case under consideration (Hint: Let R,, be the number of returns in the first n

steps and try to compute/estimate its first two moments).

5. WEAK LAW OF LARGE NUMBERS

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close to
50. What do we mean by that, for after all the number of heads could be any number between 0
and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The
weak law of large numbers expresses precisely this.

Here and in the rest of the course S,, will denote the partial sum X; + ... + X,,. If we have
several sequences (X,), (,,) etc., we shall distinguish them by writing S;X, S} and so on.

3You may be slightly worried that the zero-one law was stated for a sequence but we have an array here. Simply
take a bijection f : N — 7% and define Y,, = X #(n) and observe that the event that we want is in the tail of the sequence
(Yn)nen. This shows that we could have stated Kolmogorov’s zero one law for a countable collection F;, i € I, of

independent sigma algebras. The tail sigma algebra should then be defined as N ol U F)
FCI,|F|<oo i€I\F
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Theorem 13: Kolmogorov’s weak law of large numbers

Let X, X5 ... beiid random variables. If E[|.X|] < oo, then for any ¢ > 0, as n — oo, we

have

P<‘iSn—E[X1] ‘ >5) 0.

Let us introduce some terminology. If Y;,,Y are random variables on a probability space and
P{|Y, — Y| > 6} = 0as n — oo for every § > 0, then we say that Y;, converges to Y in probability
and write ¥, 5 Y. In this language, the conclusion of the weak law of large numbers is that

1s, T E[X1] (the limit random variable happens to be constant).

Proof. Step 1: First assume that X; have finite variance 2. Without loss of generality, let E[X;] = 0
(or else replace X; by X; — E[X}]). By Chebyshev’s inequality, P(|n=1S,| > §) < n=26~2Var(S,,).
By the independence of X;s, we see that Var(S,,) = no?. Thus, P(|S—T?| > ) < 7;‘—;2 which goes to
zero as n — oo, for any fixed § > 0.
Step 2: Now let X; have finite expectation (wWhich we assume is 0), but not necessarily any higher
moments. Fix n and write X, = Y}, + Z,, where Y}, .= Xilix, <A, and 7, := Xilix,|>An for some
A, to be chosen later. Then, Y; are i.i.d, with some mean p,, := E[Y;] = —E[Z)] that depends on
A,, and goes to zero as A,, — co. Fix § > 0 and choose n large enough so that |, | < 0 for n > ng.
As |Y1] < A, we get Var(Y;) < E[Y?] < A,E[|X1|]. By the Chebyshev bound that we used in
the first step,

SY Var(Y1) _ A.E[|X1]]
P ) 2y, < < .
©) { s R 5} — né? T né?
If n > ng then |u,| < 6 and hence if [2SZ + p,| > 6, then at least one of Z1,..., Z, must be
non-zero.
SZ

=nP(|X1]| > An).
Thus, writing Xy, = (Yy — pn) + (Zk + pn), we see that

% 7z
P{)% >25}§P{‘5;’Z—un >6}+P{’5;:+un >5}
A E[| X
< M +nP(|X:1] > Ay)
< YR + XnE[’Xll 1x,>4,]

Now, we take A,, = an with a := §E[|X;|]7!. The first term clearly becomes less than 4. The

second term is bounded by a 'E[|X1| 1|x,|>qn], which goes to zero as n — oo (for any fixed
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choise of e > 0). Thus, we see that

limsupP{‘S: ‘ >25} <4é

n—oo

which gives the desired conclusion. |

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to
say that Var(SY) = nVar(Y;) for which it suffices if ¥; were uncorrelated. In particular, if
we assume that X; pairwise independent, identically distributed and have finite mean, then

the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with den-
sity m Observe that E[|X|P] < oo for all p < 1 but not p = 1. Itis a fact (we shall
probably see this later, you may try proving it yourself!) that 15, has exactly the same
distribution as X;. There is no chance of convergence in probability then!

(3) If X}, are i.i.d. random variables (possibly with E[|X|] = c0), let us say that weak law of
large numbers is valid if there exist (non-random) numbers a,, such that %Sn — ap Zo.
When X; have finite mean, this holds with a,, = E[X].

It turns out that a necessary and sufficient condition for the existence of such a,, is that
tP{|X1| >t} — 0ast — oo (in which case, the weak law holds with a,, = E[X1|x|<,]).
Note that the Cauchy distribution violates this condition. Find a distribution which

satisfies the condition but does not have finite expectation.

6. APPLICATIONS OF WEAK LAW OF LARGE NUMBERS

We give three applications, two “practical” and one theoretical.

6.1. Bernstein’s proof of Weierstrass’ approximation theorem.

Theorem 14: Weierstrass” approximation theorem

The set of polynomials is dense in the space of continuous functions (with the sup-norm

metric) on an interval of the line.

Proof (Bernstein). Let f € C[0,1]. For any n > 1, we define the Bernstein polynomials Q¢ ,(p) =
Shof (5) (Hpk (1 — p)n~k. We show that ||Qy,,, — f|| — 0as n — oo, which is clearly enough. To
achieve this, we observe that Q7 (p) = E[f(n"1S,)], where S,, has Bin(n, p) distribution. Law of

large numbers enters, because Binomial may be thought of as a sum of i.i.d Bernoullis.
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For p € [0, 1], consider X1, Xs, ... i.i.d Ber(p) random variables. For any p € [0, 1], we have

B, [r(3)] s [ <m [ (2) - )]
o (5) ol 5 1 (5) 0 i

(10 < i) + 2512, {| 2 - 5| > o}

where || f|| is the sup-norm of f and w;(0) := sup{|f(z) — f(y)| : |+ — y| < 0} is the modulus of
continuity of f. Observe that Var,(X;) = p(1 — p) to write

Pp{’%_p’>5}§p(1—p)< 1

né2 T 46°n
Plugging this into (10) and recalling that Q.,(p) = E,, [f (22)], we get
s [Qrale) — 1) | <y @) + 12

p€(0,1]
Since f is uniformly continuous (which is the same as saying that wy(d) | 0 as ¢ | 0), given any
e > 0, we can take 4 > 0 small enough that w f(é) < €. With that choice of §, we can choose n

large enough so that the second term becomes smaller than e. With this choice of § and n, we get
1Qfn — fll < 2e. u

It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but
the Chebyshev bound. The main point is that the Bin(n, p) probability measure puts almost
all its mass between np(1 — ¢) and np(1 + J) (in fact, in a window of width y/n around np).

Nevertheless, WLLN makes it transparent why this is so.

6.2. Monte Carlo method for evaluating integrals. Consider a continuous function f : [a,b] — R
whose integral we would like to compute. Quite often, the form of the function may be sufficiently
complicated that we cannot analytically compute it, but is explicit enough that we can numerically
evaluate (on a computer) f(x) for any specified z. Here is how one can evaluate the integral by
use of random numbers.

Suppose X1, Xo,... are ii.d uniform([a,b]). Then, Y := f(X}) are also i.i.d with E[Y;] =
J? f(x)da. Therefore, by WLLN,

P(‘;gf(Xk) _ /abf(x)dx(>5> 0.
1

Hence if we can sample uniform random numbers from [a, b], then we can evaluate = >, f(X}),
and present it as an approximate value of the desired integral!
In numerical analysis one uses the same idea, but with deterministic points. The advantage of

random samples is that it works irrespective of the niceness of the function. The accuracy is not
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great, as the standard deviation of % ZZ=1 f(Xg) is Cn~1/2, s0 to decrease the error by half, one

needs to sample four times as many points.

4

Since 7 = fol 120z, by sampling uniform random numbers X, and evaluating

LS ﬁ we can estimate the value of w! Carry this out on the computer to see how

many samples you need to get the right value to three decimal places.

6.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such as “do
you support the war in Iraq?”. The poll may be conducted across continents, and one is sometimes
dismayed to see that the pollsters asked a 1000 people in France and about 1800 people in India (a
much much larger population). Should the sample sizes have been proportional to the size of the
population?

Behind the survey is the simple hypothesis that each person is a Bernoulli random variable
(1="yes’, 0="no’), and that there is a probability p; (or py) for an Indian (or a French person) to have
the opinion yes. Are different peoples’ opinions independent? Definitely not, but let us make

that hypothesis. Then, if we sample n people, we estimate p by X,, where X; are i.i.d Ber(p). The

accuracy of the estimate is measured by its mean-squared deviation \/Var(X,,) = /p(1 — p)n*%.
Note that this does not depend on the population size, which means that the estimate is about as
accurate in India as in France, with the same sample size! This is all correct, provided that the
sample size is much smaller than the total population. Even if not satisfied with the assumption
of independence, you must concede that the vague feeling of unease about relative sample sizes

has no basis in fact...

7. MODES OF CONVERGENCE

Before going to the strong law of large numbers which gives a different sense in which S, /n
is close to the mean of X, we try to understand the different senses in which random variables
can converge to other random variables. Let us recall all the modes of convergence we have

introduced so far.
Let X,,, X be real-valued random variables on a common probability space.
> X, ¥ X (X, converges to X almost surely) if P {w : lim X,,(w) = X(w)} = 1.
> X, 5 X (X, converges to X in probability) if P{|X,, — X| > d} — 0 as n — oo for
any ¢ > 0.
» X, B x (X, converges to X in LP) if || X,, — X||, — 0 (i.e., E[|X,, — X|P] — 0. This
makes sense for any 0 < p < oo although || - - - ||, is @ norm only for p > 1. Usually
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it is understood that E[| X,|P] and E[| X |’] are finite, although the definition makes
sense without that.

> X, 4 x (X, converges to X in distribution) if the distribution of ux,, LA [x where
px is the distribution of X. This definition (but not the others) makes sense even if

the random variables X,,, X are all defined on different probability spaces.

-

Now, we study the inter-relationships between these modes of convergence.

7.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli ran-

dom variables elucidates the matter.

Example 2

Suppose A,, are events in a probability space. Then one can see that

1) 14, 50 lim P(A,) =0,

(2) 14, ¥ 0 <= P(limsup 4,) = 0.
By Fatou’s lemma, P(limsup A4,,) > limsup P(A4,,), and hence we see that a.s convergence of
1,4, to zero implies convergence in probability. The converse is clearly false. For instance,
if A,, are independent events with P(A,) = n!, then P(4,,) goes to zero but, by the sec-
ond Borel-Cantelli lemma P (limsup A4,,) = 1. This example has all the ingredients for the

following two implications.

.

Suppose X,,, X are random variables on the same probability space. Then,

1) If X, “% X, then X,, 5 X.

(2) If X, 5 X “fast enough” so that ) | P(|X,, — X| > ) < oo for every § > 0, then

a.s.

X, = X.

\_

Proof. Note that analogous to the example, in general

1) X, 5 X <= V5> 0, lim P(|X, - X| > 9) =0,

2) X, ¥ X < V6 >0, P(limsup{|X,, — X| > §}) =0.
Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For
the second part, observe that by the first Borel Cantelli lemma, if }, P(|X,, — X| > J) < oo, then
P(]X,, — X| > di.0) = 0 and hence limsup | X,, — X| < ¢ a.s. Apply this to all rational § and take

countable intersection to get lim sup | X;,, — X| = 0. Thus we get a.s. convergence. |

The second statement is useful for the following reason. Almost sure convergence X,, “5 0 is

a statement about the joint distribution of the entire sequence (X, X»,...) while convergence in
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probability X, £, 0 is a statement about the marginal distributions of X,,s. As such, convergence
in probability is often easier to check. If it is fast enough, we also get almost sure convergence for
free, without having to worry about the joint distribution of X,,s.

