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1. INTRODUCTION

In this second part of the course, we shall study independent random variables. Much of what
we do is devoted to the following single question: Given independent random variables with
known distributions, what can you say about the distribution of the sum? In the process of finding
answers, we shall weave through various topics. Here is a guide to the essential aspects that you
might pay attention to.

Firstly, the results. We shall cover fundamental limit theorems of probability, such as the weak
and strong law of large numbers, central limit theorems, poisson limit theorem, in addition to
results on random series with independent summands. We shall also talk about the various modes
of convergence of random variables.

The second important aspect will be the various techniques. These include the first and second
moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and Bernstein
and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention the outstandingly
useful tool of characteristic functions as well as the less profound but very common and useful
techniques of proofs such as truncation and approximation.

Thirdly, we shall try to introduce a few basic problems/constructs in probability that are of
interest in themselves and that appear in many guises in all sorts of probability problems. These
include the coupon collector problem, branching processes, Pólya’s urn scheme and Brownian
motion. Many more could have been included if there was more time1.

2. SOME BASIC TOOLS IN PROBABILITY

We collect three basic tools in this section. Their usefulness cannot be overstated.

2.1. First and second moment methods. In popular language, average value is often mistaken
for typical value. This is not always correct, for example, in many populations, a typical person
has much lower income than the average (because a few people have a large fraction of the total
wealth). For a mathematical example, suppose X = 106 with probability 10−3 and X = 0 with
probability 1− 10−3. Then E[X] = 1000 although with probability 0.999 its value is zero. Thus the
typical value is close to zero.

Since it is often easier to calculate expectations and variances (for example, expectation of a
sum is sum of expectations) than to calculate probabilities (example, tail probability of a sum of
random variables), the following inequalities that bound certain probabilities in terms of moments
may be expected to be somewhat useful. In fact, they are extremely useful as we shall shortly see!

1References: Dudley’s book is an excellent source for the first aspect and some of the second but does not have much

of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can touch

upon in this course. Lots of other standard books in probability have various non-negative and non-positive features.
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Lemma 1: First moment method or Markov’s inequality

Let X ≥ 0 be a r.v. For any t > 0, we have P(X ≥ t) ≤ t−1E[X].

Lemma 2: Second moment method or Paley-Zygmund inequality

For any non-negative r.v. X , and any 0 ≤ α ≤ 1, we have

P (X > αE[X]) ≥ (1− α)2
E[X]2

E[X2]
.

In particular, P (X > 0) ≥ E[X]2

E[X2]
.

Proofs of Lemma 1 and Lemma 2. (1) For any t > 0, clearly t1X≥t ≤ X . Positivity of expectations
gives the inequality.

(2) E[X]2 = E[X1X>0]
2 ≤ E[X2]E[1X>0] = E[X2]P(X > 0). Hence the second inequality fol-

lows. The first one is similar. Let µ = E[X]. By Cauchy-Schwarz, we have E[X1X>αµ]2 ≤
E[X2]P(X > αµ). Further, µ = E[X1X<αµ] + E[X1X>αµ] ≤ αµ + E[X1X>αµ], whence,
E[X1X>αµ] ≥ (1− α)µ. Thus,

P(X > αµ) ≥
E[X1X>αµ]2

E[X2]
≥ (1− α)2

E[X]2

E[X2]
. �

Remark 1

Applying these inequalities to other functions of X can give more information. For exam-
ple, if X has finite variance, P(|X −E[X]| ≥ t) = P(|X −E[X]|2 ≥ t2) ≤ t−2Var(X), which
is called Chebyshev’s inequality. Higher the moments that exist, better the asymptotic tail
bounds that we get. For example, if E[eλX ] < ∞ for some λ > 0, we get exponential tail
bounds by P(X > t) = P(eλX > eλt) ≤ e−λtE[eλX ]. Note that X is not assumed to be non-
negative in these examples as Markov’s inequality is applied to the non-negative random
variables (X −E[X])2 and eλX .

2.2. Borel-Cantelli lemmas. IfAn is a sequence of events in a common probability space, lim supAn

consists of all ω that belong to infinitely many of these events. Probabilists often write the phrase
“An infinitely often” (or “An i.o” in short) to mean lim supAn.

Lemma 3: Borel Cantelli lemmas

Let An be events on a common probability space.

(1) If
∑

nP(An) <∞, then P(An infinitely often) = 0.

(2) If An are independent and
∑

nP(An) =∞, then P(An infinitely often) = 1.
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Proof. (1) For any N , P (∪∞n=NAn) ≤
∑∞

n=N P(An) which goes to zero as N → ∞. Hence
P(lim supAn) = 0.

(2) For any N < M , P(∪Mn=NAn) = 1 −
∏M
n=N P(Acn). Since

∑
nP(An) = ∞, it follows

that
∏M
n=N (1 − P(An)) ≤

∏M
n=N e

−P(An) → 0, for any fixed N as M → ∞. Therefore,
P (∪∞n=NAn) = 1 for all N , implying that P(An i.o.) = 1. �

We shall give another proof later, using the first and second moment methods. It will be seen
then that pairwise independence is sufficient for the second Borel-Cantelli lemma!

2.3. Kolmogorov’s zero-one law. If (Ω,F ,P) is a probability space, the set of all events that have
probability equal to 0 or to 1 form a sigma algebra. Zero-one laws are theorems that (in special
situations) identify specific sub-sigma-algebras of this. Such σ-algebras (and events within them)
are sometimes said to be trivial. An equivalent statement is that all random variables measurable
with respect to such a sigma algebra are constants a.s.

Definition 1

Let (Ω,F) be a measurable space and let Fn be sub-sigma algebras of F . Then the tail σ-
algebra of the sequence Fn is defined to be T := ∩nσ (∪k≥nFk). For a sequence of random
variables X1, X2, . . ., the tail sigma algebra (also denoted T (X1, X2, . . .)) is the tail of the
sequence σ(Xn).

How to think of it? If A is in the tail of (Xk)k≥1, then A ∈ σ(Xn, Xn+1, . . .) for any n. That is,
the tail of the sequence is sufficient to tell you whether the even occurred or not. For example, A
could be the event that infinitely many Xk are positive.

Theorem 4: Kolmogorov’s zero-one law

Let (Ω,F ,P) be a probability space.

(1) If Fn is a sequence of independent sub-sigma algebras of F , then the tail σ-algebra
is trivial.

(2) If Xn are independent random variables, and A is a tail event, then P(A) = 0 or
P(A) = 1.

Proof. The second statement follows immediately from the first. To prove the first, define Tn :=

σ (∪k>nFk). Then, F1, . . . ,Fn, Tn are independent. Since T ⊆ Tn, it follows that F1, . . . ,Fn, T are
independent. Since this is true for every n, we see that T ,F1,F2, . . . are independent. Hence, T
and σ (∪nFn) are independent. But T ⊆ σ (∪nFn), hence, T is independent of itself. This implies
that for any A ∈ T , we must have P(A)2 = P(A ∩A) = P(A) which forces P(A) to be 0 or 1. �

Independence is crucial (but observe thatXk need not be identically distributed). IfXk = X1 for
all k, then the tail sigma-algebra is the same as σ(X1) which is not trivial unless X1 is constant a.s.
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As a more non-trivial example, let ξk, k ≥ 1 be i.i.d. N(0.1, 1) and let η ∼ Ber±(1/2). Set Xk = ηξk.
Intuitively it is clear that a majority of ξks are positive. Hence, by looking at (Xn, Xn+1, . . .) and
checking whether positive or negatives are in majority, we ought to be able to guess η. In other
words, the non-constant random variable η is in the tail of the sequence (Xk)k≥1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial
conclusions. Another interesting application (but not relevant to the course) will be given in a
later section.

Exercise 1

Let Xi be independent random variables. Which of the following random variables must
necessarily be constant almost surely? lim supXn, lim inf Xn, lim supn−1Sn, lim inf Sn.

Remark 2: Reformulation on product space

We may reformulate Kolmogorov’s zero-one law as follows. Let (Ωk,Fk) be measure spaces
and consider Ω = Ω1×Ω2× . . . endowed with the product sigma-algebra F = F1⊗F2⊗ . . ..
Let Πk : Ω 7→ Ωk be projection maps. Let Gk = σ{Πk,Πk+1, . . .} and let T = ∩kGk.
Kolmogorov’s zero-one law is the statement that under any product probability measure
on Ω, the sigma-algebra T is trivial (check the equivalence of this statement with the earlier
one).

2.4. Ergodicity of i.i.d. sequence. We now prove another zero-one law now, which covers more
events, but for i.i.d. sequences only. We formulate it in the language of product spaces first. Let
(Ω,F) be a measure space and consider the product space ΩN with the product sigma algebra
F⊗N. Let Pik be the projection onto the kth co-ordinate. For k ∈ N, let θk : ΩN 7→ ΩN denote the
shift map defined by Πn ◦ θk = Πn+k for all n ≥ 1. In other words, (θkω)(n) = ω(n + k) where
ω = (ω(1), ω(2), . . .).

Definition 2: Invariant sigma-algebra

An event A ∈ F⊗N is said to be invariant if ω ∈ A if and only θkω ∈ A for any k ≥ 1. The
collection of all invariant events forms a sigma algebra that is called the invariant sigma
algebra and denoted I. An invariant random variable is one that is measurable with respect
to I.

Note that a random variable X is invariant if and only if X ◦ θk = X for all k ≥ 1. We could
also have taken this as the definition of an invariant random variable and then defined A to be an
invariant event if 1A is an invariant random variable.
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Example 1

Let A be the set of all ω such that limn→∞ ωn = 0 and let B be the set of all ω such that
|ωk| ≤ 1 for all k ≥ 1. Then A is an invariant event as well as a tail event while B is an
invariant event but not a tail event.

Exercise 2

In the setting above, show that T ⊆ I.

Lemma 5: Ergodicity of i.i.d. measures

Let P be a probability measure on (Ω,F). Then the invariant sigma algebra I on ΩN is
trivial under P⊗N.

Proof. Let µ = P⊗N. Suppose A ∈ I. Since A :=
⋃
n σ{Π1, . . . ,Πn} is an algebra that generates

the sigma algebra F⊗N, for any ε > 0, there is some B ∈ A such that µ(A∆B) < ε. Let N
be large enough that B ∈ σ{Π1, . . . ,ΠN}. Then θNB ∈ σ{ΠN+1, . . . ,Π2N}. Under the product
measure, Πks are independent, hence µ(B ∩ θN (B)) = µ(B)µ(θN (B)). But µ = µ(B) = µ(θN (B))

(because the measure is an i.i.d. product measure and hence invariant under the shift θN ). Thus,
µ(B ∩ θNB) = µ(B)2. Now, µ(B∆A) < ε and hence

|µ(B ∩ θN (B))− µ(A ∩ θN (A))| ≤ µ(B∆A) + µ((θNB)∆(θNA)) ≤ 2ε,

|µ(B)2 − µ(A)2| ≤ |µ(B)− µ(A)||µ(B) + µ(A)| ≤ 2ε.

This shows that µ(A ∩ θNA) and µ(A)2 are within 4ε of each other. But A ∈ I, meaning that
θNA = A. Therefore, µ(A) is within 4ε of µ(A)2. As ε is arbitrary, µ(A) = µ(A)2. This forces that
µ(A) = 0 of µ(A) = 1. �

2.5. Bernstein/Hoeffding inequality. Chebyshev’s inequality tells us that the probability for a
random variable to differ from its mean by k multiples of its standard deviation is at most 1/k2.
Its power comes from its generality, but the bound is rather weak. If we know more about the
random variable under consideration, we can improve upon the bound considerably. Here is one
such inequality that is very useful. Sergei Bernstein was the first to exploit the full power of the
Chebyshev inequality (by applying it to powers or exponential of a random variable), but the
precise lemma given here is due to Hoeffding.

Lemma 6: Hoeffding’s inequality

LetX1, . . . , Xn be independent random variables having zero mean. Assume that |Xk| ≤ ak
a.s. for some positive numbers ak. Then, writing S = X1+. . .+Xn andA =

√
a21 + . . .+ a2k,

we have P {S ≥ tA} ≤ e−
1
2
t2 for any t > 0.
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Before going to the proof, let us observe the following simple extensions.

(1) Applying the same to −Xks, we can get the two-sided bound P{|S| ≥ tA} ≤ 2e−t
2/2.