Note that the converse is not true in the second statement. On the probability space ([0, 1], B, \),
let X, = 1j9,1/n)- Then X, %2 0 but P(|X,,| > ¢) is not summable for any 6 > 0. Almost sure
ence in ence is assured.

ence implies conver probability, but no rate of converg

converg
Exercise 6

1) If X, A x , show that X, 2% X for some subsequence.

(2) Show that X, 5 X if and only if every subsequence of {X,,} has a further subse-
quence that converges a.s.

3) If X, 2 X and Y, By (all r.v.s on the same probability space), show that a.X,, +
bY, 5 aX 4 bY and X,.Y, 5 XY

g

7.2. In distribution and in probability. We say that X, 4 X if the distributions of X, converges
to the distribution of X. This is a matter of language, but note that X,, and X need not be on
the same probability space for this to make sense. In comparing it to convergence in probability,

however, we must take them to be defined on a common probability space.

Suppose X,,, X are random variables on the same probability space. Then,

1) If X, 5 X, then X,, % X.

2) If X, “ X and X is a constant a.s., then X, 2 x.

Proof.

(1) Suppose X, L X. Since for any 0 >0
P(X, <t) <P(X <t+08)+P(X — X, >0)
and P(X <t-9)<P(X, <t)+P(X, — X >9),
we see that limsupP(X,, <t) < P(X <t+ ) and liminf P(X,, <t) > P(X <t—) for
any 6 > 0. Let ¢t be a continuity point of the distribution function of X and let 6 | 0. We
immediately get lim,,_,o. P(X,, <t) =P(X <t). Thus, X, 4 x.

(2) If X = b a.s. (bis a constant), then the cdf of X is Fix(t) = 1;>5. Hence, P(X,, <b—6) = 0
and P(X,, < b+6) — 1forany d > 0 as b+ ¢ are continuity points of Fx. Therefore
P(|X, —b| > 8) < (1—Fx, (b+6)) + Fx, (b— &) converges to 0 as n — o0o. Thus, X,, 2 b. B

IfX,=1-Uand X = U, then X, % X but of course X, does not converge to X in probability!

Thus the condition of X being constant is essential in the second statement. In fact, if X is any
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non-degnerate random variable, we can find X, that converge to X in distribution but not in
probability. For this, fix 7" : [0,1] — R such that 7'(U) 2 X. Then define X,, = T(1—U). Forall

n the random variable X,, has the same distribution as X and hence X,, < X. But X,, does not

converﬁe in Erobabiliti to X (unless X is deienerate).

(1) Suppose that X, is independent of Y;, for each n (no assumptions about indepen-
dence across n). If X, 4 X and Y, 4 Y, then (X,,,Y,) 4 (U, V) where U 4 X,
V2<y and U,V are independent. Further, a.X,, + 0Y,, 4 aU +bV.

2) If X, 2 X and Y, Ly (all on the same probability space), then show that X,,Y, S
XY.

\_

7.3. In probability and in LP. How do convergence in LP and convergence in probability com-

pare? Suppose X, B x (actually we don’t need p > 1 here, but only p > 0 and E[|.X,, — X|P] — 0).
Then, for any ¢ > 0, by Markov’s inequality

P(|X, — X| > 6) <6 PE[|X, — X|"] > 0

and thus X, L X. The converse is not true. In fact, even almost sure convergence does not imply

convergence in L?, as the following example shows.

On ([0,1], B, \), define X,, = 2"1{g /). Then, X,, %2 0 but E[X}] = n~'2" for all n, and
hence X,, does not go to zero in L? (for any p > 0).

As always, the fruitful question is to ask for additional conditions to convergence in probability
that would ensure convergence in LP. Let us stick to p = 1. Is there a reason to expect a (weaker)
converse? Indeed, suppose X, £ X. Then write E[X, - X|] = [;°P(|X, — X| > t)dt. For
each ¢ the integrand goes to zero. Will the integral go to zero? Surely, if |X,,| < 10 a.s. for all n,
(then the same holds for | X |) the integral reduces to the interval [0, 20] and then by DCT (since the
integrand is bounded by 1 which is integrable over the interval [0,20]), we get E[|X,, — X|] — 0.

As example ?? shows, the converse cannot be true in full generality. What goes wrong in that
example is that with a small probability X, can take a very very large value and hence the expected
value stays away from zero. This observation makes the next definition more palatable. We put

the new concept in a separate section to give it the due respect that it deserves.
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8. UNIFORM INTEGRABILITY

Definition 5: Uniform integrability

A family {X;}ic; of random variables is said to be uniformly integrable if given any € > 0,
there exists A large enough so that E[| X;|1x,> 4] < e foralli € I.

Example 4

A finite set of integrable random variables is uniformly integrable. More interestingly, an
LP-bounded family with p > 1 is u.i. For, if E[|X;|P] < M for all ¢ € I for some M > 0, then

X \P 1
( 7 | X 1 x> Stpi_lM

which goes to zero as t — oo. Thus, given ¢ > 0, one can choose ¢ so that

E[Xi| x> < E

sup;er B[ Xi[1 x5 <e

This fails for p = 1, i.e., an L'-bounded family of random variables need not be uniformly
integrable. To see this, modify Example ?? by defining X, = nl, 1.

However, a uniformly integrable family must be bounded in L!. To see this find A > 0
so that E[|X;|1|x,~4] < 1 for all i. Then, for any i € I, we get E[|.X;|] = E[|X;|1x,/<a] +
E[|X;|1x,>4] £ A+ 1. Convince yourself that for any p > 1, there exist uniformly inte-
grable families that are not bounded in LP.

Exercise 8

If {Xi}ier and {Y}}e s are both wi, then {X; + Y} jjerx is ui. What about the family of
products, { XY} jyerxs?

Suppose X,,, X are integrable random variables on the same probability space. Then, the

following are equivalent.

1) x, 5 x.

) X, 5 X and {X,} is wi.

Proof. 1f Y, = X, — X, then X,, % X iff Y,, % 0, while X,, 5 X iff ¥,, % 0 and by the first part
of exercise 8, { X, } is u.i if and only if {Y},} is. Hence we may work with Y, instead (i.e., we may
assume that the limiting r.v. is 0 a.s).

First suppose Y, L—1> 0. We already showed that Y;, Lo 1 {Y,,} were not uniformly inte-
grable, then there exists § > 0 such that for any positive integer k, there is some n;, such that

1
E[|Yy, 1)y, >k] > 6. This in turn implies that E[|Y;,, [] > é. But this contradicts Y;, 5o.
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Next suppose Y, £ 0and that {Y,}isui. Then, fixe > 0 and find A > 0 so that E[|Yj |1}y, > 4] <
e for all k. Then,

E[|Yi]] < E[|[Yi|1)y,<a] + E[Y2|1y, > 4]
A
g/ P(IYel > 0)dt + e
0

Since Y, 5 0 we see that P(|Yx| > t) — O forallt < A. Further, P(|Yy| > ¢) < 1forall k£ and 1 is
integrable on [0, A]. Hence, by DCT the first term goes to 0 as k — oco. Thus lim sup E[|Y|] < € for
any e and it follows that Y}, L. [ ]

Corollary 18

a.s.

Suppose X,,, X are integrable random variables and X,, = X. Then, X,, L, X if and only

if { X, } is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT.
As shown by Lemma 17 and corollary 18, uniform integrability is the sharp condition, so it must
be weaker than the assumption in DCT. Indeed, if {X,,} are dominated by an integrable Y, then
whatever “A” works for Y in the u.i condition will work for the whole family {X,,}. Thus a

dominated family is u.i., while the converse is false.

Remark 6: Relationship to compactness

Like tightness of measures, uniform integrability is also related to a compactness question.
On a Banach space X, there is the norm topology coming from the norm, and the weak
topology induced by the dual space X* (it is the smallest topology on X in which every
element of X* is continuous). In particular when X = LP(u) for a probability measure p,
what are the compact sets in the weak topology?

For 1 < p < oo, we know that LP and L? are duals of each other, where % + % = 1. Therefore,
the weak topology on L? is the same as the weak* topology on L” when viewed as the
dual of L9. By the Banach-Alaoglu theorem, norm-bounded sets are pre-compact in the
weak topology. Norm-boundedness is also necessary (why?), hence this gives a precise
characterization for pre-compact sets in L? with weak topology. This argument fails for L?,
since it is not the dual of a Banach space. The Dunford-Pettis theorem asserts that pre-compact

subsets of L!(x1) in this weak topology are precisely uniformly integrable subsets of L!(1).

9. STRONG LAW OF LARGE NUMBERS

If X,, are i.i.d with finite mean, then the weak law asserts that n=15,, L% E[X;]. The strong law

strengthens it to almost sure convergence.
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Theorem 19: Kolmogorov’s strong law of large numbers

Let X, be i.i.d with E[|X|] < oo. Then, as n — oo, we have %” S E[X;].

The proof of this theorem is somewhat complicated. First of all, we should ask if WLLN implies
SLLN? From Lemma 15 we see that this can be done if P (|jn'S, — E[X1]| > §) is summable, for
every § > 0. Even assuming finite variance Var(X;) = o2, Chebyshev’s inequality only gives a
bound of 62§~2n~! for this probability and this is not summable. Since this is at the borderline of
summability, if we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that oy := E[X}] < oo (of course 4 is not the smallest number bigger
than 2, but how do we compute E[|S,,|F] in terms of moments of X; unless p is an even integer?).
Then, we may compute that (assume E[X;] = 0 without loss of generality)

E [Sﬁ] =n%(n—1)%0* + nay = O(n?).
Thus P ([n~1S,| > 6) < n~*0~*E[S;] = O(n~?) which is summable, and by Lemma 15 we get
the statement of SLLN under fourth moment assumption. This can be further strengthened to
prove SLLN under the second moment assumption, which we first present since there is one idea
(of working with subsequences) that will also be used in the proof of SLLN under just the first

moment assumption®.

Theorem 20: SLLN under second moment assumption

Let X, be ii.d with E[|X;|?] < cc. Then, = “3 E[X;] as n — oo.

Proof. Assume E[X;] = 0 without loss of generality and let 02 = Var(X;). By Chebyshev’s in-

o2

equality, P{|15,| > t} < Z; since Var(S,) = no?. Now consider the sequence ny = k% The
bounds % are summable, hence by the first Borel-Cantelli lemma, we see that |n—1kSn .| < dforall
but finitely many k, almost surely. If this even be denoted Ejs, then P(Es) = 1, hence Nseq, Es also
has probability one, which is another way of saying that nl—kSnk 3 0.

This can be applied to the i.i.d. sequence X, and the i.i.d. sequence X, (that two sequences

are not independent of each other is irrelevant) to see that
1 1
(11) —U,, — E[X{] and —V,, — E[X[], as.
ng N

where U, V,, are partial sums of X;" and X, respectively.
Now for any n, let k be such that ny < n < nyyq. Clearly U, < U, < Uy,,, and V;,, <V, <

V.11, since the summands are non-negative (a similar assertion is false for S, which is why we

4The idea of proving SLLN this way was told to me by Sourav Sarkar who came up with the idea when he was a

B.Stat student. I have not seen it any book, although it is likely that the observation has been made before.
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break into positive and negative parts). Thus,
1
Nk+1
and the analogous statement for V. Now, ny41/n, — 1, hence rewriting the above as
1

1 1 Nk11
—U,, <-U, <= _—_
Nkg+1 Nk n Ng Nkgt1

1

ng

U,

Nk+1

1
Unk S *Un S
n

N

Nk+4+12

we see that on the event in (11), we also have U, — E[X{] and 1V,, — E[X[]. Putting these
together with the almost sure assertion of (11), and recalling that S,, = U,, — V;,, we conclude that
18, ¥ EX{] - E[X;]=E[X4] u

Now we return to the more difficult question of proving the strong law under first moment
assumptionsS. We shall reuse the idea from the previous proof of (1) proving almost sure conver-
gence along a subsequence {n} and then (2) getting a conclusion about the whole sequence from
the subsequence . However, since we do not have second moment, we cannot use Chebyshev to
take the sequence nj, = k? in the first step. In fact, we shall have to take an exponentially growing
sequence nj = oF, where o > 1. But this is a problem for the second step, since nyy1/np — «
whereas the proof above works only if we have ny1/n; — 1. Fortunately, we shall be able to take
« arbitrarily close to 1 and thus bridge this gap! Another point is that as before, using positive

random variables is necessary to be able to sandwich S,, between S,,, and S, This will also

k+1°
feature in the proof below.

Proof of Theorem 19. Step 1: It suffices to prove the theorem for integrable non-negative random
variable, because we may write X = X, — X_ and it is true that S,, = S,/ — S,, where S =
X +...+XFand S, = X +...+ X,,. Henceforth, we assume that X,, > 0 and x = E[X1] < o0
(Caution: Don’t also assume zero mean in addition to non-negativity!). One consequence of non-

negativity is that

(12)

SNl <&§SN2 if Ny <n < Ns.
n

Ny — 1
Step 2: The second step is to prove the following claim. To understand the big picture of the proof,
you may jump to the third step where the strong law is deduced using this claim, and then return

to the proof of the claim.

Fix any A > 1 and define ny, := | \*]. Then, Sy a5 E[X;]as k — oo.

Nk

Proof of the claim Fix j and for 1 < k < n; write X, = Y}, + Z, where Y}, = Xi1x,<n, and
Zy = Xk1x,>n,; (Why we chose the truncation at n; is not clear at this point). Then, let Js be large
enough so that for j > J;5, we have E[Z;] < 4. Let S};, = ijl Y, and Sfj = >0 Zk. Since

5The proof given here is due to Etemadi. The presentation is adapted from a blog article of Terence Tao.
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Sn; = S%/j + Sfj and E[X] = E[Y1| + E[Z;], we get

S, y Sz
P{‘ nJ—E[Xl]’>25}§P{ " E[Y] +‘ "J—E[Zl]‘>26}
nj nj nj
sy Sz
gP{ " RlY) >5}+P{‘ nJE[Zl]‘>6}
nj nj
sy SZ
(13) gP{ Y B[vi] >6}+P{ "J;Ao}.
nj j

We shall show that both terms in (13) are summable over j. The first term can be bounded by

Chebyshev’s inequality
(14) P ‘ o E[1] ‘ >0 < 5 B = o BXP1yc)
n; o 52nj 527”Lj 1=
while the second term is bounded by the union bound
Sz
(15) P {TZ‘J # o} < n;P(X1 > nj).
g

The right hand sides of (14) and (15) are both summable. To see this, observe that for any positive
z, there is a unique £ such that n;, < < ng4;, and then

o0

o9 00 k
Z 1 1 .
(a,) ;IL‘Q]qunj S 1:2 § E S C)\;U, (b) E nj1x>nj S E )\j é C)\:I:
=1 j=1

j=1""7 j=k+1
Here, we may take C = ﬁ, but what matters is that it is some constant depending on A (but not
on z). We have glossed over the difference between |\ | and A’ but you may check that it does
not matter (perhaps by replacing C with a larger value). Setting x = X in the above inequalities
(a) and (b) and taking expectations, we get

(e 9]

1 o0
> ;E[thlgnj] <GEX]. ) nP(X1>ny) < CGE[X].
j=1"
As E[X;] < oo, the probabilities on the left hand side of (14) and (15) are summable in j, and

hence it also follows that P { ’ Sn—? — E[X/] ‘ > 20 } is summable. This happens for every § > 0

J=1

a.s.

and hence Lemma 15 implies that — “% E[X] a.s. This proves the claim.

J

Step 3: Fix A > 1. Then, for any n, find k such that N < n < A+ and then, from (12) we get

1 n . n
—E[X;] < liminf S < limsup S < AE[X}], almost surely.
A n—oo N n—oo N

Take intersection of the above event overall A = 1+ 1, m > 1to get lim S—n” = E[X{] a.s. [

n—oo

10. THE LAW OF ITERATED LOGARITHM

If a,, 1 00 is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup %

is constant a.s. What is this constant?
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If X; have finite mean and a,, = n, the strong law tells us that the constant is zero. What if we
divide by something smaller, such as n® for some o« < 1? To probe this question further, let us
assume that X; are i.i.d. Ber+(1/2) random variables. Then using higher moments (just as we did
in proving strong law under fourth moment assumption), we can get better results. For example,
from the fact that E[S}] = n + 3n(n — 1) (check!), we can see that lim sup f—n =0 a.s. if a,, = n®

with o > %. More generally, we reason as follows. For a positive integer p,
P{S, > tn} <E[SP, " < Cynt,*

where we used the fact that E[S3”] < C,nP for a constant C,. Assuming this, we see that if ¢, = n®
with @ > 1, then we can choose a p large enough to make the probabilities summable. By Borel-
Cantelli it follows that lim supn=S,, “3 0 as n — ooc.

To see that E[S/?] < Cpn?, expand Si* as a sum of monomial terms X*' ... X~ where k; are
non-negative integers that sum to 2p. When we take expectations, this factors as E[X}'] ... E[X/~].
If any k; is odd, then the product is zero. If all k;s are even, the product is 1. We need to count
the number of monomials of the latter type: Since each k; is even, there are at most p of them that
are non-zero. These can be chosen in (Z) < nP ways. Once the indices are chosen, the number of
monomials are at most the number of ways to distribute 2p balls into p bins. Let this number be
C,. With all the overcounting, we still get E[S7*] < C,n?, as claimed.

Instead of using moments, one may use Hoeffding’s inequality to see that lim sup g—n = O even if
an, = Cy/nlogn for a large enough constant C' (Exercise!). In the converge direction, one can show
that lim sup % = 400, a.s. (let us accept this without proof for now). This motivates the question
of what is the right order of (limsup) growth of S,,?

Question: Let X; be i.i.d Ber4(1/2) random variables. Find a,, so that lim sup g—z =1la.s.

The sharp answer, due to Khinchine is one of the great results of probability theory.

Theorem 22: Khinchine’s law of iterated logarithm

Let X; be i.i.d. Bery(1/2) random variables. Then,

lim sup - =1las.

n—oo V2nloglogn

By symmetry, the liminf of S,,/v/2nloglog n is equal to —1 almost surely. From these two, one
can also deduce that the set of all limit points of the sequence {.S,,/v/2nloglogn} is equal to [—1, 1],
almost surely.

The law of iterated logarithms was extended to general distributions with finite variance by
Hartman and Wintner (with intermediate improvements by Kolmogorov and perhaps others).
Here we only prove the theorem for Bernoullis (the general case is more complicated and a clean

way to do it is via Brownian motion in the next course).
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Result 23: Hartman-Wintner law of iterated logarithm

Let X; be i.i.d. with mean p and finite, non-zero variance o2. Then,

. Sp —np
lim sup

n—oo 0v/2nloglogn

=1a.s.

11. PROOF OF LIL FOR BERNOULLI RANDOM VARIABLES

Let X1, X»,...beiid. Bers(1/2) random variables. Theorem 22 follows from the following two

statements. For any § > 0, we have

Sn
16 li — <146 a.s.
(16 171;11;801? v2nloglogn — o as
(17) lim sup __ >1-9 a.s.

n—oo v2nloglogn —
Taking intersection over a countable number of § = 1, k > 1, we get the statement of LIL. To
motivate the principal idea in the proof, consider the following toy situation.

Example 5: Borel-Cantelli after blocking

Let B, be events in a probability space and let A; = By, Ay = A3 = By, Ay = A5 = Ag = B3
and so on (n many A;s are equal to B,,). To show that only finitely many A,s occur a.s., if we
apply Borel-Cantelli lemma to A,s directly, we get the sufficient condition )  nP(B,) < oco.
This is clearly foolish, as the event {4,, i.0.} is the same as { B, i.0.}, and the latter has zero

probability whenever > P(B,,) < oo, a much weaker condition!

What this suggests is that when we have a sequence of A,s and want to show that P{4,, i.0.} =
0, it may be good to combine together those A;s that are close to each other. For example, we can
take a subsequence 1 = n; < ny < ... and set Cj, to be the union of A,s with n;, < n < ngyq. If
only finitely many Cjs occur, the only finitely many A,s occur, and thus it suffices to show that
> 1 P(Ck) < co. The naive union bound P(Cy) < > "1 P(A,) takes us back to the condition

n=ng

> . P(A,) < oo, but the point is that there may be better bounds for P(C,,) than the union bound.

Proof of the upper bound (16). Write a,, = v/2nloglogn. We want to show that only finitely many
of the events A,, = {S,, > an(1 + §)} occur, a.s. We use blocking as follows. Fix A > 1 and set
ny = |A¥]. Define the events

ngy1—1
C = U Ay, ={Sn > an(1+90) forsome ny <n < ngi1},
n=ng
Ng4+1—1
By = U Ap ={Sy > an, (1 +9) for some ni < n < ngy1}.
n=ng
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Then Cj, C By, as ay, is increasing in n. Thus if we show that ), P(By) < oo, it follows that only

finitely many C), occur a.s. and hence only finitely many A,, occur a.s. We claim that
(18) P(By) < Ok~ (H0%/X Wwhere Oy < oo for any A\ > 1.

Granting this, it is clear that choosing 1 < A < (1 + §)? ensures summability of P(By). We give

two proofs of the above inequality below, which completes the proof. |

Proof of (18) via the reflection principle: We shall need the following lemma which is of interest

in itself.

Lemma 24: Reflection principle/Ballot problem

Let X}, beii.d. Ber+(1/2) random variables. Then for any a > 0, we have

P{max{So,...,S,} > a} =2P{S, > a}.

The proof is given in many places, we omit it here. Chapter-3 of Feller’s vol-1 is highly recom-
mended.

Returning to the proof of (18), if Bj, occurs, then there is some n < nj4q (in fact some n > ny)
such that S, > ay, (1 + 6). The reflection principle in Lemma 24 applies to give the bound

P(By) < 2P{Sn;,, > an, (1 +9)}

2.2
(1+6)%a?

<2 1 (by Hoeffding’s inequality).

The exponent is (omitting integer part for simplicity of notation)

(14 6)%2XFloglog \F (1 +6)?
INk+1 - A
from which (18) immediately follows. |

(19)

log(klog A)

Proof of (18) via a modified first moment method: Let X; = Z"’““*l 15, >an, (1+38), SO that By, =

n=nig
1x,>1. We use the following improvement of Markov’s inequality.
E[X;]
E[X | X > 1]

What we need is an upper bound for the numerator and a lower bound for the denominator.

P(By) =P{X; 21} <

To get an upper bound for E[X}], use Hoeffding’s inequality to write

ngt1—1 ng41—1 2 2
a; (1+6
n=nig n=ng
az (1+ )
< (k41 — nk) xp {—k2(>}
N1

where we bounded all terms by the largest one (which is the last one).
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Next we claim that ¢(ng+1 — ng) (for some ¢ > 0) is a lower bound for E[X}, ‘ Xk, > 1]. The
heuristic idea is that if X}, > 1, there is some N € [ng, ng+1) for which Sy > ay,, (1 + 6). If we fix
that NV and regard it as given, then S,, — Sy has a symmetric distribution about 0 for any n, hence
P{S, — Sy > 0} > I, which would imply that E[X}, | X}, > 1] > $(nj41 — ng). This reasoning is
faulty, as the way we choose N (which is a random variable) may invalidate the claim that .S,, — Sn
has a symmetric distribution.