(2) If |Xk| ≤ ak are independent but do not necessarily have mean zero, then we can apply
Hoeffding’s inequality to Yk = Xk − E[Xk]. Since |Xk| ≤ ak, we also have |E[Xk]| ≤ ak

and hence |Yk| ≤ 2ak. This gives a conclusion that is slightly weaker but qualitatively no
different: With S = X1 + . . .+Xn,

P

{
S −E[S] ≥ t

√
a21 + . . .+ a2n

}
≤ e−

1
8
t2 .

Proof. Fix θ > 0 and observe that

P{S ≥ tA} = P{eθS ≥ eθtA} ≤ e−θtAE[eθS ] = e−θtAE

[
n∏
k=1

eθXk

]
.(1)

The inequality in the middle is Markov’s, applied to eθS . Since x 7→ eθx is convex, on the interval
[−ak, ak], it lies below the line x 7→ ak−x

2ak
e−θak + x+ak

2ak
eθak . Since −ak < Xk < ak, we get that

eθXk ≤ αk + βkXk, where αk = 1
2(eθak + e−θak) and βk = 1

2ak
(eθak − e−θak). Plug this into (1) to get

P{S ≥ tA} ≤ e−θtAE

[
n∏
k=1

(αk + βkXk)

]
= e−θtA

n∏
k=1

αk

since all terms in the expansion of the product that involve at least one Xks vanishes upon tak-
ing expectation (as they are independent and have zero mean). We now wish to optimize this
bound over θ, but that is too complicated (note that αks depend on θ). We simplify the bound by
observing that αk ≤ eθ

2a2k/2. This follows from the following observation:

1

2
(ey + e−y) =

∞∑
n=0

y2n

(2n)!
(the odd powers cancel)

≤
∞∑
n=0

y2n

2n n!
(as (2n)! ≥ 2n× (2n− 2)× . . .× 2 = 2n n!)

= ey
2/2.

Consequently, we get that
n∏
k=1

αk ≤ eθ
2A2/2. Thus, P{S ≥ tA} ≤ e−θtA+

1
2
θ2A2

. Now it is easy to see

that the bound is minimized when θ = t/A and that gives the bound e−t
2/2. �

Clearly the Hoeffding bound is much better than the bound 1/t2 got by a direct application of
Chebyshev’s inequality. It is also a pleasing fact that e−t

2/2 is a bound for the tail of the stan-
dard Normal distribution. In many situations, we shall see later that a sum of independent ran-
dom variables behaves like a Gaussian, but that is a statement of convergence in distribution
which does not say anything about the tail behaviour at finite n. Hoeffding’s inequality is a non-
asymptotic statement showing that S behaves in some ways like a Gaussian.
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2.6. Lovász’s local lemma. One of the recurring difficulties in probability is to get lower bounds
of probabilities of events. In many cases, one can find many events whose occurrence would
imnply the occurrence of the event of interest and also get a bound on the individual probabilities,
but how to get a lower bound for the probability of their intersection? Two very simple bounds
are

(1) P(A1 ∩ . . . ∩An) = 1−P((Ac1 ∪ . . . ∪An) ≥ 1−
∑n

k=1(1−P(Ak)), by the union bound.

(2) P(A1 ∩ . . . ∩An) = P(A1) . . .P(An) if Ais are independent.

The first one is often too weak (entirely useless if
∑

kP(Ak) > 1) and the second is often inapplica-
ble because the assumption of independence is too strong. The following lemma is one of several
such statements that relaxes the independence assumption but still gives a positive lower bound.

Lemma 7: Lovász’s local lemma

Let A1, . . . , An be events in a common probability space. Assume that each Ak is indepen-
dent of all except at most d of the other Ais. Further assume that P(Ak) ≥ 1− p for all k. If
4dp < 1, then P(A1∩ . . .∩An) ≥ (1−2p)n. In particular, the intersection has strictly positive
probability.

Proof. We write

P(A1 ∩ . . . ∩An) =
n−1∏
k=1

P(A1 ∩ . . . ∩Ak+1)

P(A1 ∩ . . . Ak ∩Ack+1)
.

Fix k and consider the kth term in the product. Let S ⊆ {1, . . . , k} be the set of indices i for which
Ai is not independent of Ak+1. Then |S| ≤ d and �

2.7. Kolmogorov’s maximal inequality. It remains to prove the inequality invoked earlier about
the maximum of partial sums of Xis. Note that the maximum of n random variables can be
much larger than any individual one. For example, if Yn are independent Exponential(1), then
P(Yk > t) = e−t, whereas P(maxk≤n Yk > t) = 1 − (1 − e−t)n which is much larger. However,
when we consider partial sums S1, S2, . . . , Sn, the variables are not independent and it is not clear
how to get a bound for the maximum. Kolmogorov found an amazing inequality - there seems to
be no reason to expect a priori that such an inequality must hold!

Lemma 8: Kolmogorov’s maximal inequality

LetXn be independent random variables with finite variance and E[Xn] = 0 for all n. Then,
P {maxk≤n |Sk| > t} ≤ t−2

∑n
k=1 Var(Xk).

Observe that the right hand side is the bound that Chebyshev’s inequality gives for the proba-
bility that |Sn| ≥ t. Here the same quantity is giving an upper bound for the (presumably) much
larger probability that one of |S1|, . . . , |Sn| is greater than or equal to t.
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Proof. The second inequality follows from the first by considering Xks and their negatives. Hence
it suffices to prove the first inequality.

Fix n and let τ = inf{k ≤ n : |Sk| > t} where it is understood that τ = n if |Sk| ≤ t for all k ≤ n.
Then, by Chebyshev’s inequality,

P(max
k≤n
|Sk| > t) = P(|Sτ | > t) ≤ t−2E[S2

τ ].(2)

We control the second moment of Sτ by that of Sn as follows.

E[S2
n] = E

[
(Sτ + (Sn − Sτ ))2

]
= E[S2

τ ] + E
[
(Sn − Sτ )2

]
+ 2E[Sτ (Sn − Sτ )]

≥ E[S2
τ ] + 2E[Sτ (Sn − Sτ )].(3)

We evaluate the second term by splitting according to the value of τ . Note that Sn − Sτ = 0 when
τ = n. Hence,

E[Sτ (Sn − Sτ )] =
n−1∑
k=1

E[1τ=kSk(Sn − Sk)]

=

n−1∑
k=1

E [1τ=kSk]E[Sn − Sk] (because of independence)

= 0 (because E[Sn − Sk] = 0).

In the second line we used the fact that Sk1τ=k depends on X1, . . . , Xk only, while Sn − Sk de-
pends only on Xk+1, . . . , Xn. From (3), this implies that E[S2

n] ≥ E[S2
τ ]. Plug this into (2) to get

P(maxk≤n Sk > t) ≤ t−2E[S2
n]. �

Remark 3

In proving this theorem, Kolmogorov implicitly introduced stopping times and martingale
property (undefined terms for now). When martingales were defined later by Doob, the
same proof could be carried over to what is called Doob’s maximal inequality. In simple
language, it just means that Kolmogorov’s maximal inequality remains valid if instead of
independence of Xks, we only assume that E[Xk | X1, . . . , Xk−1] = 0.

2.8. Coupling of random variables. Coupling is the name probabilists give to constructions of
random variables on a common probability space with given marginals and joint distribution
according to the need at hand. We illustrate it with a few examples.

Getting bounds on the distance between two measures: Suppose µ and ν are two probability
measures on R and we wish to get an upper bound on their Lévy-Prohorov distance. One way
is to use the definition and work with the measures. Here is another: Suppose we are able to
construct two random variables X,Y on some probability space such that X ∼ µ, Y ∼ ν and
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|X − Y | ≤ r a.s. Then we can claim that d(µ, ν) ≤ r. Indeed,

Fν(t) = P{Y ≤ t} ≥ P{X ≤ t− r} = Fµ(t− r)

and similarly Fµ(t) ≥ Fν(t− r).
Similar ideas can be used for other distances. For example, on a finite set [n] = {1, 2, . . . , n},

let µ, ν be two probability measures. Their total variation distance is defined as dTV (µ, ν) =

max
A⊆[n]

|µ(A) − ν(A)|. One way to get a bound on the total variation distance is to construct two

random variables X,Y on some probability space such that X ∼ µ, Y ∼ ν and P{X 6= Y } = r.
Then dTV (µ, ν) ≤ r. Indeed, for any A, we have

µ(A) = P{X ∈ A} ≤ P{Y ∈ A}+ P{Y 6∈ A,X ∈ A} ≤ ν(A) + P{X 6= Y }.

Getting the inequality with µ and ν reversed, we see that dTV (µ, ν) ≤ P{X 6= Y }. It is not
hard (in fact a nice exercise) to show that there is a coupling (X,Y ) that achieves equality, i.e.,
P{X 6= Y } = dTV (µ, ν).

Proving inequalities between numbers by coupling: Sometimes to show that a ≤ b, it turns out
to be convenient to construct random variables X,Y such that X ≤ Y a.s. and E[X] = a and
E[Y ] = b. That of course implies a ≤ b but the interesting point is that it can often be done by
this method but not directly. Coupling method has been effectively used to show that a set is
non-empty by showing that is has positive probability under some measure! This is called the
probabilistic method.

Illustration of coupling: Let X ∼ Bin(100, 3/4) and Y ∼ Bin(100, 1/2). Then it must be true that
P{X ≥ 71} ≥ P{Y ≥ 71}, but can you show it by writing out the probabilities? It is possible, but
here is a less painful way. Let U1, . . . , U100 be i.i.d. Unif[0, 1] random variables on some probability
space. Let X ′ =

∑
k 1Uk≤3/4 and Y ′ =

∑
k 1Vk≤1/2. Then X ′ ≥ Y ′, hence the event {Y ′ ≥ 71} is a

subset of {X ′ ≥ 71} showing that P{X ′ ≥ 71} ≥ P{Y ′ ≥ 71}. But x′ has the same distribution as
X and Y ′ has the same distribution as Y , showing the inequality we wanted!

More generally, if X ∼ µ and Y ∼ ν and X ≥ Y a.s., then Fµ(t) ≤ Fν(t) for all t ∈ R. If the
latter relationship holds, we say that ν is stochastically dominated by µ.

Exercise 3

If ν is stochastically dominated by µ, show that there is a coupling of X ∼ µ with Y ∼ ν in
such a way that X ≥ Y a.s.

Other instances of coupling: If you have studied Markov chains, then you would have perhaps
seen a proof of convergence to stationarity by a coupling method due to Doeblin. In this method,
two Markov chains are run, one starting from the stationary distribution and another starting at
an arbitrary state. It is shown that the two Markov chains eventually meet. Once they meet, when
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they separate, it is impossible to tell which is which (by Markov property), hence the second chain
“must have reached stationarity too”.

3. APPLICATIONS OF FIRST AND SECOND MOMENT METHODS

The first and second moment methods are immensely useful. This is somewhat surprising,
given the very elementary nature of these inequalities, but the following applications illustrate
the ease with which they give interesting results.

3.1. Borel-Cantelli lemmas. If X takes values in R ∪ {+∞} and E[X] < ∞ then X < ∞ a.s. (if
you like you may see it as a consequence of Markov’s inequality!). Apply this to X =

∑∞
k=1 1Ak

which has E[X] =
∑∞

k=1P(Ak) which is given to be finite. Therefore X < ∞ a.s. which implies
that for a.e. ω, only finitely many 1Ak(ω) are non-zero. This is the first Borel-Cantelli lemma.

The second one is more interesting. Fix n < m and define X =
∑m

k=n 1Ak . Then E[X] =∑m
k=nP(Ak). Also,

E[X2] = E

[
m∑
k=n

m∑
`=n

1Ak1A`

]
=

m∑
k=n

P(Ak) +
∑
k 6=`

P(Ak)P(A`)

≤

(
m∑
k=n

P(Ak)

)2

+
m∑
k=n

P(Ak).

Apply the second moment method to see that for any fixed n, as m → ∞ (note that X > 0 is the
same as X ≥ 1),

P(X ≥ 1) ≥
(
∑m

k=nP(Ak))
2

(
∑m

k=nP(Ak))
2 +

∑m
k=nP(Ak)

=
1

1 + (
∑m

k=nP(Ak))
−1

which converges to 1 as m → ∞, because of the assumption that
∑

P(Ak) = ∞. This shows that
P(∪k≥nAk) = 1 for any n and hence P(lim supAn) = 1.

Note that this proof used independence only to claim that P(Ak∩A`) = P(Ak)P(A`). Therefore,
not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma holds
for pairwise independent events too!

3.2. Coupon collector problem. A bookshelf has (a large number) n books numbered 1, 2, . . . , n.
Every night, before going to bed, you pick one of the books at random to read. The book is
replaced in the shelf in the morning. How many days pass before you have picked up each of the
books at least once?

Theorem 9: Coupon collector problem

Let Tn denote the number of days till each book is picked at least once. Then Tn is con-
centrated around n log n in a window of size n by which we mean that for any sequence of

11



numbers θn →∞, we have

P(|Tn − n log n| < nθn)→ 1.

The proof will proceed by computing the expected value of Tn and then showing that Tn is
typically near its expected value.

A very useful elementary inequality: In the following proof and many other places, we shall
have occasion to make use of the elementary estimate

1− x ≤ e−x for all x, 1− x ≥ e−x−x2 for |x| < 1

2
.

To see the first inequality, observe that e−x− (1− x) is equal to 0 for x = 0, has positive derivative
for x > 0 and negative derivative for x < 0. To prove the second inequality, recall the power series
expansion log(1− x) = −x− x2/2− x3/3− . . . which is valid for |x| < 1. Hence, if |x| < 1

2 , then

log(1− x) ≥ −x− x2 +
1

2
x2 − 1

2

∞∑
k=3

|x|k

≥ −x− x2

since
∑∞

k=3 |x|3 ≤ x2
∑∞

k=3 2−k ≤ 1
2x

2.

Proof of Theorem 9. Fix an integer t ≥ 1 and let Xt,k be the indicator that the kth book is not picked
up on the first t days. Then, P(Tn > t) = P(St,n ≥ 1) where St,n = Xt,1 + . . .+Xt,n is the number
of books not yet picked in the first t days. As E[Xt,k] = (1− 1/n)t and E[Xt,kXt,`] = (1− 2/n)t for
k 6= `, we also compute that thefirst two moments of St,n and use (??) to get

ne−
t
n
− t
n2 ≤ E[St,n] = n

(
1− 1

n

)t
≤ ne−

t
n .(4)

and

E[S2
t,n] = n

(
1− 1

n

)t
+ n(n− 1)

(
1− 2

n

)t
≤ ne−

t
n + n(n− 1)e−

2t
n .(5)

The left inequality on the first line is valid only for n ≥ 2 which we assume.
Now set t = n log n+ nθn and apply Markov’s inequality to get

(6) P(Tn > n log n+ nθn) = P(St,n ≥ 1) ≤ E[St,n] ≤ ne−
n logn+nθn

n ≤ e−θn = o(1).

On the other hand, taking t = n log n− nθn (where we take θn < log n, of course!), we now apply
the second moment method. For any n ≥ 2, by using (5) we get E[S2

t,n] ≤ eθn + e2θn . The first

inequality in (4) gives E[St,n] ≥ eθn−
logn−θn

n . Thus,

(7) P(Tn > n log n− nθn) = P(St,n ≥ 1) ≥ E[St,n]2

E[S2
t,n]
≥ e2θn−2

logn−θn
n

eθn + e2θn
= 1− o(1)

as n→∞. From (6) and (7), we get the sharp bounds

P (|Tn − n log(n)| > nθn)→ 0 for any θn →∞. �
12



Here is an alternate approach to the same problem. It brings out some other features well. But
we shall use elementary conditioning and appeal to some intuitive sense of probability.

Alternate proof of Theorem 9. Let τ1 = 1 and for k ≥ 2, let τk be the number of draws after k − 1

distinct coupons have been seen till the next new coupon appears. Then, Tn = τ1 + . . .+ τn.
We make two observations about τks. Firstly, they are independent random variables. This is

intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the
distribution of τk is Geo(n−k+1

n ). This is so since, after having seen (k−1) coupons, in every draw,
there is a chance of (n− k + 1)/n to see a new (unseen) coupon.

If ξ ∼ Geo(p) (this means P(ξ = k) = p(1 − p)k−1 for k ≥ 1), then E[ξ] = 1
p and Var(ξ) = 1−p

p2
,

by direct calculations. Therefore,

E[Tn] =
n∑
k=1

n

n− k + 1
= n log n+O(n),

Var(Tn) = n

n∑
k=1

k − 1

(n− k + 1)2
= n

n∑
j=1

n− j
j2

≤ Cn2

with C =
∑∞

j=1
1
j2

. Thus, if θn ↑ ∞, then fix N such that |E[Tn]− n log n| ≤ 1
2nθn for n ≥ N . Then,

P {|Tn − n log n| ≥ nθn} ≤ P

{
|Tn −E[Tn]| ≥ 1

2
nθn

}
≤ Var(Tn)

1
4n

2θ2n

≤ 4C

θ2n

which goes to zero as n→∞, proving the theorem. �

3.3. Branching processes: Consider a Galton-Watson branching process with offsprings that are
i.i.d ξ. We quickly recall the definition informally. The process starts with one individual in the 0th
generation who has ξ1 offsprings and these comprise the first generation. Each of the offsprings
(if any) have new offsprings, the number of offsprings being independent and identical copies of
ξ. The process continues as long as there are any individuals left2.

Let Zn be the number of offsprings in the nth generation. Take Z0 = 1.

2For those who are not satisfied with the informal description, here is a precise definition: Let V =
⋃∞
k=1 N

k
+ be the

collection of all finite tuples of positive integers. For k ≥ 2, say that (v1, . . . , vk) ∈ Nk+ is a child of (v1, . . . , vk−1) ∈ Nk−1
+ .

This defines a graph G with vertex set V and edges given by connecting vertices to their children. Let G1 be the

connected component of G containing the vertex (1). Note that G1 is a tree where each vertex has infinitely many

children. Given any η : V → N (equivalently, η ∈ NV ), define Tη as the subgraph of G1 consisting of all vertices

(v1, . . . , vk) for which vj ≤ η((v1, . . . , vj−1)) for 2 ≤ j ≤ k. Also define Zk−1(η) = #{(v1, . . . , vk) ∈ T} for k ≥ 2 and

let Z0 = 1. Lastly, given a probability measure µ on N, consider the product measure µ⊗V on NV . Under this measure,

the random variables η(u), u ∈ V are i.i.d. and denote the offspring random variables. The random variable Zk denotes

the number of individuals in the kth generation. The random tree Tη is called the Galton-Watson tree.
13



Theorem 10: The fundamental theorem on Branching processes

Let m = E[ξ] be the mean of the offspring distribution.

(1) If m < 1, then w.p.1, the branching process dies out. That is P(Zn =

0 for all large n) = 1.

(2) If m > 1, then the process survives with positive probability, i.e., P(Zn ≥
1 for all n) > 0.

Proof. In the proof, we compute E[Zn] and Var(Zn) using elementary conditional probability con-
cepts. By conditioning on what happens in the (n − 1)st generation, we write Zn as a sum of
Zn−1 independent copies of ξ. From this, one can compute that E[Zn|Zn−1] = mZn−1 and if
we assume that ξ has variance σ2 we also get Var(Zn|Zn−1) = Zn−1σ

2. Therefore, E[Zn] =

E[E[Zn|Zn−1]] = mE[Zn−1] from which we get E[Zn] = mn. Similarly, from the formula Var(Zn) =

E[Var(Zn|Zn−1)] + Var(E[Zn|Zn−1]) we can compute that

Var(Zn) = mn−1σ2 +m2Var(Zn−1)

=
(
mn−1 +mn + . . .+m2n−1)σ2 (by repeating the argument)

= σ2mn−1m
n+1 − 1

m− 1
.

(1) By Markov’s inequality, P(Zn > 0) ≤ E[Zn] = mn → 0. Since the events {Zn > 0} are
decreasing, it follows that P(extinction) = 1.

(2) If m = E[ξ] > 1, then as before E[Zn] = mn which increases exponentially. But that is not
enough to guarantee survival. Assuming that ξ has finite variance σ2, apply the second
moment method to write

P(Zn > 0) ≥ E[Zn]2

Var(Zn) + E[Zn]2
≥ 1

1 + σ2

m−1

which is a positive number (independent of n). Again, since {Zn > 0} are decreasing
events, we get P(non-extinction) > 0.

The assumption of finite variance of ξ can be removed as follows. Since E[ξ] = m > 1,
we can find A large so that setting η = min{ξ, A}, we still have E[η] > 1. Clearly, η has
finite variance. Therefore, the branching process with η offspring distribution survives
with positive probability. Then, the original branching process must also survive with
positive probability! (A coupling argument is the best way to deduce the last statement:
Run the original branching process and kill every child after the first A. If inspite of the
violence the population survives, then ...) �
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Remark 4: The “critical” case m = 1

Strictly speaking, the fundamental theorem of branching processes also asserts that extinc-
tion occurs almost surely when m = 1. However, to get it by these methods, one will have
to refine the first moment method as follows. If X is a random variable taking values in N,
then P{X ≥ 1} ≤ E[X]/E[X|X ≥ 1], where the denominator on the right is a conditional
expectation. Clearly the bound is at least as good as Markov’s inequality, but it can be much
better in some situations. For example, in the branching process with m = 1, one can show
that E[Zn|Zn ≥ 1] → ∞ as n → ∞ (intuitively, if the branching process has to survive as
long as n generations, it has to do it by spawning many offsprings). Since E[Zn] = 1, this
shows that P{Zn ≥ 1} → 0, proving almost sure extinction.

3.4. How many prime divisors does a number typically have? For a natural number k, let ν(k)

be the number of (distinct) prime divisors of n. What is the typical size of ν(n) as compared
to n? We have to add the word typical, because if p is a prime number then ν(p) = 1 whereas
ν(2 × 3 × . . . × p) = p. Thus there are arbitrarily large numbers with ν = 1 and also numbers for
which ν is as large as we wish. To give meaning to “typical”, we draw a number at random and
look at its ν-value. As there is no natural way to pick one number at random, the usual way of
making precise what we mean by a “typical number” is as follows.

Formulation: Fix n ≥ 1 and let [n] := {1, 2, . . . , n}. Let µn be the uniform probability measure on
[n], i.e., µn{k} = 1/n for all k ∈ [n]. Then, the function ν : [n] → R can be considered a random
variable, and we can ask about the behaviour of these random variables. Below, we write En to
denote expectation w.r.t µn.

Theorem 11: Hardy-Ramanujan

With the above setting, for any δ > 0, as n→∞we have

(8) µn

{
k ∈ [n] :

∣∣∣ ν(k)

log logn
− 1

∣∣∣ > δ

}
→ 0.

Proof. (Turan). Fix n and for any prime p define Xp : [n] → R by Xp(k) = 1p|k. Then, ν(k) =∑
p≤k

Xp(k). We define ψ(k) :=
∑

p≤ 4√
k

Xp(k). Then, ψ(k) ≤ ν(k) ≤ ψ(k) + 4 since there can be at most

four primes larger than 4
√
k that divide k. From this, it is clearly enough to show (8) for ψ in place

of ν (why?).

We shall need the first two moments of ψ under µn. For this we first note that En[Xp] =

⌊
n
p

⌋
n

and En[XpXq] =

⌊
n
pq

⌋
n . Observe that 1

p −
1
n ≤

⌊
n
p

⌋
n ≤

1
p and 1

pq −
1
n ≤

⌊
n
pq

⌋
n ≤ 1

pq .
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By linearity En[ψ] =
∑

p≤ 4√n
E[Xp] =

∑
p≤ 4√n

1
p +O(n−

3
4 ). Similarly

Varn[ψ] =
∑
p≤ 4√n

Var[Xp] +
∑

p 6=q≤ 4√n

Cov(Xp, Xq)

=
∑
p≤ 4√n

(
1

p
− 1

p2
+O(n−1)

)
+

∑
p 6=q≤ 4√n

O(n−1)

=
∑
p≤ 4√n

1

p
−
∑
p≤ 4√n

1

p2
+O(n−

1
2 ).

We make use of the following two facts. Here, an ∼ bn means that an/bn → 1.∑
p≤ 4√n

1

p
∼ log log n

∞∑
p=1

1

p2
<∞.

The second one is obvious, while the first one is not hard, (see exercise 4 below)). Thus, we get
En[ψ] = log log n+O(n−

3
4 ) and Varn[ψ] = log log n+O(1). Thus, by Chebyshev’s inequality,

µn

{
k ∈ [n] :

∣∣∣ ψ(k)−En[ψ]

log log n

∣∣∣ > δ

}
≤ Varn(ψ)

δ2(log log n)2
= O

(
1

log logn

)
.