To make the reasoning precise, write Xj, = Y}, + Z, where Y}, is the number of n in the first half
of the interval [ny, ng41) for which S,, > ay,,, (14 6) and Zj, is the analogous number for the second
half of [ng, ng41). Then Xply,>1 > $(Yilz>1 + Zily,>1) and {X;, > 1} C {Y, > 1} U {Z; > 1}.
Consequently,

EXilx,>1] o 1EYilzo] + E[Z) 1y >1]
P{X;>1} — 2 P{Z, > 1} +P{Y, > 1}

S 1 . [EYilz,>1] E[Zily, 1]
> —min )
2 P{Z, > 1} P{Y, > 1}

E[X, | X, >1] =

1

In the second line we used the elementary inequality gTJrfl > min{¢, 2} valid for any non-negative
numbers a, b, ¢, d. Now consider the second term inside the minimum. Since Y}, > 1, condition on
the location N in the first half of [ny, nx+1) where S,, > a,, (1 + ) and use the fact that S,, — Sy,
n > N, is still a simple symmetric random walk, and hence for any n in the second half, has
probability 1/2 or more to be non-negative. Therefore, E[Z}, | Y} > 1] > 1(ng41 — ng). Similarly
(considering the random walk in backwards direction starting from 7 1), reason that E[Y}, | Z;, >

1] > $(ng41 — ny). Putting all this together, E[X}, | X > 1] > £ (ng41 — ng).

a%k(1+5)2

2 2
2n } _ ank‘ (1+9)
Thus, P(By) < I Fp— kH <8 *"w+1 . By the computation shown in (19), this
8 +1—

is of the form given in (18). |

s o]

12. HOEFFDING’S INEQUALITY

If X,, are i.i.d with finite mean, then we know that the probability for S, /n to be more than §
away from its mean, goes to zero. How fast? Assuming finite variance, we saw that this proba-
bility decays at least as fast as n~!. If we assume higher moments, we can get better bounds, but
always polynomial decay in n. Here we assume that X, are bounded a.s, and show that the decay

is like a Gaussian.
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Lemma 25: Hoeffding’s inequality

Let X1,...,X, be independent, and assume that | X;| < dj w.p.1. For simplicity assume
that E[X};] = 0. Then, forany n > 1 and any ¢ > 0,

2
P<|sn|2t>szexp{ = dg}
=17

.

The boundedness assumption on Xjs is essential. That E[X}] = 0 is for convenience. If we

remove that assumption, note that Y, = X, — E[X}] satisfy the assumptions of the theorem,
except that we can only say that |Y;| < 2dj (because | Xi| < dj implies that [E[X}]| < dj
and hence | X}, — E[X}]| < 2di). Thus, applying the result to Y;s, we get

t2
_ >t) < T8S” 2 (-
P(|S, E[Sn]\_t)—Qexp{ sz?zld?}

-
Proof. Without loss of generality, take E[X}] = 0. Now, if | X| < d w.p.1, and E[X] = 0, for any

A > 0 use the convexity of exponential on [—\d, Ad] (note that AX lies inside this interval and

hence a convex combination of —Ad and A\d), we get

A 1 X\ X\
<= + = +(1-= .
(& B 1 € 1 (&

Therefore, taking expectations we get E[exp{AX }] < cosh(\d). Take X = X}, d = d;, and multiply
the resulting inequalities and use independence to get E[exp{\S,}] < [[_; cosh(\dg). Apply the
elementary inequality cosh(z) < exp(z?/2) to get

Elexp{\S,}] < exp{ /\QZdQ}

From Markov’s inequality we thus get P(S, > t) < e ME[eM"] < exp {-At+ 1A2Y ) d3}.

Optimizing this over \ gives the choice A = ST and the inequality

Zkl

P(Snzt)gexp{ 27521 z}.

Working with — X, gives a similar inequality for P(-S,, > t) and adding the two we get the

statement in the lemma. [ |

The power of Hoeffding’s inequality is that it is not an asymptotic statement but valid for every
finite n and finite ¢t. Here are two consequences. Let X; be i.i.d bounded random variables with
P(|X:| <d) =1

(1) (Large deviation regime) Take ¢t = nu to get

1 u2
P (’nSn - E[Xl]‘ > u) =P (]S, — E[S,]| > nu) < 2exp {_&d?n}
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This shows that for bounded random variables, the probability for the sample sum S, to
deviate by an order n amount from its mean decays exponentially in n. This is called the
large deviation regime because the order of the deviation is the same as the typical order of

the quantity we are measuring.

(2) (Moderate deviation regime) Take ¢t = u\/n to get
P (IS, — E[Su]| > uy/n) < 2exp {_87?2} .
This shows that S, is within a window of size \/n centered at E[S,,]. In this case the proba-
bility is not decaying with n, but the window we are looking at is of a smaller order namely,
\/n, as compared to S, itself, which is of order n. Therefore this is known as moderate de-
viation regime. The inequality also shows that the tail probability of (S, — E[S,])//n is
bounded by that of a Gaussian with variance d. More generally, if we take ¢ = un® with
o € [1/2,1), we get P (|S, — E[S,]| > un®) < 2¢ -2z
As Hoeffding’s inequality is very general, and holds for all finite n and ¢, it is not surprising that
it is not asymptotically sharp. For example, CLT will show us that (S,, — E[S,])/v/n 4 N (0,02)
where 02 = Var(X)). Since 62 < d, and the N(0, 02) has tails like e%*/27", the constant in the
exponent given by Hoeffding’s is not sharp in the moderate regime. In the large deviation regime,
there is well studied theory. A basic result there says that P(|S,, — E[S,]| > nu) ~ ¢~ (%), where
the function /(u) can be written in terms of the moment generating function of X;. It turns out
that if |X;| < d, then I(u) is larger than u?/8d*> which is what Hoeffding’s inequality gave us.

Again, Hoeffding’s is not sharp in the large deviation regime.

13. RANDOM SERIES WITH INDEPENDENT TERMS

In law of large numbers, we considered a sum of n terms scaled by n. A natural question is
to ask about convergence of infinite series with terms that are independent random variables. Of

course Y X, will not converge if X; are i.i.d (unless X; = 0 a.s!). Consider an example.

Example 6

Let ay, be i.i.d with finite mean. Important examples are a,, ~ N (0, 1) or a,, = £1 with equal

probability. Then, define f(z) = ), anz™. What is the radius of convergence of this series?
=]

From the formula for radius of convergence R = (lim SUDP,, o0 \an]%> , it is easy to find

that the radius of convergence is exactly 1 (a.s.) [Exercise]. Thus we get a random analytic

function on the unit disk.

\

Now we want to consider a general series with independent terms. For this to happen, the in-
dividual terms must become smaller and smaller. The following result shows that if that happens

in an appropriate sense, then the series converges a.s.
38



Theorem 26: Khinchine

Let X,, be independent random variables with finite second moment. Assume that E[X,,] =

0 for all n and that ) Var(X,,) < co. Then }_ X,, converges, a.s.

Proof. A series converges if and only if it satisfies Cauchy criterion. To check the latter, consider NV

and consider
(20) P (]S, — Sn| > 0 forsomen > N) = li_r>n P (]S, — Sn| > d forsome N <n <N +m).

Thus, for fixed N, m we must estimate the probability of the event § < max;<i<pm |Sn+r — Sn|.

For a fixed k we can use Chebyshev’s to get P(§ < |Syir — Sn|) < 6 2Var(Xy + Xni1 + ... +

XnN4m). However, we don’t have a technique for controlling the maximum of |Sy4x — Sy| over

k =1,2,...,m. This needs a new idea, provided by Kolmogorov’s maximal inequality below.
Invoking 8, we get

N+m )
P (|S, — Sy| > dforsome N <n < N+4+m) <52 Z Var(X},) < 672 Z Var(X}).
k=N k=N

The right hand side goes to zero as N — oo. Thus, from (20), we conclude that for any 6 > 0,
lim P (]S, — Sn| > 0 forsomen > N) = 0.
N—oo

This implies that lim sup S,, — liminf S,, < § a.s. Take intersection over 6 = 1/k, k = 1,2... to get
that S,, converges a.s. u

What to do if the assumptions are not exactly satisfied? First, suppose that > ,, Var(X,,) is finite
but E[X,,] may not be zero. Then, we can write > X,, = > (X,, — E[X,,]) + >_E[X,,]. The first
series on the right satisfies the assumptions of Theorem 26 and hence converges a.s. Therefore,
> X, will then converge a.s if and only if the deterministic series ), E[X,,] converges.

Next, suppose we drop the finite variance condition too. Now X, are arbitrary independent
random variables. We reduce to the previous case by truncation. Suppose we could find some A >
0 such that P(|X,| > A) is summable. Then set Y;, = X,,1|x, |<4. By Borel-Cantelli, almost surely,
X, =Y, for all but finitely many n and hence ) X,, converges if and only if )Y}, converges.
Note that Y,, has finite variance. If > E[Y,] converges and ), Var(Y},) < oo, then it follows from
the argument in the previous paragraph and Theorem 26 that ) Y, converges a.s. Thus we have
proved

Lemma 27: Kolmogorov’s three series theorem - part 1

Suppose X, are independent random variables. Suppose for some A > 0, the following

(a) Y P(|Xn| > A) <oco. (b)) > E[V;]converges. () Y Var(¥;) < oo.
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L Then, ), X,, converges, almost surely.

Kolmogorov showed that if > X,, converges a.s., then for any A > 0, the three series (a), (b)
and (c) must converge. Together with the above stated result, this gives a complete and satis-
factory answer, as the question of convergence of a random series (with independent entries) is
reduced to that of checking the convergence of three non-random series! We skip the proof of this

converse implication.

14. CENTRAL LIMIT THEOREM - STATEMENT, HEURISTICS AND DISCUSSION

If X; are i.i.d with zero mean and finite variance o2, then we know that E[S%] = no?, which can
roughly be interpreted as saying that S, ~ \/n (That the sum of n random zero-mean quantities
grows like \/n rather than n is sometimes called the fundamental law of statistics). The central limit
theorem makes this precise, and shows that on the order of \/n, the fluctuations (or randomness)
of S,, are independent of the original distribution of X! We give the precise statement and some

heuristics as to why such a result may be expected.

Theorem 28: Central limit theorem for i.i.d. variables

Let X, be i.i.d with mean x and finite variance 02.Then, SZ;\/%“ converges in distribution to
N(0,1).

Informally, letting x denote a standard Normal variable, we may write S,, ~ nu + o+/ny. This
means, the distribution of 5, is hardly dependent on the distribution of X that we started with,
except for the two parameters - mean and variance. This is a statement about a remarkable sym-
metry, where replacing one distribution by another makes no difference to the distribution of the
sum. In the rest of the section, we discuss various aspects of the theorem, and in later sections we

give proofs of this and even more general central limit theorems.

Why this scaling?: Without loss of generality, let us take 1 = 0 and % = 1. First point to note is
that the standard deviation of S,,/y/n is 1, which gives hope that in the limit we may get a non-
degenerate distribution. Indeed, if the variance were going to zero, then we could only expect the
limiting distribution to have zero variance and thus be degenerate. Further, since the variance is
bounded above, it follows that the distributions of S,,/\/n form a tight family. Therefore, there are
at least subsequences that have distributional limits.