From the asymptotics En[ψ] = log log n+O(n−
3
4 ) we also get (for n large enough)

µn

{
k ∈ [n] :

∣∣∣ ψ(k)

log logn
− 1

∣∣∣ > δ

}
≤ Varn(ψ)

δ2(log log n)2
= O

(
1

log logn

)
.�

Exercise 4∑
p≤ 4√n

1
p ∼ log logn. [Note: This is not trivial although not too hard. Consult some Number

theory book. ].

3.5. A random graph question. The complete graphKn has vertex set [n] = {1, 2, . . . , n} and edge
set E = {{i, j} : 1 ≤ i < j ≤ n}. We now define a random graph model as a random sub-graph of
Kn. This model has been studied extensively by probabilists in the last fifty years.

Definition 3: Erdös-Rényi random graph

Fix 0 < p < 1. Let Xi,j , 1 ≤ i < j ≤ n, be i.i.d. Ber(p) random variables. Let G be the graph
with vertex set [n] and edge-set {{i, j} : Xi,j = 1}. Then G is called the Erdös-Rényi random
graph with parameter p and denoted G(n, p).

There are many interesting questions about G(n, p). Here we ask only one: If G(n, p) connected?
If p = 1, the answer is clearly yes, and if p = 0, the answer is clearly no. Where does the change
from disconnected to connected take place? The answer is given in the following theorem.
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Theorem 12: Connectivity threshold for Erdös-Renyi random graph

Fix δ > 0 and let p±n = (1± δ) lognn . Then, as n→∞,

P{G(n, p+n ) is connected } → 1 and P{G(n, p−n ) is connected } → 0.

Unlike in the other problems, here the second moment method is easier, because we show dis-
connection by showing that there is at least one isolated vertex ( i.e., a vertex that is not connected
to any other vertex). To show connectedness, we must go over all proper subsets of vertices.

Proof that G(n, p−n ) is unlikely to be connected. Let Y be the number of isolated vertices, i.e., Y =∑n
i=1 Yi, where Yi is the indicator of the event that vertex i is not connected to any other vertex.

Then,

E[Y ] =

n∑
i=1

E[Yi] = n(1− p)n−1 ≥ ne−np−np2

if p < 1
2 (so that 1− p ≥ e−p−p2). Further, YiYj = 1 if and only if all the 2n− 3 edges coming out of

i or j (including the one connecting i and j) are absent (i.e., Xi,k, Xj,k are all 0). Therefore,

E[Y 2] =
n∑
i=1

E[Yi] + 2
∑
i<j

E[Yi]E[Yj ]

= n(1− p)n−1 + n(n− 1)(1− p)2n−3

≤ ne−p(n−1) + n2e−(2n−3)p.

When p = p−n , by the second moment method that

P{Y ≥ 1} ≥ E[Y ]2

E[Y 2]
≥ n2e2np−2np

2

ne−p(n−1) + n2e−(2n−3)p
=

e−2np
2

1
ne

p(n+1) + e3p

which goes to 1 as n → ∞ (as pn → 0 and 1
ne

npn → 0). When Y ≥ 1, G(n, p) is disconnected,
completing the proof. �

Proof that G(n, p+n ) is unlikely to be disconnected. We get a crude estimate as follows. Suppose A ⊆
[n]. Then A is disconnected from Ac if and only if Xi,j = 0 for all i ∈ A and all j ∈ Ac. This has
probability (1− p)|A|(n−|A|). If the graph is disconnected, then there must be some such set A with
|A| ≤ n/2. Thus, by the union bound,

P{G(n, p) is not connected} ≤
bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k).

Now, we set p = p+n and divide the sum into k ≤ εn and k > εn.
In the second sum, we use the simple bounds

(
n
k

)
≤ 2n and k(n − k) ≥ ε(1 − ε)n2. Since

1− p ≤ e−p, and there are at most n terms, we get (recall the definition of p+n )∑
k>εn

(
n

k

)
(1− p)k(n−k) ≤ n2ne−ε(1−ε)(1+δ)n logn.
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Obviously this goes to zero as n→∞ (for any choice of ε > 0, which will be made later).
The sum over k ≤ ε is handled by setting

(
n
k

)
≤ nk and 1− p ≤ e−p. We get∑

1≤k≤εn

(
n

k

)
(1− p)k(n−k) ≤

∑
k≤εn

e−k[(n−k)p−logn]

≤
∑

1≤k≤εn
e−k logn[(1+δ)(1−

k
n
)−1]

≤
∞∑
k=1

e−k logn[(1+δ)(1−ε)−1].

If ε > 0 is chosen small enough that (1+δ)(1−ε)−1 ≥ 1
2δ, then the above sum becomes a geometric

series whose sum is

e−
1
2
δ logn

1− e−
1
2
δ logn

≤ 1

2
n−δ/2,

the inequality holding for large n. Thus, P{G(n, p+n ) is connected } → 1. �

4. APPLICATIONS OF BOREL-CANTELLI LEMMAS AND KOLMOGOROV’S ZERO-ONE LAW

We already mentioned a few direct consequences of Kolmogorov’s zero-one law, such as the
constancy of lim supn→∞

Sn
n . Let us give a couple more.

4.1. Random series. Let Xn be independent random variables. The event that the series
∑

nXn

converges is clearly a tail event, hence has probability zero or one. Is it zero or one? Depends on
the variables.

Let Xn ∼ Ber(pn). Then the series converges if and only if Xn = 0 for all but finitely many n.
By the Borel-Cantelli lemma,

P{Xn = 1 i.o.} =

0 if
∑

n pn <∞,

1 if
∑

n pn =∞.

Thus, the series
∑

nXn converges almost surely if
∑

n pn < ∞ and diverges almost surely if∑
n pn =∞.
Since pn = E[Xn], this may give the impression that what matters is the sum of expectations.

Not entirely correct. For example, let Xn be independent with P{Xn = 1} = P{Xn = −1} = pn/2

and P{Xn = 0} = 1 − pn. Then again, the random series converges if and only if Xn 6= 0 only
finitely often. Again by Borel-Cantelli lemma, this is equivalent to the convergence of

∑
n pn. Here

E[Xn] = 0 for all n, what pn measures is the variance.
In general, Kolmogorov (after Khinchine and others) found a complete and satisfactory answer

to the general question. His answer is that the random series converges almost surely if and only
if three (non-random) series constructed from the distributions of Xns converge. We shall prove
Kolmogorov’s three series theorem later.
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4.2. Random series of functions. One can similarly ask about convergence of
∑

nXnun, where
Xn are independent random variables and un are elements of a Banach space. In particular, let
fn : [0, 1] 7→ R be given continuous functions and consider the series

∑
nXnfn(t). The following

events are clearly tail events.

• The event C that the series converges uniformly on [0, 1].

• The event ND that the sum is a nowhere differentiable function (it makes sense to ask this
only if P(C) = 1).

Again, whether these events have probability 0 or 1 depends on the variables Xns and the func-
tions fns. For example, if fn(t) = sin(πnt)/n and Xn are i.i.d. N(0, 1), then Wiener showed that
P(C) = 1 and P(ND) = 1.

We shall see this in the next part of the course on Brownian motion. For now, you may simply
compare it with Weierstrass’ nowhere differentiable function

∑
n sin(3nπt)/3n. In contrast, the

random series does not require such rapid increase of frequencies. However, although P(C ∩
ND) = 1, it is not easy to produce a particular sequence xn ∈ R such that the function

∑
n xn

sin(πnt)
n

converges uniformly but gives a nowhere differentiable function!

4.3. Random power series. Let Xn be i.i.d. Exp(1). As a special case of the previous examples,
consider the random power series

∑∞
n=0Xn(ω)zn. For fixed ω, we know that the radius of con-

vergence is R(ω) = (lim sup |Xn(ω)|1/n)−1. Since this is a tail random variable, by Kolmogorov’s
zero-one law, it must be constant. In other words, there is a number r0 such that R(ω) = r0 a.s.

But what is the radius of convergence? It cannot be determined by the zero-one law. We may
use Borel-Cantelli lemma to determine it. Observe that P(|Xn|

1
n > t) = e−t

n
for any t > 0. If

t = 1 + ε with ε > 0, this decays very fast and is summable. Hence, |Xn|
1
n ≤ 1 + ε a.s.. and hence

R ≤ 1 + ε a.s. Take intersection over rational ε to get R ≤ 1 a.s.. For the other direction, if t < 1,
then e−t

n → 1 and hence
∑

n e
−tn =∞. Since Xn are independent, so are the events {|Xn|

1
n > t}.

By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n
such that |Xn|

1
n ≥ 1 − ε. Again, take intersection over rational ε to conclude that R ≥ 1 a.s. This

proves that the radius of convergence is equal to 1 almost surely.
In a homework problem, you are asked to show the same for a large class of distributions and

also to find the radius of convergence for more general random series of the form
∑∞

n=0 cnXnz
n.

4.4. Percolation on a lattice. This application is really an excuse to introduce a beautiful object of
probability. Consider the lattice Z2, points of which we call vertices. By an edge of this lattice we
mean a pair of adjacent vertices {(x, y), (p, q)} where x = p, |y − q| = 1 or y = q, |x − p| = 1. Let
E denote the set of all edges. Xe, e ∈ E be i.i.d Ber(p) random variables indexed by E. Consider
the subset of all edges e for which Xe = 1. This gives a random subgraph of Z2 called the bond
percolation graph at level p. We denote the subgraph by Gω for ω in the probability space.

Question: What is the probability that in the percolation subgraph, there is an infinite connected
component?
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LetA = {ω : Gω has an infinite connected component}. If there is an infinite component, chang-
ing Xe for finitely many e cannot destroy it. Conversely, if there was no infinite cluster to start
with, changing Xe for finitely many e cannot create one. In other words, A is a tail event for the
collection Xe, e ∈ E! Hence, by Kolmogorov’s 0-1 law3, Pp(A) is equal to 0 or 1. Is it 0 or is it 1?

In a pathbreaking work of Harry Kesten, it was proved in 1980s that Pp(A) = 0 if p ≤ 1
2 and

Pp(A) = 1 if p > 1
2 . The same problem can be considered on G = Z3, keeping each edge with

probability p and deleting it with probability 1 − p, independently of all other edges. It is again
known (and not too difficult to show) that there is some number pc ∈ (0, 1) such that Pp(A) = 0

if p < pc and Pp(A) = 1 if p > pc. The value of pc is not known, and more importantly, it is not
known whether Ppc(A) is 0 or 1! This is a typical situation - Kolmogorov’s law may tell us that the
probability of an event is 0 or 1, but deciding between these two possibilities can be very difficult!

4.5. Random walk. Let Xi be i.i.d. Ber±(1/2) and let Sn = X1 + . . . + Xn for n ≥ 1 and S0 = 0

(S = (Sn) is called simple, symmetric random walk on integers). Let A be the event that the random
walk returns to the origin infinitely often, i.e., A = {ω : Sn(ω) = 0 infinitely often}.

Then A is not a tail event. Indeed, suppose Xk(ω) = (−1)k for k ≥ 2. Then, if X1(ω) = −1, the
event A occurs (i.e., A 3 ω) while if X1(ω) = +1, then A does not occur (i.e., A 63 ω). This proves
that A 6∈ σ(X2, X3, . . .) and hence, it is not a tail event.

Alternately, you may write A = lim supAn where An = {ω : Sn(ω) = 0} and try to use Borel-
Cantelli lemmas. It can be shown with some effort that P(A2n) � 1√

n
and hence

∑
nP(An) = ∞.

However, the events An are not independent (even pairwise), and hence we cannot apply the
second Borel-Cantelli to conclude that P(A) = 1.

Nevertheless, the last statement that P(A) = 1 is true. It is a theorem of Pólya that the random
walk returns to the origin in one and two dimensions but not necessarily in three and higher
dimensions! If you like a challenge, use the first or second moment methods to show it in the
one-dimensional case under consideration (Hint: Let Rn be the number of returns in the first n
steps and try to compute/estimate its first two moments).

5. WEAK LAW OF LARGE NUMBERS

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close to
50. What do we mean by that, for after all the number of heads could be any number between 0
and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The
weak law of large numbers expresses precisely this.