Why Normal distribution?: Let us make a leap of faith and assume that the entire sequence
Sn/+/n converges in distribution to some Y. If so, what can be the distribution of Y'? Observe that
(2%)_%Sgn % Y and further,
X1+ Xs3+... - e
1+ X3+ +X2nli>Y, Xo+ Xy + +X2ni>y.
Vn N4
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But (X1, X3,...) is independent of (X3, X4, ...). Therefore (this was an exercise earlier), we also

get

<X1+X3+...+X2n_1 Xo+Xg+ ...+ Xop
vn ’ vn
where Y1, Y5 are i.i.d copies of Y. But then, (yet another exercise), we get
S 1 <X1+X3+...+X2n—1 _I_X2+X4+...+X2n> d Yi+Y,
Von o V2 vn vn V2
Thus we must have Y7 + Y5 4 V2Y. If Y, ~ N(0,0?), then certainly it is true that Y; + Y5 4 V2Y.
We claim that N(0,0?) are the only distributions that have this property. If so, then it gives a

) 4 M, ")

strong heuristic that the central limit theorem is true.
To show that N (0, 0?) is the only distribution that satisfies Y7 + Ys 4 V2Y (where Y7,Y5,Y are

iid. N(0,0?))is not trivial. Here are two ways to do it.

(1) The cleanest way is to use characteristic functions. If ¢)(¢) denotes the characteristic func-
tion of Y, then
o) = B[] =B [0 < (1)
V2
From this, by standard methods (note that characteristic functions are necessarily contin-
uous), one can deduce that ¢ (t) = e~ for some a > 0. By uniqueness of characteristic
functions, Y ~ N (0, 2a). Since we expect E[Y?] = 1, we must get N(0, 1).

(2) If we assume further that Y has all moments, write o, = E[Y*] and observe that

m

220 = Z (ZL) QpQm—p forallm > 1.
k=0

Starting from oy = 1, one deduces that a; = 0 (because V200 = 2a1) and as is arbitrary.
But then onwards, it is clear that «,,s can be inductively deduced in terms of «s. We leave

it as an exercise to show that

0 if m is odd
QO =
ag X (m—1)x (m—3)x...x3x1 ifmiseven.

But these are precisely the moments of N (0, az) distribution. Does that imply that ¥ must

have N (0, as) distribution? The answer is yes®, thus justifying the appearance of the nor-

mal distribution.

®A beautiful part of classical analysis is the moment problem, which asks whether a given sequence of numbers
(&m)m>1 forms the moment sequence of a probability measure on R, and if so, whether the measure is unique. There
are precise answers to both questions, and an easy part of the answer is that any measure for which [ e"*du(z) is finite
for |t| < ¢ for some 6 > 0, has a unique moment sequence (i.e., no other measure can have the same sequence of

moments as ). This certainly applies to the Gaussian distribution.
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Justification by example: Assuming that S,,/\/n has a distributional limit, we have justified that
the limit must be Gaussian. There are specific examples where one may easily verify the statement
of the central limit theorem directly (indeed, that was how the theorem was arrived at).

One is of course the Demoivre-Laplace limit theorem (CLT for Bernoulli random variables),
which is well known and we omit it here. We just recall that sums of independent Bernoullis
have binomial distribution, with explicit formula for the probability mass function and whose
asymptotics can be calculated using Stirling’s formula.

Instead, let us consider the slightly less familiar case of exponential distribution. If X; are i.i.d

Exp(1) so that E[X] = 1 and Var(X;) = 1. Then S,, ~ Gamma(n, 1) and hence S"—\/%" has density

Fule) = eV )V
—n, n—i n—1
et (@
T ¢ (”ﬁ)
1 _1,2
—>\/ﬂe 2

by elementary calculations (use Stirling’s approximation for I'(n) and for terms involving = write
the exponent as —z\/n + log(1 + z/4/n) and use the Taylor expansion of logarithm). By an earlier
exercise (Scheffe’s lemma) convergence of densities implies convergence in distribution and thus

we get CLT for sums of exponential random variables.
Exercise 9

Prove the CLT for X; ~ Ber(p). Note that this also implies CLT for X; ~ Bin(k, p).

Justification under stronger hypotheses: Lastly, we show how the CLT can be derived under
strong assumptions by the method of moments. As justifying all the steps here would take time,
let us simply present it as a heuristic for CLT for Bernoulli random variables. Let X; be i.i.d.
Ber+(1/2). Then S,, has a symmetric distribution and hence all odd moments are zero (but first,
|Sn| < n, hence all moments exist). For even moments,
E[S?] = Y E[Xp ... X
1<k;<n

Fix k = (k1,...,kop) and consider the corresponding summand. The expectation factors as a
product of E[X Ei}, 1 <@ < n, where ¢; is the number of j for which k; = i. Unless each ¢; is even,
the summand vanishes. The terms for which each ¢; contribute 1 each, and these terms may be
divided into two parts.

First, those in which each /; is 0 or 2. The number of ways to ways to choose the p indices i for
which ¢; =2isn(n —1)...(n — p+ 1), and the number of ways that these indices may be chosen
is(2p—1)(2p—3)...(3)(1).

42



Next those terms in which at least one /; is equal to 4. The contribution is afgThere are n ways

to choose that ¢, and there are

15. STRATEGIES OF PROOF OF CENTRAL LIMIT THEOREM

In the next few sections, we shall prove CLT as stated in Theorem 28 as well as a more gen-
eral CLT for triangular arrays to be stated in Theorem 33. We shall in fact give two proofs, one
via the replacement strategy of Lindeberg and another via characteristic functions. Both proofs
teach useful techniques in probability. To separate the key ideas from technical details that are
less essential, we shall first prove a weaker version of Theorem 28 (assuming that X; has finite
third moment) by both approaches. Then we prove the more general Theorem 33 (which implies
Theorem 28 anyway) by adding minor technical details to both approaches.

What are these two strategies? The starting point is the following fact that we have seen before.

Y, % Y if and only if E[f(Y,)] — E[f(Y)] for all f € Cy(R). Here Cy(R) is the space of

bounded continuous functions on R.

The implication that we shall use is one way, and let us recall how that is proved.

Proof of one implication. Suppose E[f(Y,,)] — E[f(Y)] for all f € C,(R). Fix t, a continuity point of
Fy, and for each k > 1 define a function fj € Cp(R) such that 0 < f; < 1, fx(z) = 1 for z < t and
fi(z) =0 for z >t + . For example, we may take f, to be linear in [, + 7].

As fi, € Cyp(R), we get E[f,(Y)] — E[f1(Y)] as n — oc. But Fy (t) < E[f,(Y)] < Fy(t + ) and
Fy, (t) < E[fx(Ya)] < Fy, (t+ +). Hence, limsup,,_,, Fy, (t) < Fy (t+ 1 ). This being true for every
k, welet k — oo and get limsup,,_,., FYy, (t) < Fy (t). Similarly, use the function g;(z) := fi(z + 1)

to get
1
liminf Fy, (1) > lim Blge(Ya)] = Blor(Y)] > By (t - 7).
Again, letting & — oo and using continuity of Fy at t we get liminf, . Fy, (t) > Fy(t). Thus,
d
Y, —>Y. |

Continuous functions are more easy to work with than indicators of intervals, hence the use-
fulness of the above lemma. However, it is even more convenient that we can restrict to smaller

subclasses of the space of continuous functions. We state two results to that effect.

Suppose E[f(Y,,)] = E[f(Y)] forall f € 0153) (R), the space of all functions whose first three

. . . d
derivatives exist, are continuous and bounded. Then, Y,, — Y.

Proof. Repeat the proof given for Lemma 29 but take fj, to be a smooth function such that 0 < f;, <

1, fy(z) = 1forz < tand fy(z) = 0forz >t + f. [ |
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Here is the further reduction, which unlike the first, is not so obvious! It is proved in the

appendix, and goes by the name Lévy’s continuity theorem.

Lemma 31: Lévy’s continuity theorem

Suppose E[¢i*Y#] — E[¢i"Y] for all A € R. Then, Y;, % Y.

In this lemma, we only check convergence of expectations for the very special class of functions
ex(y) := e, for A € R. Note that by the expectation of a complex valued random variable U + iV’
with U, V real-valued, we simply mean E[U]+:E[V]. The function ¢y : R — C defined by ¢y () =
E[e?Y] is called the characteristic function of Y. It is a very useful tool in probability and analysis,
and a brief introduction including the proof of the above lemma is give in the appendix 20.

15.1. General approach to proving central limit theorem(s). The statement of central limit the-
orem is that E[p(S5,/v/n)] — E[p(Z)] whenever ¢ € {1(_o 4 :t € R} (and Z denotes a N(0, 1)
random variable). We do not have a direct handle on the expectations of indicator variables. The

point of the previous discussions is that we can replace them by a suitable class of nicer functions.

Characteristic functions: For example, to invoke Lemma 31, we only need to prove E[e;(S,,/v/n)] —
Ele;(Z)] where e;(z) = €. The usefulness of this comes from the fact that e;(S,/v/n) = [}, e:(Xnx)
where X, , = X;,/+/n and by the independence assumption, the expectation factors as [ [,_; E[e:(X,, x)].
How this is handled will be seen later in the proof. We should also know what it is supposed to
converge to, namely Ele;(Z)]. It is shown in the appendix 20 that E[e;(Z)] = e~**/2. Thus the
proof of CLT reduces to showing that

142

H Ele,( X k)] — e 2" asn— oco.
k=1

Invariance principle: The other method of proof that we show is to use Lemma 30. Then we need
to show that E[f(S,/v/n)] — E[f(Z)] forall f € 0153) (R). Unlike for complex exponentials, we do
not have any formula’ for E[f(Z)] for general f. Our approach will be to show that if X; are i.i.d.
and Y; are i.i.d., both having zero means and unit variances, then E[f(S.X /\/n)] =~ E[f(SY /\/n)]
for large n. If Y; are i.i.d. N(0, 1), the right hand side is precisely E[f(Z)], and from that we shall
be able to prove that the left hand side converges to E[f(Z)], for f € C’b(?’).

"However as shown in the appendix, we do have the identity E[Z f(Z)] = E[f'(Z)] for all nice enough f. Further,
it can be shown that if a random variable Z satisfies this for a large class of f, then Z ~ N (0, 1). Charles Stein found
a proof of central limit theorem by showing (a) If W = S, /y/n, then E[W f(W)] ~ E[f'(W)] for large enough n, and
(b) this approximate identity implies that W has approximately N (0, 1) distribution. . This is known as Stein’s method,

and has some advantages over the usual proofs.
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16. CENTRAL LIMIT THEOREM - TWO PROOFS ASSUMING THIRD MOMENTS

We give two proofs of the following slightly weaker version of CLT.

Let X, be i.i.d with finite third moment, and having zero mean and unit variance. Then,

Sn.
Jn

converges in distribution to N (0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume
Theorem 28.

16.1. Proof via characteristic functions. We shall need the following facts.

Exercise 10

Let 2, be complex numbers such that nz,, — z. Then, (1 + z,)" — €.

Proof of Theorem 32. By Lévy’s continuity theorem (Lemma 31), it suffices to show that the char-
acteristic functions of n_%Sn converge to the characteristic function of N (0, 1). The characteristic
function of S,,/\/nis ¥, (t) == E [e“sn/ \/ﬂ . Writing S,, = X + ... + X,, and using independence,

ﬁ eith/\/ﬁ]

k=1

E

¥n(t)

n

H E [eitxk/ﬁ}

—1

()

where 1) denotes the characteristic function of X7.

>~

Use Taylor expansion to third order for the function z — €' to write,

e =1+ itx — §t2x2 - ét?’em 3 for some z* € [0, z] or [z, 0].

Apply this with X; in place of 2 and tn~'/2 in place of . Then take expectations and recall that
E[Xi] = 0and E[X?] = 1 to get

l _ t2 _ 4 3 itXT v3
" <\/ﬁ> = 1= g0+ Ralt), where Ra(t) = ——1°F [e 1X1} .

Clearly, |R,,(t)| < Cin=%/2 for a constant C; (that depends on ¢ but not n). Hence nR,,(t) — 0 and
by Exercise 10 we conclude that for each fixed ¢ € R,

t2 n +2
Y (t) = <1 5.t Rn(t)> —e 2
which is the characteristic function of N(0,1). [

16.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we

observe that the central limit theorem is trivial for (Y1 +...+Y},)/v/n, if ¥; are independent N (0, 1)
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random variables. The key idea of Lindeberg is to go from X; + ...+ X,, to Y7 + ... + Y}, in steps,
replacing each X; by Y;, one at a time, and arguing that the distribution does not change much!

Proof. We assume, without loss of generality, that X; and Y; are defined on the same probability
space, are all independent, X; have the given distribution (with zero mean and unit variance) and
Y; have N (0, 1) distribution.

Fix f € C{(R) and let /nU, = K71 X; + 320, Viand vaVy = S5 X + 207, Y, for
0 < k < n and empty sums are regarded as zero. Then, Vo = SY //n and V,, = S.X/\/n. Also,
SY //n has the same distribution as Y;. Thus,

E [f (\}ﬁsxﬂ ZE f (Vi)

= ZE SR =) E[f (Vie1) = f (Uk)]-
k=1
By Taylor expansion, we see that
el Xk " X3 " X3
f(Vk)_f(Uk)—f(Uk)%"‘f U or + f (Uk)Gn%,
Y] 75 vy
fVie) = £(U0) = FU) =+ £ Ui g + 71U

Take expectations and subtract. A key observation is that U}, is independent of X}, Y),. Therefore,
E[f'(Uy)X}] = E[f'(Uy)E[X}] etc. Consequently, using equality of the first two moments of
Xy, Yy, we get

BI(V) — f(Vier)) = — (L (U)X + I (W)R)}-

Now, U}; and U}[* are not independent of X}, Y}, hence we cannot factor the expectations. We put

absolute values and use the bound on derivatives of f to get

[ELF V)]~ BUAVin)]| < O {BIX Y + BV}

Add up over k from 1 to n to get

1 1

B[7 (=s¥)] - BUr00] < o (B + B
Vn n?

which goes to zero as n — oo. Thus, E[f(S,/v/n)] — E[f(Y1)] for any f € C 3)( R) and conse-

quently, by Lemma 30 we see that ﬁSn 4N (0,1). |

17. CENTRAL LIMIT THEOREM FOR TRIANGULAR ARRAYS

The CLT does not really require the third moment assumption, and we can modify the above
proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where

we don’t have one infinite sequence, but the random variables that we add to get S,, depend on n
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themselves. Further, observe that we assume independence but not identical distributions in each

row of the triangular array.

Theorem 33: Lindeberg-Feller CLT

Suppose X, ., k < n,n > 1, are random variables. We assume that

(1) For each n, the random variables X, 1,..., X, , are defined on the same probability

space, are independent, and have finite variances.
) E[X,4] =0and Y E[X?,] — 0% asn — oo.

(3) Forany § > 0, we have Y E[X? 1|x, ,|>s] = 0asn — oc.

Then, X1+ ...+ Xy 4 N(0,02) as n — oo.

First we show how this theorem implies the standard central limit theorem under second mo-

ment assumptions.

Proof of Theorem ?? from Theorem 33. Let X, j, = n~2 X fork=1,2,... n. Then, E[X,, 1] = 0 while
Iy E[ng] = % > k=1 E[X?] = °, for each n. Further, >7;_, E[X'rZL,k1|Xn,k|>6] = E[X121|X1|>6\/ﬁ]
which goes to zero as n — oo by DCT, since E[X?] < oo. Hence the conditions of Lindeberg Feller

theorem are satisfied and we conclude that % converges in distribution to N (0, 1). [

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-

Feller CLT. We consider some examples.

Let X, ~ Ber(pi) be independent random variables with 0 < p; < 1. Is S,, asymptotically
normal? By this we mean, does (S, — E[S,])/+/Var(S,,) converge in distribution to N (0, 1)?
Obviously the standard CLT does not apply.

To fit it in the framework of Theorem 33, define X, ,, = X’;i:p’“ where 72 = >0 pr(1 — p)
is the variance of S,,. The first assumption in Theorem 33 is obviously satisfied. Further,
X, has mean zero and variance py(1 — pi)/72 which sum up to 1 (when summed over
1 < k < n). As for the crucial third assumption, observe that 1x, ,|~5 = 1jx,—p|>6m,- If
Tn T 00 as n — oo, then the indicator becomes zero (since | Xy — px| < 1). This shows that
whenever 7, — 0o, asymptotic normality holds for S,,.

If 7,, does not go to infinity, there is no way CLT can hold. We leave it for the reader to think
about, just pointing out that in this case, X; has a huge influence on (.S,, —E[S,]) /7,,. Chang-

ing X from 0 to 1 or vice versa will induce a big change in the value of (S,, — E[S,])/m

from which one can argue that the latter cannot be asymptotically normal.

The above analysis works for any uniformly bounded sequence of random variables. Here is a

generalization to more general, independent but not identically distributed random variables.
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Suppose X} are independent random variables and E[|X;|?*°] < M for some § > 0 and

M < oo. If Var(S,,) — oo, show that S,, is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 8

If X,, are i.i.d (mean zero and unit variance) random variable, what can we say about the
asymptotics of Ty, := X1 + 2Xo + ... + nX,,? Clearly E[T,,] = 0 and E[T2] = Y0_ k? ~ 2.
Thus, if we expect any convergence to Gaussian, then it must be that n=2T, 4N (0,1/3).
To prove that this is indeed so, write n*%Tn = > i 1 Xn i where X, = n"3kX k- Let us
check the crucial third condition of Theorem 33.
E[X] 11ix, 58] = 0 K E[XPL x, s sp-1n3/2]
< n_lE[XQI‘Xb(;\/ﬁ] (since k < n)

which when added over & gives E[X?1|x|.s ] Since E[X?] < oo, this goes to zero as
n — oo, for any § > 0.

Exercise 12

Let0 < a1 < as < ...Dbefixed numbers and let X}, bei.i.d. random variables with zero mean
and unit variance. Find simple sufficient conditions on a;, to ensure asymptotic normality
of Tn = EZ:l aka.

18. TWO PROOFS OF THE LINDEBERG-FELLER CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with

the earlier proofs and see where some modifications are required.

18.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a prod-

uct to an exponential.

If z;,, w, € C and ’Zk|, ]wk| < @ for all k, then H Zpy = H wg | < gn—1 Z ‘Zk = wk|.
k=1 k=1 k=1

Proof of Theorem 33. The characteristic function of S,, = X, 1 + ... + X, is given by ¢, (t) =
[] E [¢"*Xnx]. Again, we shall use the Taylor expansion of €**, but we shall need both the second
k=1

and first order expansions.

. 1+ itz — 3t222 — Ldeitr™ o3 for some z* € [0, x] or [z, 0].
ezta} _ 2 6

14 ite — St2eite" 42 for some z* € [0, ] or [z, 0].
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Fix 0 > 0 and use the first equation for |z| < § and the second one for |z| > ¢ to write

1 1 ) 11 -
T=1+1ite — §t2w2 + 7|x2|>5t2:v2(1 — emﬁ) — 7@9153:1036”"” )

Apply this with = = X, 1, take expectations and write o7, ; := E[X? ] to get
; 1
E[e"Xnt] =1 — 5‘7721,kt2 + Ry k()
. + . ; *
where, R, 1(t) := %E 1|Xn,k:|>§X72L,k (1 - e”Xnakﬂ - %E [1\Xn,k|§5X2,k€ltX"’k] We can bound

Ry, 1,(t) from above by using | X,, x[*1x, ,|<s < 6X7 ; and [1 — e*| < 2, to get

t (5
(21) Ry i(t)] < °E [1\Xn,k|>5XZ,k] I ’

z'tXn,k]

E[X7.]-

We want to apply Exercise 13 to z; = E [e and wy = 1 — 502 ,°. Clearly |z,| < 1 by

properties of c.f. If we prove that max o2, — 0, then it will follow that |wg| < 1 and hence with
sn 7

6 = 1 in Exercise 13, we get

< ém%z(s (by 21)

To see that max op = 0, fixany § > O note that o, < §° + E |:X7%07k1|Xn,k‘>5i| from which we get

n
2 2 2
1}{313;{0 ik <07+ E E [Xn,klan,kbé} — 4.

As § is arbitrary, it follows that max 02, — 0asn — co. As § > 0 is arbitrary, we get
=n ’

n n
) 1
. X k] _ T Ly 9
(22) nlg]go | | E [¢"*nr] = nlgrolOkl | (1 2‘7n,kt ) .
For n large enough (and fixed t), max tgai, , < 3 and then

1 2 42 1 4 44 1 1.2 42
e_Eo—n,kt _Zan,kt < 1 — 70-2 t2 < 6_5 n,kt .
= 2 n’k =

Take product over £ < n, and observe that 22:1 afh x — 0 (why?). Hence,

2,2

H <1 Lo kﬁ) e
From 22 and Lévy’s continuity theorem, we get > ;| X,, 1 4N (0,0?). |
18.2. Proof of Lindeberg-Feller CLT by replacement method.

Proof. As before, without loss of generality, we assume that on the same probability space as the

random variables X, ;, we also have the Gaussian random variables Y,, ; that are independent
49



among themselves and independent of all the X, ;s and further satisfy E[Y,, ;] = E[X,, ;] and
[Yn2 Kl = [Xg k-
Similarly to the earlier proof of CLT, fix n and define U}, = Zk L X+ > i1 Ynjand Vi =
ZFIX n.j +Zg:k+1yw for0<k<n.Then Vo=Y,1+...+ Y, pand V,, = X;, 1 + ... + Xp .
Also, V,, ~ N(0,0?). Thus,

(23) E[f (V)] - E[f(Vo)l = Y _EIf (Vi) = f (Vi)

=anE[f( ZE (Vi—1) = f (Ug)].
We expand f (V) — f(Uk) by Taylor series, both of third order and second order and write
FVi) = 10 = F(U) Xos+ U)X+ &1 U)X
FOVi) — FU) = F/ (U Xk + " (UF) X2,

where U} and U,f are between V), and Uy. Write analogous expressions for f(Vy_1) — f(Uy) (ob-
serve that V;,_1 = Uy, + Y}, 1) and subtract from the above to get

FVi) = f(Vier) = f/(Ur)(Xnp — Yoi) + f//(Uk)( -Y2) + é(f”/(UE)XE,k — " (UF)Y ),
FVi) = F(Vie1) = F/(U)(Xnge — Yor) + 1<f”<U,f*>Xn,k — FIUFF)YE).

2
Use the first one when | X, ;| < § and the second one when | X, | > ¢ and take expectations to get

4) [BIF(V)] ~ BIf Vi)l < 5B )] [BIXZ A1, e — By, <]

1 1
25) + 5 [BUS X L, 16| + 5 [BIS UV 2Ly, 5]

1 * 1 k%
(26) + < B O Xnal L, 5] + glEuf’"wk Ykl 1y, 1<l
Since E[ng] = E[Yn 1), the term in the first line (24) is the same as L E[| f(Uy,)|] |E[X? sl >l

E[Y,?, 1y, ,>s]| which in turn is bounded by

CHE[X? 41 1x, =s] + B, 1y, 6]}

The terms in (25) are also bounded by

CHE[IX? 4 1x, o>s] + BV Ly, 50l }-

To bound the two terms in (26), we show how to deal with the first.