Here and in the rest of the course Sn will denote the partial sum X1 + . . . + Xn. If we have
several sequences (Xn), (Yn) etc., we shall distinguish them by writing SXn , SYn and so on.

3You may be slightly worried that the zero-one law was stated for a sequence but we have an array here. Simply

take a bijection f : N→ Z2 and define Yn = Xf(n) and observe that the event that we want is in the tail of the sequence

(Yn)n∈N. This shows that we could have stated Kolmogorov’s zero one law for a countable collection Fi, i ∈ I , of

independent sigma algebras. The tail sigma algebra should then be defined as
⋂

F⊆I,|F |<∞
σ(

⋃
i∈I\F

Fi)
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Theorem 13: Kolmogorov’s weak law of large numbers

Let X1, X2 . . . be i.i.d random variables. If E[|X1|] < ∞, then for any δ > 0, as n → ∞, we
have

P

(∣∣∣ 1

n
Sn −E[X1]

∣∣∣ > δ

)
→ 0.

Let us introduce some terminology. If Yn, Y are random variables on a probability space and
P{|Yn − Y | ≥ δ} → 0 as n → ∞ for every δ > 0, then we say that Yn converges to Y in probability
and write Yn

P→ Y . In this language, the conclusion of the weak law of large numbers is that
1
nSn

P→ E[X1] (the limit random variable happens to be constant).

Proof. Step 1: First assume thatXi have finite variance σ2. Without loss of generality, let E[X1] = 0

(or else replace Xi by Xi − E[X1]). By Chebyshev’s inequality, P(|n−1Sn| > δ) ≤ n−2δ−2Var(Sn).
By the independence of Xis, we see that Var(Sn) = nσ2. Thus, P(|Snn | > δ) ≤ σ2

nδ2
which goes to

zero as n→∞, for any fixed δ > 0.
Step 2: Now let Xi have finite expectation (which we assume is 0), but not necessarily any higher
moments. Fix n and write Xk = Yk +Zk, where Yk := Xk1|Xk|≤An and Zk := Xk1|Xk|>An for some
An to be chosen later. Then, Yi are i.i.d, with some mean µn := E[Y1] = −E[Z1] that depends on
An and goes to zero as An →∞. Fix δ > 0 and choose n0 large enough so that |µn| < δ for n ≥ n0.

As |Y1| ≤ An, we get Var(Y1) ≤ E[Y 2
1 ] ≤ AnE[|X1|]. By the Chebyshev bound that we used in

the first step,

(9) P

{∣∣∣ SYn
n
− µn

∣∣∣ > δ

}
≤ Var(Y1)

nδ2
≤ AnE[|X1|]

nδ2
.

If n ≥ n0 then |µn| < δ and hence if | 1nS
Z
n + µn| ≥ δ, then at least one of Z1, . . . , Zn must be

non-zero.

P

{∣∣∣ SZn
n

+ µn

∣∣∣ > δ

}
≤ nP(Z1 6= 0)

= nP(|X1| > An).

Thus, writing Xk = (Yk − µn) + (Zk + µn), we see that

P

{∣∣∣ Sn
n

∣∣∣ > 2δ

}
≤ P

{∣∣∣ SYn
n
− µn

∣∣∣ > δ

}
+ P

{∣∣∣ SZn
n

+ µn

∣∣∣ > δ

}
≤ AnE[|X1|]

nδ2
+ nP(|X1| > An)

≤ AnE[|X1|]
nδ2

+
n

An
E[|X1| 1|X1|>An ].

Now, we take An = αn with α := δ3E[|X1|]−1. The first term clearly becomes less than δ. The
second term is bounded by α−1E[|X1| 1|X1|>αn], which goes to zero as n → ∞ (for any fixed
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choise of α > 0). Thus, we see that

lim sup
n→∞

P

{∣∣∣ Sn
n

∣∣∣ > 2δ

}
≤ δ

which gives the desired conclusion. �

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to
say that Var(SYn ) = nVar(Y1) for which it suffices if Yi were uncorrelated. In particular, if
we assume that Xi pairwise independent, identically distributed and have finite mean, then
the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with den-
sity 1

π(1+t2)
. Observe that E[|X|p] < ∞ for all p < 1 but not p = 1. It is a fact (we shall

probably see this later, you may try proving it yourself!) that 1
nSn has exactly the same

distribution as X1. There is no chance of convergence in probability then!

(3) If Xk are i.i.d. random variables (possibly with E[|X1|] = ∞), let us say that weak law of

large numbers is valid if there exist (non-random) numbers an such that 1
nSn − an

P→ 0.
When Xi have finite mean, this holds with an = E[X].

It turns out that a necessary and sufficient condition for the existence of such an is that
tP{|X1| ≥ t} → 0 as t→∞ (in which case, the weak law holds with an = E[X1|X|≤n]).

Note that the Cauchy distribution violates this condition. Find a distribution which
satisfies the condition but does not have finite expectation.

6. APPLICATIONS OF WEAK LAW OF LARGE NUMBERS

We give three applications, two “practical” and one theoretical.

6.1. Bernstein’s proof of Weierstrass’ approximation theorem.
Theorem 14: Weierstrass’ approximation theorem

The set of polynomials is dense in the space of continuous functions (with the sup-norm
metric) on an interval of the line.

Proof (Bernstein). Let f ∈ C[0, 1]. For any n ≥ 1, we define the Bernstein polynomials Qf,n(p) :=∑n
k=0 f

(
k
n

) (
n
k

)
pk(1− p)n−k. We show that ‖Qf,n − f‖ → 0 as n→∞, which is clearly enough. To

achieve this, we observe that Qf,n(p) = E[f(n−1Sn)], where Sn has Bin(n, p) distribution. Law of
large numbers enters, because Binomial may be thought of as a sum of i.i.d Bernoullis.
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For p ∈ [0, 1], consider X1, X2, . . . i.i.d Ber(p) random variables. For any p ∈ [0, 1], we have∣∣∣Ep [f (Sn
n

)]
− f(p)

∣∣∣ ≤ Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣]
= Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣1|Sn
n
−p|≤δ

]
+ Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣1|Sn
n
−p|>δ

]
≤ ωf (δ) + 2‖f‖Pp

{∣∣∣ Sn
n
− p

∣∣∣ > δ

}
(10)

where ‖f‖ is the sup-norm of f and ωf (δ) := sup{|f(x) − f(y)| : |x − y| < δ} is the modulus of
continuity of f . Observe that Varp(X1) = p(1− p) to write

Pp

{∣∣∣ Sn
n
− p

∣∣∣ > δ

}
≤ p(1− p)

nδ2
≤ 1

4δ2n
.

Plugging this into (10) and recalling that Qf,n(p) = Ep
[
f
(
Sn
n

)]
, we get

sup
p∈[0,1]

∣∣∣Qf,n(p)− f(p)
∣∣∣ ≤ ωf (δ) +

‖f‖
2δ2n

Since f is uniformly continuous (which is the same as saying that ωf (δ) ↓ 0 as δ ↓ 0), given any
ε > 0, we can take δ > 0 small enough that ωf (δ) < ε. With that choice of δ, we can choose n
large enough so that the second term becomes smaller than ε. With this choice of δ and n, we get
‖Qf,n − f‖ < 2ε. �

Remark 5

It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but
the Chebyshev bound. The main point is that the Bin(n, p) probability measure puts almost
all its mass between np(1− δ) and np(1 + δ) (in fact, in a window of width

√
n around np).

Nevertheless, WLLN makes it transparent why this is so.

6.2. Monte Carlo method for evaluating integrals. Consider a continuous function f : [a, b]→ R
whose integral we would like to compute. Quite often, the form of the function may be sufficiently
complicated that we cannot analytically compute it, but is explicit enough that we can numerically
evaluate (on a computer) f(x) for any specified x. Here is how one can evaluate the integral by
use of random numbers.

Suppose X1, X2, . . . are i.i.d uniform([a, b]). Then, Yk := f(Xk) are also i.i.d with E[Y1] =∫ b
a f(x)dx. Therefore, by WLLN,

P

(∣∣∣ 1

n

n∑
k=1

f(Xk) −
∫ b

a
f(x)dx

∣∣∣ > δ

)
→ 0.

Hence if we can sample uniform random numbers from [a, b], then we can evaluate 1
n

∑n
k=1 f(Xk),

and present it as an approximate value of the desired integral!
In numerical analysis one uses the same idea, but with deterministic points. The advantage of

random samples is that it works irrespective of the niceness of the function. The accuracy is not
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great, as the standard deviation of 1
n

∑n
k=1 f(Xk) is Cn−1/2, so to decrease the error by half, one

needs to sample four times as many points.

Exercise 5

Since π =
∫ 1
0

4
1+x2

dx, by sampling uniform random numbers Xk and evaluating
1
n

∑n
k=1

4
1+X2

k
we can estimate the value of π! Carry this out on the computer to see how

many samples you need to get the right value to three decimal places.

6.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such as “do
you support the war in Iraq?”. The poll may be conducted across continents, and one is sometimes
dismayed to see that the pollsters asked a 1000 people in France and about 1800 people in India (a
much much larger population). Should the sample sizes have been proportional to the size of the
population?

Behind the survey is the simple hypothesis that each person is a Bernoulli random variable
(1=‘yes’, 0=‘no’), and that there is a probability pi (or pf ) for an Indian (or a French person) to have
the opinion yes. Are different peoples’ opinions independent? Definitely not, but let us make
that hypothesis. Then, if we sample n people, we estimate p by X̄n where Xi are i.i.d Ber(p). The
accuracy of the estimate is measured by its mean-squared deviation

√
Var(X̄n) =

√
p(1− p)n−

1
2 .

Note that this does not depend on the population size, which means that the estimate is about as
accurate in India as in France, with the same sample size! This is all correct, provided that the
sample size is much smaller than the total population. Even if not satisfied with the assumption
of independence, you must concede that the vague feeling of unease about relative sample sizes
has no basis in fact...

7. MODES OF CONVERGENCE

Before going to the strong law of large numbers which gives a different sense in which Sn/n

is close to the mean of X1, we try to understand the different senses in which random variables
can converge to other random variables. Let us recall all the modes of convergence we have
introduced so far.

Definition 4

Let Xn, X be real-valued random variables on a common probability space.

I Xn
a.s.→ X (Xn converges to X almost surely) if P {ω : limXn(ω) = X(ω)} = 1.

I Xn
P→ X (Xn converges to X in probability) if P{|Xn −X| > δ} → 0 as n → ∞ for

any δ > 0.

I Xn
Lp→ X (Xn converges to X in Lp) if ‖Xn −X‖p → 0 (i.e., E[|Xn −X|p] → 0. This

makes sense for any 0 < p ≤ ∞ although ‖ · · · ‖p is a norm only for p ≥ 1. Usually
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it is understood that E[|Xn|p] and E[|X|p] are finite, although the definition makes
sense without that.

I Xn
d→ X (Xn converges to X in distribution) if the distribution of µXn

d→ µX where
µX is the distribution of X . This definition (but not the others) makes sense even if
the random variables Xn, X are all defined on different probability spaces.

Now, we study the inter-relationships between these modes of convergence.

7.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli ran-
dom variables elucidates the matter.

Example 2

Suppose An are events in a probability space. Then one can see that

(1) 1An
P→ 0⇐⇒ lim

n→∞
P(An) = 0,

(2) 1An
a.s.→ 0⇐⇒ P(lim supAn) = 0.

By Fatou’s lemma, P(lim supAn) ≥ lim supP(An), and hence we see that a.s convergence of
1An to zero implies convergence in probability. The converse is clearly false. For instance,
if An are independent events with P(An) = n−1, then P(An) goes to zero but, by the sec-
ond Borel-Cantelli lemma P(lim supAn) = 1. This example has all the ingredients for the
following two implications.

Lemma 15

Suppose Xn, X are random variables on the same probability space. Then,

(1) If Xn
a.s.→ X , then Xn

P→ X .

(2) If Xn
P→ X “fast enough” so that

∑
nP(|Xn − X| > δ) < ∞ for every δ > 0, then

Xn
a.s.→ X .

Proof. Note that analogous to the example, in general

(1) Xn
P→ X ⇐⇒ ∀δ > 0, lim

n→∞
P(|Xn −X| > δ) = 0,

(2) Xn
a.s.→ X ⇐⇒ ∀δ > 0, P(lim sup{|Xn −X| > δ}) = 0.

Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For
the second part, observe that by the first Borel Cantelli lemma, if

∑
nP(|Xn −X| > δ) < ∞, then

P(|Xn −X| > δ i.o) = 0 and hence lim sup |Xn −X| ≤ δ a.s. Apply this to all rational δ and take
countable intersection to get lim sup |Xn −X| = 0. Thus we get a.s. convergence. �

The second statement is useful for the following reason. Almost sure convergence Xn
a.s.→ 0 is

a statement about the joint distribution of the entire sequence (X1, X2, . . .) while convergence in
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probability Xn
P→ 0 is a statement about the marginal distributions of Xns. As such, convergence

in probability is often easier to check. If it is fast enough, we also get almost sure convergence for
free, without having to worry about the joint distribution of Xns.

Note that the converse is not true in the second statement. On the probability space ([0, 1],B, λ),
let Xn = 1[0,1/n]. Then Xn

a.s.→ 0 but P(|Xn| ≥ δ) is not summable for any δ > 0. Almost sure
convergence implies convergence in probability, but no rate of convergence is assured.

Exercise 6

(1) If Xn
P→ X , show that Xnk

a.s.→ X for some subsequence.

(2) Show that Xn
P→ X if and only if every subsequence of {Xn} has a further subse-

quence that converges a.s.

(3) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn +

bYn
P→ aX + bY and XnYn

P→ XY .

7.2. In distribution and in probability. We say that Xn
d→ X if the distributions of Xn converges

to the distribution of X . This is a matter of language, but note that Xn and X need not be on
the same probability space for this to make sense. In comparing it to convergence in probability,
however, we must take them to be defined on a common probability space.

Lemma 16

Suppose Xn, X are random variables on the same probability space. Then,

(1) If Xn
P→ X , then Xn

d→ X .

(2) If Xn
d→ X and X is a constant a.s., then Xn

P→ X .

Proof.

(1) Suppose Xn
P→ X . Since for any δ > 0

P(Xn ≤ t) ≤ P(X ≤ t+ δ) + P(X −Xn > δ)

and P(X ≤ t− δ) ≤ P(Xn ≤ t) + P(Xn −X > δ),

we see that lim supP(Xn ≤ t) ≤ P(X ≤ t + δ) and lim inf P(Xn ≤ t) ≥ P(X ≤ t − δ) for
any δ > 0. Let t be a continuity point of the distribution function ofX and let δ ↓ 0. We

immediately get limn→∞P(Xn ≤ t) = P(X ≤ t). Thus, Xn
d→ X .

(2) If X = b a.s. (b is a constant), then the cdf of X is FX(t) = 1t≥b. Hence, P(Xn ≤ b− δ)→ 0

and P(Xn ≤ b + δ) → 1 for any δ > 0 as b ± δ are continuity points of FX . Therefore

P(|Xn− b| > δ) ≤ (1−FXn(b+ δ)) +FXn(b− δ) converges to 0 as n→∞. Thus, Xn
P→ b. �

IfXn = 1−U andX = U , thenXn
d→ X but of courseXn does not converge toX in probability!

Thus the condition of X being constant is essential in the second statement. In fact, if X is any
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non-degnerate random variable, we can find Xn that converge to X in distribution but not in

probability. For this, fix T : [0, 1] → R such that T (U)
d
= X . Then define Xn = T (1 − U). For all

n the random variable Xn has the same distribution as X and hence Xn
d→ X . But Xn does not

converge in probability to X (unless X is degenerate).
Exercise 7

(1) Suppose that Xn is independent of Yn for each n (no assumptions about indepen-

dence across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U d

= X ,
V

d
= Y and U, V are independent. Further, aXn + bYn

d→ aU + bV .

(2) If Xn
P→ X and Yn

d→ Y (all on the same probability space), then show that XnYn
d→

XY .

7.3. In probability and in Lp. How do convergence in Lp and convergence in probability com-

pare? Suppose Xn
Lp→ X (actually we don’t need p ≥ 1 here, but only p > 0 and E[|Xn−X|p]→ 0).

Then, for any δ > 0, by Markov’s inequality

P(|Xn −X| > δ) ≤ δ−pE[|Xn −X|p]→ 0

and thus Xn
P→ X . The converse is not true. In fact, even almost sure convergence does not imply

convergence in Lp, as the following example shows.

Example 3

On ([0, 1],B, λ), define Xn = 2n1[0,1/n]. Then, Xn
a.s.→ 0 but E[Xp

n] = n−12np for all n, and
hence Xn does not go to zero in Lp (for any p > 0).

As always, the fruitful question is to ask for additional conditions to convergence in probability
that would ensure convergence in Lp. Let us stick to p = 1. Is there a reason to expect a (weaker)

converse? Indeed, suppose Xn
P→ X . Then write E[|Xn − X|] =

∫∞
0 P(|Xn − X| > t)dt. For

each t the integrand goes to zero. Will the integral go to zero? Surely, if |Xn| ≤ 10 a.s. for all n,
(then the same holds for |X|) the integral reduces to the interval [0, 20] and then by DCT (since the
integrand is bounded by 1 which is integrable over the interval [0,20]), we get E[|Xn −X|]→ 0.

As example ?? shows, the converse cannot be true in full generality. What goes wrong in that
example is that with a small probabilityXn can take a very very large value and hence the expected
value stays away from zero. This observation makes the next definition more palatable. We put
the new concept in a separate section to give it the due respect that it deserves.
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8. UNIFORM INTEGRABILITY

Definition 5: Uniform integrability

A family {Xi}i∈I of random variables is said to be uniformly integrable if given any ε > 0,
there exists A large enough so that E[|Xi|1|Xi|>A] < ε for all i ∈ I .

Example 4

A finite set of integrable random variables is uniformly integrable. More interestingly, an
Lp-bounded family with p > 1 is u.i. For, if E[|Xi|p] ≤M for all i ∈ I for some M > 0, then

E[|Xi| 1|Xi|>t] ≤ E

[(
|Xi|
t

)p−1
|Xi| 1|Xi|>t

]
≤ 1

tp−1
M

which goes to zero as t → ∞. Thus, given ε > 0, one can choose t so that
supi∈I E[|Xi|1|Xi|>t] < ε.
This fails for p = 1, i.e., an L1-bounded family of random variables need not be uniformly
integrable. To see this, modify Example ?? by defining Xn = n1[0, 1

n
].

However, a uniformly integrable family must be bounded in L1. To see this find A > 0

so that E[|Xi|1|Xi|>A] < 1 for all i. Then, for any i ∈ I , we get E[|Xi|] = E[|Xi|1|Xi|<A] +

E[|Xi|1|Xi|≥A] ≤ A + 1. Convince yourself that for any p > 1, there exist uniformly inte-
grable families that are not bounded in Lp.

Exercise 8

If {Xi}i∈I and {Yj}j∈J are both u.i, then {Xi + Yj}(i,j)∈I×J is u.i. What about the family of
products, {XiYj}(i,j)∈I×J?

Lemma 17

Suppose Xn, X are integrable random variables on the same probability space. Then, the
following are equivalent.

(1) Xn
L1

→ X .

(2) Xn
P→ X and {Xn} is u.i.

Proof. If Yn = Xn − X , then Xn
L1

→ X iff Yn
L1

→ 0, while Xn
P→ X iff Yn

P→ 0 and by the first part
of exercise 8, {Xn} is u.i if and only if {Yn} is. Hence we may work with Yn instead (i.e., we may
assume that the limiting r.v. is 0 a.s).

First suppose Yn
L1

→ 0. We already showed that Yn
P→ 0. If {Yn} were not uniformly inte-

grable, then there exists δ > 0 such that for any positive integer k, there is some nk such that

E[|Ynk |1|Ynk |≥k] > δ. This in turn implies that E[|Ynk |] > δ. But this contradicts Yn
L1

→ 0.
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Next suppose Yn
P→ 0 and that {Yn} is u.i. Then, fix ε > 0 and findA > 0 so that E[|Yk|1|Yk|>A] ≤

ε for all k. Then,

E[|Yk|] ≤ E[|Yk|1|Yk|≤A] + E[|Yk|1|Yk|>A]

≤
∫ A

0
P(|Yk| > t)dt + ε.

Since Yn
P→ 0 we see that P(|Yk| > t) → 0 for all t < A. Further, P(|Yk| > t) ≤ 1 for all k and 1 is

integrable on [0, A]. Hence, by DCT the first term goes to 0 as k →∞. Thus lim supE[|Yk|] ≤ ε for

any ε and it follows that Yk
L1

→ 0. �

Corollary 18

Suppose Xn, X are integrable random variables and Xn
a.s.→ X . Then, Xn

L1

→ X if and only
if {Xn} is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT.
As shown by Lemma 17 and corollary 18, uniform integrability is the sharp condition, so it must
be weaker than the assumption in DCT. Indeed, if {Xn} are dominated by an integrable Y , then
whatever “A” works for Y in the u.i condition will work for the whole family {Xn}. Thus a
dominated family is u.i., while the converse is false.

Remark 6: Relationship to compactness

Like tightness of measures, uniform integrability is also related to a compactness question.
On a Banach space X , there is the norm topology coming from the norm, and the weak
topology induced by the dual space X∗ (it is the smallest topology on X in which every
element of X∗ is continuous). In particular when X = Lp(µ) for a probability measure µ,
what are the compact sets in the weak topology?
For 1 < p <∞, we know that Lp and Lq are duals of each other, where 1

p + 1
q = 1. Therefore,

the weak topology on Lp is the same as the weak* topology on Lp when viewed as the
dual of Lq. By the Banach-Alaoglu theorem, norm-bounded sets are pre-compact in the
weak topology. Norm-boundedness is also necessary (why?), hence this gives a precise
characterization for pre-compact sets in Lp with weak topology. This argument fails for L1,
since it is not the dual of a Banach space. The Dunford-Pettis theorem asserts that pre-compact
subsets of L1(µ) in this weak topology are precisely uniformly integrable subsets of L1(µ).

9. STRONG LAW OF LARGE NUMBERS

If Xn are i.i.d with finite mean, then the weak law asserts that n−1Sn
P→ E[X1]. The strong law

strengthens it to almost sure convergence.
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Theorem 19: Kolmogorov’s strong law of large numbers

Let Xn be i.i.d with E[|X1|] <∞. Then, as n→∞, we have Sn
n

a.s.→ E[X1].

The proof of this theorem is somewhat complicated. First of all, we should ask if WLLN implies
SLLN? From Lemma 15 we see that this can be done if P

(
|n−1Sn −E[X1]| > δ

)
is summable, for

every δ > 0. Even assuming finite variance Var(X1) = σ2, Chebyshev’s inequality only gives a
bound of σ2δ−2n−1 for this probability and this is not summable. Since this is at the borderline of
summability, if we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that α4 := E[X4

1 ] < ∞ (of course 4 is not the smallest number bigger
than 2, but how do we compute E[|Sn|p] in terms of moments of X1 unless p is an even integer?).
Then, we may compute that (assume E[X1] = 0 without loss of generality)

E
[
S4
n

]
= n2(n− 1)2σ4 + nα4 = O(n2).

Thus P
(
|n−1Sn| > δ

)
≤ n−4δ−4E[S4

n] = O(n−2) which is summable, and by Lemma 15 we get
the statement of SLLN under fourth moment assumption. This can be further strengthened to
prove SLLN under the second moment assumption, which we first present since there is one idea
(of working with subsequences) that will also be used in the proof of SLLN under just the first
moment assumption4.

Theorem 20: SLLN under second moment assumption

Let Xn be i.i.d with E[|X1|2] <∞. Then, Snn
a.s.→ E[X1] as n→∞.

Proof. Assume E[X1] = 0 without loss of generality and let σ2 = Var(X1). By Chebyshev’s in-
equality, P{| 1nSn| ≥ t} ≤ σ2

nt2
since Var(Sn) = nσ2. Now consider the sequence nk = k2. The

bounds σ2

tn2
k

are summable, hence by the first Borel-Cantelli lemma, we see that | 1nkSnk | ≤ δ for all
but finitely many k, almost surely. If this even be denoted Eδ, then P(Eδ) = 1, hence ∩δ∈Q+Eδ also
has probability one, which is another way of saying that 1

nk
Snk

a.s.→ 0.
This can be applied to the i.i.d. sequence X+

n and the i.i.d. sequence X−n (that two sequences
are not independent of each other is irrelevant) to see that

1

nk
Unk → E[X+

1 ] and
1

nk
Vnk → E[X−1 ], a.s.(11)

where Un, Vn are partial sums of X+
i and X−i , respectively.