E[ /" (U1 Xnk*1)x, ,1<s]| < COE[XR ).

The same bound holds for the second term in (26). Putting all this together, we arrive at

[E[f(Vi)] = E[f (Vie)]| < CHEIX i 1ix, j=6] + EY; Ly, 5sl} + H{E[X7 ] + B[V}
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Add up over k and use (23) to get

E[f (V)] - BIf(0)]| <8 Y BIX2,] +E2

n
+Cy Z EHXkalan,k|>5] + E[Ynz,kllYn,kbé]'
k=1

As n — oo, the first term on the right goes to 202, The second term goes to zero. This follows
directly from the assumptions for the terms involving X whereas for the terms involving Y (which
are Gaussian), it is a matter of checking that the same conditions do hold for Y.

Consequently, we get limsup [E[f (V)] — E[f(V,)]| < 20%6. As § is arbitrary, we have shown
that for any f € 0153) (R), we have

E[f(Xn,l + ...+ Xn,n)] - E[f(Z)]

where Z ~ N(0, 0%). This completes the proof that X, 1 + ... + Xy - N(0,02). |

19. SUMS OF MORE HEAVY-TAILED RANDOM VARIABLES

Let X; be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see
that the sums S,, converge to Gaussian distribution after shifting (by nE[X]) and scaling (by /n).
What if we drop the assumption of second moments? Let us first consider the case of Cauchy

random variables to see that such results may be expected in general.

Example 9

Let X; be i.i.d Cauchy(1), with density m Then, one can check that % has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write Sn—” S .
If X; were i.i.d with density m (which can be denoted C, ;, with a > 0, b € R), then
X"a_b are i.i.d (', and hence, we get

L —
Sn—1b 4

an
This is the analogue of CLT, except that the location change is nb instead of nE[X], scaling

is by n instead of y/n and the limit is Cauchy instead of Normal.

This raises the following questions.

(1) For general i.i.d sequences, how are the location and scaling parameter determined, so that

b, 1 (S, — a,) converges in distribution to a non-trivial measure on the line?
(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what

distributions on X; do we get b, (S, — ay) 4 C1?
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For simplicity, let us restrict ourselves to symmetric distributions, i.e., X £ _X. Then, clearly no
shifting is required, a,, = 0. Let us investigate the issue of scaling and what might be the limit.

It turns out that for each o < 2, there is a unique (up to scaling) symmetric distribution p
such that X +V £ 22 X if X,V ~ p are independent. This is known as the symmetric a-stable
distribution and has characteristic function 1, (t) = e~°*®. For example, the normal distribution
corresponds to & = 2 and the Cauchy to o = 1. If X; are i.i.d p,, then is is easy to see that
n-l/ag, LA lte. The fact is that there is a certain domain of attraction for each stable distribution,

and for i.i.d random variables from any such distribution n-l/ag, S L

20. APPENDIX: CHARACTERISTIC FUNCTIONS AND THEIR PROPERTIES

Definition 6

Let u be a probability measure on R. The function v, : R? — R define by v,(t) =
Jg €"dp(z) is called the characteristic function or the Fourier transform of p. If X is a ran-
dom variable on a probability space, we sometimes say “characteristic function of X” to
mean the c.f of its distribution (thus 1 x (t) = E[e?*X]). We also write /1 instead of Yy

There are various other “integral transforms” of a measure that are closely related to the c.f. For
example, if we take v,,(it) is the moment generating function of y (if it exists). For ;i supported
on N, its so called generating function F,(t) = > ;- p{k}t* (which exists for |t| < 1 since y is
a probability measure) can be written as 1),,(—ilogt) (at least for t > 0!) etc. The characteristic
function has the advantage that it exists for all t € R and for all finite measures .

The importance of c.f comes from the following facts®.

(A) It transforms well under certain operations, such as shifting, scaling and under convolu-

tions.

(B) The characteristic function determines the measure. Further, the smoothness of the char-

acteristic function encodes the tail decay of the measure, and vice versa.

(C) fn(t) — [u(t) pointwise, if and only if ), LN . This is the key property that was used in

proving central limit theorems.

(D) There exist necessary and sufficient conditions for a function ¢ : R — C tobe thecfofa
measure. Because of this and part (B), sometimes one defines a measure by its characteristic
function.

(A) Some basic observations.

8In addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is

an excellent resource for the basics of characteristic functions. Our presentation is based on it too.
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Theorem 34

Let X,Y be random variables.

(1) For any a,b € R, we have ¢, x 14(t) = e®'1px (at).

(2) If X, Y are independent, then ¢ x 1y (t) = ¥x (t)Yy (t).

Proof. (1) Yaxis(t) = E[eit(aX+b)] — E[eitaX]eibt — 6ibt¢}X(at).

(2) ¥xsv(t) = B[] = E[e"X ] = E[e"Y B[] = yx (t)dy (t).

Let ;1 € P(R). Then, /i is a uniformly continuous function on R with | (¢)| < 1 for all ¢ with

f1(0) = 1. (equality may be attained elsewhere too).

Proof. Clearly 1(0) = 1 and |fi(t)] < [ |e®*|du(x) = 1. Further,

it + k) — a(t)] < / R ity () = / " 1|dpu(z).

As h — 0, the integrand |e?"® — 1| — 0 and is also bounded by 2. Hence by the dominated
convergence theorem, the integral goes to zero as h — 0. The uniformity is clear as there is no

dependence on t. [ ]

The more we assume about the continuity /smoothness of the measure , the stronger the con-
clusion that can be drawn about the decay of /i. And conversely, if the tail of ;1 decays fast, the

smoother [ will be. We used this latter fact in the proof of central limit theorems.

Theorem 36

Let u € P(R). If p has finite k** moment for some k € N, then /i € C*)(R) and 4 (t) =
Jua)eit=du(e).

Theorem 37

Let 1o € P(R). Assume that ;1 has density f with respect to Lebesgue measure.

(1) (Riemann-Lebesgue lemma). /i(t) — 0 as t — +oo.

() If f € O, then fi(t) = o(|t| %) as t — +o0.

For proofs, consult, Feller’s book.

(B) Examples. We give some examples.

(1) If p = do, then ji(t) = 1. More generally, if u = p1dq, + ... + prda,, then j(t) = pre® +
...+ prettar,
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)

®3)

(4)

©)

(6)

no poles, this is the same as the integral f7 + fnk - fn, - ofe

If X ~ Ber(p), then ¢x(t) = pe + q where ¢ = 1 — p. If Y ~ Binomial(n,p), then,
Y £ X, +...+ X, where X, are i.i.d Ber(p). Hence, 1y (t) = (pe' + q)™.

If X ~ Exp()), then Vx(t) =[5 Ae el dy = (v, ), then if v is an
integer, then Y’ 4 X1+...+ X, where X}, are 1.1.d Exp(A). Therefore, ¢y (t) = eenr lt) . This

is true even if v is not an integer, but the proof would have to be a direct computation.

Laplace distribution having density 3e~1%! on all of R has characteristic function This

1+t2
is similar to the previous example and left as an exercise.

Y ~ Normal(y,0?). Then, Y = u+0X, where X ~ N (0, 1) and by the transofrmatin rules,
Yy (t) = etypx (ot). Thus it suffices to find the c.f of N (0, 1). Denote it by .

_L ita:—é _ 7 (96”)2
w(t)—\/%/Ree de =e” (@/ >

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of
a normal density with mean it and variance 0. But if the mean is complex, what does
it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff
inside brackets is indeed equal to 1°.

Alternately, one can obtain the characteristic function as follows.

Stein’s equation: Let f : R — R be any reasonable function (C’I} is more than needed).
E[Zf(Z)] = E[f'(Z)] (this is called Stein’s equation).
To see this, integrate by parts to get

Elf(2) = <= /R fla)e e = —— [ f@yae = 2aa = El21(2).

since the boundary terms vanish (provided f is grows slowly enough at +00). Take f(z) =
e with a fixed t € R to get itE[e"X] = E[X¢'X] = 1 LE[e"X] (where the last inequality
is by differentiation under the expectation, which can be justified easily by dominated
convergence theorem). Thus, ¢/(t) = —(t), which gives ¢ (t) = Ce /2. As4(0) = 1, we
must have C = 1.

. 0242
The final conclusion is that N (u, 0?) has characteristic function eith="3,

5 +x2)dl‘ Lett > 0 and consider 1(t) = + - f 1:;2

We use contour integration. Let v(u) = u for —R < u < Rand n(u) = Re* for 0 < s < .

Let 1 be the standard Cauchy measure 1

9Here is the argument: Fix R > 0 and let v(u) = w and n(¢) = u + it for —R < v < R and let n,(s) = = + is for

0 < s < t. The integral that we want is the limit of the contour integrals fn e~ 27" dzas R — oo. Since the integrand has

~#*/2 The integral over -y converges to [, e~*"/2dg which

is v2m. The integrals over n and n”_z converge to zero as R — oo. This is because the absolute value of the integrand
is em 2 (9% < o= F/2 for any 0 < s < t. Thus the two integrals are bounded in absolute value by e’R2/2|t\ which
goes to 0 as R — oo.
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Then by the residue theorem

1 itz 1 itz 1 itz
/edz—i—/edz— x 21iRes | —— i) = e .
w ), 1+ 22 T Jy 1422 T 1+ 22

—tImz

However, on 7, the integrand is bounded by < T < ﬁ, since ¢ > 0. The length of

the contour is 7R, hence the total integral over 7 is O(1/R) as R — oo. Thus, 1 f7 fj; dz

converges to e ! for t > 0. By the symmetry of the underlying measure, )(—t) = ¥ (t),

whence we arrive at 9 (t) = eIl

C) Inversion formulas.
Theorem 38

If o =0, then p = v.

Proof. Let 0, denote the N(0, 02) distribution and let , (z) = \/ﬁ e=**/27% and @, ( = [" wolu

and 0, (t) = e~7"**/2 denote the density and cdf and characteristic functions, respectlvely. Then,

by Parseval’s identity, we have for any «,
[emawasn®) = [ bl - adu(o)
V2 /

o1 (0 — x)dp(z)

g

where the last line comes by the explicit Gaussian form of ,. Let f, () := wor [ et i(t)do,(t)

and integrate the above equation to get that for any finite a < b,

[ soteria = [ [ psia ) autw) da

_ /L]wai(a——x)w)duﬂﬂ (by Fubini)
:Qé(@ﬂb_@_¢;m—x0dmm.

o

Now, we let 0 — oo, and note that

0 ifu<O.
O1(u) =<1 ifu>0.
% ifu=0.

Further, ®,-1 is bounded by 1. Hence, by DCT, we get
, b 1 1
Jim [ fo(a)da = / [1(a,b) (@) + 5 1a0) (2) | du(z) = p(a, b) + S pfa, b
Now we make two observations: (a) that f, is determined by /i, and (b) that the measure p is

determined by the values of u(a,b) + 34{a, b} for all finite a < b. Thus, /i determines . [

We can continue the reasoning in the above proof to get a formula for recovering a measure

from its characteristic function.
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Corollary 39: Fourier inversion formula

Let 1 € P(R).
(1) For all finite a < b, we have

1 efzat —e bt 2
(27) w(a,b) + ,ua—l—,ub—hm— —((t)e 207dt
it

oc—00 27T R

(2) If [ |Aa(t)|dt < oo, then p has a continuous density given by

fl@) = — /]R A(t)e~ it dt.

2

\_
Proof. (1) Recall that the left hand side of (27) is equal to ILm fab fo where

folo) 1= <= [ 4i(t)a0, 1)

Writing out the density of 6, we see that

b 1 b ) £2
/ fola)da = / / e " fi(t)e” 202 dtdox
a 2m a JR

1 b, £

= // e_w‘tﬂ(t)e_;deoz dt  (by Fubini)
27 RJa
1

efiat _ efibt 2
= — ——[(t)e 202 dt.
2 R it M( )

Thus, we get the first statement of the corollary.

(2) With f, as before, we have f,(a) = 5= [ e*mtﬂ(t)e_%dt. Note that the integrand con-
verges to e ! [i(t) as 0 — oo. Further, this integrand is bounded by |/i(t)| which is as-
sumed to be integrable Therefore, by DCT, for any a € R, we conclude that f,(a) — f(«)
where f(a) = 5 [ e " f(t)dt.
Next, note that for any o > 0, we have | f, ()| < C for all a where C' = [ |i(¢)|dt. Thus,
for finite a < b, using DCT again, we get fab fo = fa faso — oo.
But the proof of Theorem 38 tells us that

b
lim / fola)do = pla,t) + gufa) + guld}

T—00 a

Therefore, yi(a,b) + spu{a} + $p{b} = ff f(a)da. Fixing a and letting b | a, this shows that
puf{a} = 0 and hence u(a,b) f f(a)da. Thus f is the density of x.
The proof that a c.f. is continuous carries over verbatim to show that f is continuous

(since f is the Fourier transform of /i, except for a change of sign in the exponent). |

An application of Fourier inversion formula Recall the Cauchy distribution ;» with with density

m whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is

a way to compute this integral).
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Consider the seemingly unrelated p.m v with density %e""’f‘ (a symmetrized exponential, this is
also known as Laplace’s distribution). Its c.f is easy to compute and we get

1 [ | 1 /0 1 1 1 1
o(t) = = zt:pfxd - ltx+xd I = .
v(t) 2/0 ¢ $+2/OO€ =\ Tixi) i1

By the Fourier inversion formula (part (b) of the corollary), we therefore get

1 1 ; 1 1 .
Ze Il = /ﬁ(t)e”xdt = — e dt.
2 27 2 ) 1+ ¢2

This immediately shows that the Cauchy distribution has c.f. e~ !l without having to compute the
integral!!

(D) Continuity theorem. Now we come to the key result that was used in the proof of central limit
theorems. This is the equivalence between convergence in distribution and pointwise convergence

of characteristic functions.

Theorem 40: Lévy’s continuity theorem

Let pn, p € P(R).
(1) If pp LN p then fi,(t) — fi(t) pointwise for all ¢.

(2) If fu,(t) — (t) pointwise for all ¢t and 1) is continuous at 0, then ¢ = [ for some
€ P(R) and py LA 1.

-

Proof. (1) If py, A p, then [ fdu, — [ fdp for any f € Cy(R) (bounded continuous function).
Since x — ¢'® is a bounded continuous function for any ¢ € R, it follows that i, (t) — fi(t)

pointwise for all ¢.

(2) Now suppose [i,(t) — 1(t) pointwise for all ¢ and ¢ is continuous at zero. We first claim
that the sequence {u, } is tight. Assuming this, the proof can be completed as follows.

Let p,,, be any subsequence that converges in distribution, say to v. By tightness, v €
P(R). Therefore, by the first part, fi,, — © pointwise. But obviously, fi,, — /i since
fin, = fr. Thus, 7 = i which implies that v = p. That is, any convergent subsequence of
{{tn} converges in distribution to x.. This shows that s, A L.

It remains to show tightnesslo. From Lemma 41 below, as n — oo,

b b
i (1=2/8.2/8) < 5 (@ fmleNde — 5 [(1= vt
—5 —3
where the last implication follows by DCT (since 1 — ji,,(t) — 1 — #(t) for each ¢ and
also |1 — ji,(t)] < 2 for all ¢). Further, as 6 | 0, we get %ffé(l — (t))dt — 0 (be-
cause, 1 — 1(0) = 0 and ¢ is continuous at 0). Thus, given ¢ > 0, we can find 6 > 0
such that limsup,, , . pn ([—2/6,2/6]°) < €. This means that for some finite N, we have

191 would like to thank Pablo De Napoli for pointing out a flaw in the statement and proof of the second part.
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pn ([—2/0,2/6]°) < eforalln > N. Now, find A > 2/§ such that for any n < N, we
get 1, ([—2/6,2/6]°) < e. Thus, for any ¢ > 0, we have produced an A > 0 so that
tn ([—A, A]¢) < e for all n. This is the definition of tightness. [ |

Let 1 € P(R). Then, for any § > 0, we have

w([-25]) <3 Z (1 - A(t))d.

Proof. We write

/_iu—ﬂ(t))dt - /Z 4= e ydutarie
-/ /_Z(l—e“ﬂdtdu(w)
- )
_ 25/ (1—Sm )d ().

< % (since sin(zd) < 1). Therefore, the integrand is at least % when

When §|z| > 2, we have Sinx(f;‘s)

|z| > 2 and the integrand is always non-negative since |sin(z)| < |z|. Therefore we get

)
/ (- a(e)dt > 65 ([~2/6,2/5]). ™

—6

(D) Positive semi-definiteness. What functions arise as characteristic functions of probability
measures on R? If (t) = [ e?*du(z) for a probability measure j, then ¢(—t) = ¢(t) forall t € R.
Further, for any m > 1 and any complex numbers ¢y, ..., ¢, and any real numbers t1,...%,,, we
must have

0< / ‘ che’t”
= Z ckCep(ti — to)-

ke f=1

d,u Z CkCg/ (te=te)z gy, ()

k=1

This motivates the following definition.

Definition 7: Positive definite functions
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Thus characteristic functions are necessarily positive definite functions. We have also seen that
they are continuous and take the value 1 at 0. These are all the properties that it takes to make a

characteristic function.
Theorem 42: Bochner’s theorem

A function ¢ : R — R is a characteristic function of a Borel probability measure on R if and

only if ¢ is continuous, positive definite and ¢(0) = 1.

Before starting the proof, we make some basic observations about positive definite functions.

o If o is positive definite, then |¢| < 1. Indeed, for any ¢, the positive semi-definiteness of

M, [0,t] shows that 1—|¢(t)]? > 0 (note that o(—t) = ¢(t) is part of the condition of positive
definiteness).

e If v and ¢ are positive definite functions and 6(t) = ¢(t)y(t), then 6 is also positive def-
inite. The matrix C = Mp[ty,...,t,] is the Hadamard product (entry-wise product) of
A = My[ty,...,ty) and B = My[ti,...,t,]. Itis a theorem of Schur that a Hadamard
product of positive semi-definite matrices is also positive demi-definite. It is not hard to
see: As A is positive semi-definite, we can find random variables X1, ..., X,, such that
a;; = E[X;X}]. Similarly B = E[Y;Y}| for some random variables Y7, ...,Y,. We can con-
struct X;s and Yjs on the same probability space, so that (X1,...,X,) is independent of
(Y1,...,Y,). Then, the covariance matrix of Z; = X;Y;, 1 < i < n, is precisely C. Hence C
is positive semi-definite.

e For any nice function ¢ : R — C, we have

(28) // c(t)e(s)p(t — s)dtds > 0.

This is just a continuum analogue of 3, ; ¢;Ckp(t; — ti;) and can be got by approximating

the integral by sums. We omit details.

Now we come to the proof of Bochner’s theorem. What we need to prove is that given a continu-
ous positive definite function ¢ satisfying ¢(0), there is a probability measure whose characteristic
function it is. The idea is simple. We have already seen inversion formulas that recover a measure
from its characteristic function. We just apply these inversion formulas to ¢ and then try to show

that the object we get is a probability measure.

Proof of Bochner’s theorem. Let ¢ be a continuous, positive-definite function such that ¢(0) = 1.

Case: ¢ is absolutely integrable: Taking a cue from the Fourier inversion formula,

fl@) = 5= [ et

T 2r
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The integral is well-defined as ¢ is bounded. We want to show that f is a probability density. First
we show that f is non-negative'l. Fix an interval I; = [~ M, M] and observe that

1 :
- - ix(t—s) o . .
f(zx) 37 (20 /IM/R e ¢(t — s)dtds (the inner integral does not depend on s)

1 / / iz (t—s) 1 / / iz (t—s)
- e o(t — s)dtds + ———— e o(t — s)dtds.
27T(2M) I J Iy ( ) 27'['(2M) Ing X/I ( )

The first integral is positive by (28) (take c(t) = em1|t|§ ). As for the second integral, we claim
that it goes to zero as M — oo. Indeed, fix 6 > 0 and observe that for |s| < (1 — §)M, the inner
integral is less than ¢y := fI(S]\/IC lo(u)|du (as [t — s| > 0M for any |s| < (1 — §)M and any [t| > M).
If |s| > (1 — §)M, we just use the trivial bound C' := [} |¢| for the inner integral. Overall, the
bound for the second term becomes
1
27 (2M)
Let M — oo and then § | 0 (or just take 6 = ﬁ) to see that this goes to zero as M — oo. This
proves that f(z) > 0 for all x.
The formula for f shows that it is the inverse Fourier transform (need an argument first showing

(2(1 = §)Meps + CSM) < ear + 6C.

integrability of f) of ¢ (up to a factor of 1/27). Applying the Fourier inversion formula, we see
that p(t) = [, f(z)e"“dx, showing that ¢ is the characteristic function of the measure f(z)dz. In
particular, [, f(z)dz = ¢(0) = 1 showing that f is a probability density.

General case: For any o > 0, define ¢, (t) = o(t)e=7"1"/2 (the idea behind: If ¢ is the characteristic
function of a random variable X, then ¢, would be that of X + 07, where Z ~ N(0,1)). Since
¢ is bounded, ¢, is absolutely integrable for any o > 0. Further, ¢, is continuous and positive
definite by the Schur product theorem. Thus, by the first case, ¢, is the characteristic function of
a measure j, (in fact, dpy(z) = f,(x)dz, where f,(z) = 5= [ e ", (t)dt).

v, — @ point-wise as o | 0. By the second part of Lévy’s continuity theorem, this shows that
¢ is a characteristic function of the probability measure ;» which is the distributional limit of 1, as
ol 0. |

iy may be easier to first see the following formal argument. Fix = € R and use c(t) = ¢** in (28) to get

0< //e““*s)@(t—s)dtds = /Uei“ga(u)du] ds
st ([ 1a5).

Of course, the integral here is infinite, hence the proof is only formal, but it gives a hint why f(z) > 0. The actual proof

makes this precise by integrating s over a finite interval.
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Fourier analysis on general locally compact abelian groups goes almost in parallel to that
on the real line. If G is a locally compact abelian group (eg., R¢, (S')?, Z4, finite abelian
groups, their products), then the set of characters (continuous homomorphisms from G to
S1) form a collection G called the dual of G. It can be endowed with a topology (basically
of point-wise convergence on G) and these characters form a dense set in L?(G) (w.r.t. Haar
measure). For a measure 1 on G, one defines its Fourier transform i : G — C by fi(x) =
Jo x(z)dp(z). Plancherel’s theorem, Lévy’s theorem, Bochner’s theorem all go through with

minimal modification of language”.

?A good resource is the book Fourier analysis on groups by Walter Rudin.

\
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