Now for any n, let k be such that nk ≤ n < nk+1. Clearly Unk ≤ Un < Unk+1
and Vnk ≤ Vn <

Vnk+1
, since the summands are non-negative (a similar assertion is false for Sn, which is why we

4The idea of proving SLLN this way was told to me by Sourav Sarkar who came up with the idea when he was a

B.Stat student. I have not seen it any book, although it is likely that the observation has been made before.
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break into positive and negative parts). Thus,
1

nk+1
Unk ≤

1

n
Un ≤

1

nk
Unk+1

and the analogous statement for V . Now, nk+1/nk → 1, hence rewriting the above as
nk
nk+1

1

nk
Unk ≤

1

n
Un ≤

nk+1

nk

1

nk+1
Unk+1

,

we see that on the event in (11), we also have 1
nUn → E[X+

1 ] and 1
nVn → E[X−1 ]. Putting these

together with the almost sure assertion of (11), and recalling that Sn = Un − Vn, we conclude that
1
nSn

a.s.→ E[X+
1 ]−E[X−1 ] = E[X1]. �

Now we return to the more difficult question of proving the strong law under first moment
assumptions5. We shall reuse the idea from the previous proof of (1) proving almost sure conver-
gence along a subsequence {nk} and then (2) getting a conclusion about the whole sequence from
the subsequence . However, since we do not have second moment, we cannot use Chebyshev to
take the sequence nk = k2 in the first step. In fact, we shall have to take an exponentially growing
sequence nk = αk, where α > 1. But this is a problem for the second step, since nk+1/nk → α

whereas the proof above works only if we have nk+1/nk → 1. Fortunately, we shall be able to take
α arbitrarily close to 1 and thus bridge this gap! Another point is that as before, using positive
random variables is necessary to be able to sandwich Sn between Snk and Snk+1

. This will also
feature in the proof below.

Proof of Theorem 19. Step 1: It suffices to prove the theorem for integrable non-negative random
variable, because we may write X = X+ − X− and it is true that Sn = S+

n − S−n where S+
n =

X+
1 + . . .+X+

n and S−n = X−1 + . . .+X−n . Henceforth, we assume that Xn ≥ 0 and µ = E[X1] <∞
(Caution: Don’t also assume zero mean in addition to non-negativity!). One consequence of non-
negativity is that

(12)
SN1

N2
≤ Sn

n
≤ SN2

N1
if N1 ≤ n ≤ N2.

Step 2: The second step is to prove the following claim. To understand the big picture of the proof,
you may jump to the third step where the strong law is deduced using this claim, and then return
to the proof of the claim.

Claim 21

Fix any λ > 1 and define nk := bλkc. Then, Snknk
a.s.→ E[X1] as k →∞.

Proof of the claim Fix j and for 1 ≤ k ≤ nj write Xk = Yk + Zk where Yk = Xk1Xk≤nj and
Zk = Xk1Xk>nj (why we chose the truncation at nj is not clear at this point). Then, let Jδ be large
enough so that for j ≥ Jδ, we have E[Z1] ≤ δ. Let SYnj =

∑nj
k=1 Yk and SZnj =

∑nj
k=1 Zk. Since

5The proof given here is due to Etemadi. The presentation is adapted from a blog article of Terence Tao.
31

https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/


Snj = SYnj + SZnj and E[X1] = E[Y1] + E[Z1], we get

P

{∣∣∣ Snj
nj
−E[X1]

∣∣∣ > 2δ

}
≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣+
∣∣∣ SZnj
nj
−E[Z1]

∣∣∣ > 2δ

}

≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
+ P

{∣∣∣ SZnj
nj
−E[Z1]

∣∣∣ > δ

}

≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
+ P

{
SZnj
nj
6= 0

}
.(13)

We shall show that both terms in (13) are summable over j. The first term can be bounded by
Chebyshev’s inequality

(14) P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
≤ 1

δ2nj
E[Y 2

1 ] =
1

δ2nj
E[X2

11X1≤nj ].

while the second term is bounded by the union bound

(15) P

{
SZnj
nj
6= 0

}
≤ njP(X1 > nj).

The right hand sides of (14) and (15) are both summable. To see this, observe that for any positive
x, there is a unique k such that nk < x ≤ nk+1, and then

(a)

∞∑
j=1

1

nj
x21x≤nj ≤ x2

∞∑
j=k+1

1

λj
≤ Cλx, (b)

∞∑
j=1

nj1x>nj ≤
k∑
j=1

λj ≤ Cλx.

Here, we may take Cλ = λ
λ−1 , but what matters is that it is some constant depending on λ (but not

on x). We have glossed over the difference between bλjc and λj but you may check that it does
not matter (perhaps by replacing Cλ with a larger value). Setting x = X1 in the above inequalities
(a) and (b) and taking expectations, we get

∞∑
j=1

1

nj
E[X2

11X1≤nj ] ≤ CλE[X1].
∞∑
j=1

njP(X1 > nj) ≤ CλE[X1].

As E[X1] < ∞, the probabilities on the left hand side of (14) and (15) are summable in j, and

hence it also follows that P
{∣∣∣ Snjnj −E[X1]

∣∣∣ > 2δ
}

is summable. This happens for every δ > 0

and hence Lemma 15 implies that
Snj
nj

a.s.→ E[X1] a.s. This proves the claim.
Step 3: Fix λ > 1. Then, for any n, find k such that λk < n ≤ λk+1, and then, from (12) we get

1

λ
E[X1] ≤ lim inf

n→∞

Sn
n
≤ lim sup

n→∞

Sn
n
≤ λE[X1], almost surely.

Take intersection of the above event over all λ = 1 + 1
m , m ≥ 1 to get lim

n→∞
Sn
n = E[X1] a.s. �

10. THE LAW OF ITERATED LOGARITHM

If an ↑ ∞ is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup Sn
an

is constant a.s. What is this constant?
32



If Xi have finite mean and an = n, the strong law tells us that the constant is zero. What if we
divide by something smaller, such as nα for some α < 1? To probe this question further, let us
assume that Xi are i.i.d. Ber±(1/2) random variables. Then using higher moments (just as we did
in proving strong law under fourth moment assumption), we can get better results. For example,
from the fact that E[S4

n] = n + 3n(n − 1) (check!), we can see that lim sup Sn
an

= 0 a.s. if an = nα

with α > 3
4 . More generally, we reason as follows. For a positive integer p,

P{Sn ≥ tn} ≤ E[S2p
n ]t−2pn ≤ Cpn

pt−2pn

where we used the fact that E[S2p
n ] ≤ Cpnp for a constant Cp. Assuming this, we see that if tn = nα

with α > 1
2 , then we can choose a p large enough to make the probabilities summable. By Borel-

Cantelli it follows that lim supn−αSn
a.s.→ 0 as n→∞.

To see that E[S2p
n ] ≤ Cpn

p, expand S2p
n as a sum of monomial terms Xk1

1 . . . Xkn
n where ki are

non-negative integers that sum to 2p. When we take expectations, this factors as E[Xk1
1 ] . . .E[Xkn

n ].
If any ki is odd, then the product is zero. If all kis are even, the product is 1. We need to count
the number of monomials of the latter type: Since each ki is even, there are at most p of them that
are non-zero. These can be chosen in

(
n
p

)
≤ np ways. Once the indices are chosen, the number of

monomials are at most the number of ways to distribute 2p balls into p bins. Let this number be
Cp. With all the overcounting, we still get E[S2p

n ] ≤ Cpnp, as claimed.
Instead of using moments, one may use Hoeffding’s inequality to see that lim sup Sn

an
= 0 even if

an = C
√
n log n for a large enough constant C (Exercise!). In the converge direction, one can show

that lim sup Sn√
n

= +∞, a.s. (let us accept this without proof for now). This motivates the question
of what is the right order of (limsup) growth of Sn?

Question: Let Xi be i.i.d Ber±(1/2) random variables. Find an so that lim sup Sn
an

= 1 a.s.
The sharp answer, due to Khinchine is one of the great results of probability theory.

Theorem 22: Khinchine’s law of iterated logarithm

Let Xi be i.i.d. Ber±(1/2) random variables. Then,

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

By symmetry, the liminf of Sn/
√

2n log log n is equal to −1 almost surely. From these two, one
can also deduce that the set of all limit points of the sequence {Sn/

√
2n log logn} is equal to [−1, 1],

almost surely.
The law of iterated logarithms was extended to general distributions with finite variance by

Hartman and Wintner (with intermediate improvements by Kolmogorov and perhaps others).
Here we only prove the theorem for Bernoullis (the general case is more complicated and a clean
way to do it is via Brownian motion in the next course).
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Result 23: Hartman-Wintner law of iterated logarithm

Let Xi be i.i.d. with mean µ and finite, non-zero variance σ2. Then,

lim sup
n→∞

Sn − nµ
σ
√

2n log log n
= 1 a.s.

11. PROOF OF LIL FOR BERNOULLI RANDOM VARIABLES

LetX1, X2, . . . be i.i.d. Ber±(1/2) random variables. Theorem 22 follows from the following two
statements. For any δ > 0, we have

lim sup
n→∞

Sn√
2n log log n

≤ 1 + δ a.s.(16)

lim sup
n→∞

Sn√
2n log log n

≥ 1− δ a.s.(17)

Taking intersection over a countable number of δ = 1
k , k ≥ 1, we get the statement of LIL. To

motivate the principal idea in the proof, consider the following toy situation.

Example 5: Borel-Cantelli after blocking

Let Bn be events in a probability space and let A1 = B1, A2 = A3 = B2, A4 = A5 = A6 = B3

and so on (nmanyAis are equal toBn). To show that only finitely manyAns occur a.s., if we
apply Borel-Cantelli lemma to Ans directly, we get the sufficient condition

∑
nP(Bn) <∞.

This is clearly foolish, as the event {An i.o.} is the same as {Bn i.o.}, and the latter has zero
probability whenever

∑
P(Bn) <∞, a much weaker condition!

What this suggests is that when we have a sequence of Ans and want to show that P{An i.o.} =

0, it may be good to combine together those Ais that are close to each other. For example, we can
take a subsequence 1 = n1 < n2 < . . . and set Ck to be the union of Ans with nk ≤ n < nk+1. If
only finitely many Cks occur, the only finitely many Ans occur, and thus it suffices to show that∑

kP(Ck) < ∞. The naive union bound P(Ck) ≤
∑nk+1

n=nk
P(An) takes us back to the condition∑

nP(An) <∞, but the point is that there may be better bounds for P(Cn) than the union bound.

Proof of the upper bound (16). Write an =
√

2n log logn. We want to show that only finitely many
of the events An = {Sn > an(1 + δ)} occur, a.s. We use blocking as follows. Fix λ > 1 and set
nk = bλkc. Define the events

Ck =

nk+1−1⋃
n=nk

An = {Sn > an(1 + δ) for some nk ≤ n < nk+1},

Bk =

nk+1−1⋃
n=nk

An = {Sn > ank(1 + δ) for some nk ≤ n < nk+1}.
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Then Ck ⊆ Bk as an is increasing in n. Thus if we show that
∑

kP(Bk) < ∞, it follows that only
finitely many Cn occur a.s. and hence only finitely many An occur a.s. We claim that

P(Bk) ≤ Cλk−(1+δ)
2/λ where Cλ <∞ for any λ > 1.(18)

Granting this, it is clear that choosing 1 < λ < (1 + δ)2 ensures summability of P(Bk). We give
two proofs of the above inequality below, which completes the proof. �

Proof of (18) via the reflection principle: We shall need the following lemma which is of interest
in itself.

Lemma 24: Reflection principle/Ballot problem

Let Xk be i.i.d. Ber±(1/2) random variables. Then for any a ≥ 0, we have

P{max{S0, . . . , Sn} ≥ a} = 2P{Sn ≥ a}.

The proof is given in many places, we omit it here. Chapter-3 of Feller’s vol-1 is highly recom-
mended.

Returning to the proof of (18), if Bk occurs, then there is some n ≤ nk+1 (in fact some n ≥ nk)
such that Sn ≥ ank(1 + δ). The reflection principle in Lemma 24 applies to give the bound

P(Bk) ≤ 2P{Snk+1
≥ ank(1 + δ)}

≤ 2e
−

(1+δ)2a2nk
2nk+1 (by Hoeffding’s inequality).

The exponent is (omitting integer part for simplicity of notation)

(1 + δ)22λk log log λk

2λk+1
=

(1 + δ)2

λ
log(k log λ)(19)

from which (18) immediately follows. �

Proof of (18) via a modified first moment method: Let Xk =
∑nk+1−1

n=nk
1Sn>ank (1+δ), so that Bk =

1Xk≥1. We use the following improvement of Markov’s inequality.

P(Bk) = P{Xk ≥ 1} ≤ E[Xk]

E[Xk | Xk ≥ 1]
.

What we need is an upper bound for the numerator and a lower bound for the denominator.
To get an upper bound for E[Xk], use Hoeffding’s inequality to write

E[Xk] =

nk+1−1∑
n=nk

P{Sn > ank(1 + δ)} ≤
nk+1−1∑
n=nk

exp

{
−
a2nk(1 + δ)2

2n

}

≤ (nk+1 − nk) exp

{
−
a2nk(1 + δ)2

2nk+1

}
where we bounded all terms by the largest one (which is the last one).
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Next we claim that c(nk+1 − nk) (for some c > 0) is a lower bound for E[Xk

∣∣ Xk ≥ 1]. The
heuristic idea is that if Xk ≥ 1, there is some N ∈ [nk, nk+1) for which SN ≥ ank(1 + δ). If we fix
that N and regard it as given, then Sn − SN has a symmetric distribution about 0 for any n, hence
P{Sn − SN ≥ 0} ≥ 1

2 , which would imply that E[Xk | Xk ≥ 1] ≥ 1
2(nk+1 − nk). This reasoning is

faulty, as the way we chooseN (which is a random variable) may invalidate the claim that Sn−SN
has a symmetric distribution.

To make the reasoning precise, write Xk = Yk + Zk where Yk is the number of n in the first half
of the interval [nk, nk+1) for which Sn > ank(1 + δ) and Zk is the analogous number for the second
half of [nk, nk+1). Then Xk1Xk≥1 ≥ 1

2(Yk1Zk≥1 + Zk1Yk≥1) and {Xk ≥ 1} ⊆ {Yk ≥ 1} ∪ {Zk ≥ 1}.
Consequently,

E[Xk | Xk ≥ 1] =
E[Xk1Xk≥1]

P{Xk ≥ 1}
≥ 1

2

E[Yk1Zk≥1] + E[Zk1Yk≥1]

P{Zk ≥ 1}+ P{Yk ≥ 1}

≥ 1

2
min

{
E[Yk1Zk≥1]

P{Zk ≥ 1}
,
E[Zk1Yk≥1]

P{Yk ≥ 1}

}
=

1

2
min{E[Yk | Zk ≥ 1],E[Zk | Yk ≥ 1]}.

In the second line we used the elementary inequality a+b
c+d ≥ min{ac ,

b
d} valid for any non-negative

numbers a, b, c, d. Now consider the second term inside the minimum. Since Yk ≥ 1, condition on
the location N in the first half of [nk, nk+1) where Sn > ank(1 + δ) and use the fact that Sn − SN ,
n ≥ N , is still a simple symmetric random walk, and hence for any n in the second half, has
probability 1/2 or more to be non-negative. Therefore, E[Zk | Yk ≥ 1] ≥ 1

4(nk+1 − nk). Similarly
(considering the random walk in backwards direction starting from nk+1), reason that E[Yk | Zk ≥
1] ≥ 1

4(nk+1 − nk). Putting all this together, E[Xk | Xk ≥ 1] ≥ 1
8(nk+1 − nk).

Thus, P(Bk) ≤
(nk+1−nk) exp

{
−
a2nk

(1+δ)2

2nk+1

}
1
8
(nk+1−nk)

≤ 8e
−
a2nk

(1+δ)2

2nk+1 . By the computation shown in (19), this

is of the form given in (18). �

12. HOEFFDING’S INEQUALITY

If Xn are i.i.d with finite mean, then we know that the probability for Sn/n to be more than δ

away from its mean, goes to zero. How fast? Assuming finite variance, we saw that this proba-
bility decays at least as fast as n−1. If we assume higher moments, we can get better bounds, but
always polynomial decay in n. Here we assume that Xn are bounded a.s, and show that the decay
is like a Gaussian.
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Lemma 25: Hoeffding’s inequality

Let X1, . . . , Xn be independent, and assume that |Xk| ≤ dk w.p.1. For simplicity assume
that E[Xk] = 0. Then, for any n ≥ 1 and any t > 0,

P (|Sn| ≥ t) ≤ 2 exp

{
− t2

2
∑n

i=1 d
2
i

}
.

Remark 7

The boundedness assumption on Xks is essential. That E[Xk] = 0 is for convenience. If we
remove that assumption, note that Yk = Xk−E[Xk] satisfy the assumptions of the theorem,
except that we can only say that |Yk| ≤ 2dk (because |Xk| ≤ dk implies that |E[Xk]| ≤ dk

and hence |Xk −E[Xk]| ≤ 2dk). Thus, applying the result to Yks, we get

P (|Sn −E[Sn]| ≥ t) ≤ 2 exp

{
− t2

8
∑n

i=1 d
2
i

}
.

Proof. Without loss of generality, take E[Xk] = 0. Now, if |X| ≤ d w.p.1, and E[X] = 0, for any
λ > 0 use the convexity of exponential on [−λd, λd] (note that λX lies inside this interval and
hence a convex combination of −λd and λd), we get

eλX ≤ 1

2

((
1 +

X

d

)
eλd +

(
1− X

d

)
e−λd

)
.

Therefore, taking expectations we get E[exp{λX}] ≤ cosh(λd). Take X = Xk, d = dk and multiply
the resulting inequalities and use independence to get E[exp{λSn}] ≤

∏n
k=1 cosh(λdk). Apply the

elementary inequality cosh(x) ≤ exp(x2/2) to get

E[exp{λSn}] ≤ exp

{
1

2
λ2

n∑
k=1

d2k

}
.

From Markov’s inequality we thus get P(Sn > t) ≤ e−λtE[eλSn ] ≤ exp
{
−λt+ 1

2λ
2
∑n

k=1 d
2
k

}
.

Optimizing this over λ gives the choice λ = t∑n
k=1 d

2
k

and the inequality

P (Sn ≥ t) ≤ exp

{
− t2

2
∑n

i=1 d
2
i

}
.

Working with −Xk gives a similar inequality for P(−Sn > t) and adding the two we get the
statement in the lemma. �

The power of Hoeffding’s inequality is that it is not an asymptotic statement but valid for every
finite n and finite t. Here are two consequences. Let Xi be i.i.d bounded random variables with
P(|X1| ≤ d) = 1.

(1) (Large deviation regime) Take t = nu to get

P

(∣∣∣ 1
n
Sn −E[X1]

∣∣∣ ≥ u) = P (|Sn −E[Sn]| ≥ nu) ≤ 2 exp

{
− u2

8d2
n

}
.
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This shows that for bounded random variables, the probability for the sample sum Sn to
deviate by an order n amount from its mean decays exponentially in n. This is called the
large deviation regime because the order of the deviation is the same as the typical order of
the quantity we are measuring.

(2) (Moderate deviation regime) Take t = u
√
n to get

P
(
|Sn −E[Sn]| ≥ u

√
n
)
≤ 2 exp

{
− u2

8d2

}
.

This shows that Sn is within a window of size
√
n centered at E[Sn]. In this case the proba-

bility is not decaying with n, but the window we are looking at is of a smaller order namely,
√
n, as compared to Sn itself, which is of order n. Therefore this is known as moderate de-

viation regime. The inequality also shows that the tail probability of (Sn − E[Sn])/
√
n is

bounded by that of a Gaussian with variance d. More generally, if we take t = unα with

α ∈ [1/2, 1), we get P (|Sn −E[Sn]| ≥ unα) ≤ 2e−
u2

8d2
n2α−1

.

As Hoeffding’s inequality is very general, and holds for all finite n and t, it is not surprising that

it is not asymptotically sharp. For example, CLT will show us that (Sn − E[Sn])/
√
n

d→ N(0, σ2)

where σ2 = Var(X1). Since σ2 < d, and the N(0, σ2) has tails like e−u
2/2σ2

, the constant in the
exponent given by Hoeffding’s is not sharp in the moderate regime. In the large deviation regime,
there is well studied theory. A basic result there says that P(|Sn − E[Sn]| > nu) ≈ e−nI(u), where
the function I(u) can be written in terms of the moment generating function of X1. It turns out
that if |Xi| ≤ d, then I(u) is larger than u2/8d2 which is what Hoeffding’s inequality gave us.
Again, Hoeffding’s is not sharp in the large deviation regime.

13. RANDOM SERIES WITH INDEPENDENT TERMS

In law of large numbers, we considered a sum of n terms scaled by n. A natural question is
to ask about convergence of infinite series with terms that are independent random variables. Of
course

∑
Xn will not converge if Xi are i.i.d (unless Xi = 0 a.s!). Consider an example.

Example 6

Let an be i.i.d with finite mean. Important examples are an ∼ N(0, 1) or an = ±1 with equal
probability. Then, define f(z) =

∑
n anz

n. What is the radius of convergence of this series?

From the formula for radius of convergence R =
(

lim supn→∞ |an|
1
n

)−1
, it is easy to find

that the radius of convergence is exactly 1 (a.s.) [Exercise]. Thus we get a random analytic
function on the unit disk.

Now we want to consider a general series with independent terms. For this to happen, the in-
dividual terms must become smaller and smaller. The following result shows that if that happens
in an appropriate sense, then the series converges a.s.
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Theorem 26: Khinchine

LetXn be independent random variables with finite second moment. Assume that E[Xn] =

0 for all n and that
∑

n Var(Xn) <∞. Then
∑
Xn converges, a.s.

Proof. A series converges if and only if it satisfies Cauchy criterion. To check the latter, consider N
and consider

(20) P (|Sn − SN | > δ for some n ≥ N) = lim
m→∞

P (|Sn − SN | > δ for some N ≤ n ≤ N +m) .

Thus, for fixed N,m we must estimate the probability of the event δ < max1≤k≤m |SN+k − SN |.
For a fixed k we can use Chebyshev’s to get P(δ < |SN+k − SN |) ≤ δ−2Var(XN + XN+1 + . . . +

XN+m). However, we don’t have a technique for controlling the maximum of |SN+k − SN | over
k = 1, 2, . . . ,m. This needs a new idea, provided by Kolmogorov’s maximal inequality below.

Invoking 8, we get

P (|Sn − SN | > δ for some N ≤ n ≤ N +m) ≤ δ−2
N+m∑
k=N

Var(Xk) ≤ δ−2
∞∑
k=N

Var(Xk).

The right hand side goes to zero as N →∞. Thus, from (20), we conclude that for any δ > 0,

lim
N→∞

P (|Sn − SN | > δ for some n ≥ N) = 0.

This implies that lim supSn − lim inf Sn ≤ δ a.s. Take intersection over δ = 1/k, k = 1, 2 . . . to get
that Sn converges a.s. �

What to do if the assumptions are not exactly satisfied? First, suppose that
∑

n Var(Xn) is finite
but E[Xn] may not be zero. Then, we can write

∑
Xn =

∑
(Xn − E[Xn]) +

∑
E[Xn]. The first

series on the right satisfies the assumptions of Theorem 26 and hence converges a.s. Therefore,∑
Xn will then converge a.s if and only if the deterministic series

∑
nE[Xn] converges.

Next, suppose we drop the finite variance condition too. Now Xn are arbitrary independent
random variables. We reduce to the previous case by truncation. Suppose we could find someA >

0 such that P(|Xn| > A) is summable. Then set Yn = Xn1|Xn|≤A. By Borel-Cantelli, almost surely,
Xn = Yn for all but finitely many n and hence

∑
Xn converges if and only if

∑
Yn converges.

Note that Yn has finite variance. If
∑

nE[Yn] converges and
∑

n Var(Yn) <∞, then it follows from
the argument in the previous paragraph and Theorem 26 that

∑
Yn converges a.s. Thus we have

proved

Lemma 27: Kolmogorov’s three series theorem - part 1

Suppose Xn are independent random variables. Suppose for some A > 0, the following
hold with Yn := Xn1|Xn|≤A.

(a)
∑
n

P(|Xn| > A) <∞. (b)
∑
n

E[Yn] converges. (c)
∑
n

Var(Yn) <∞.

39



Then,
∑

nXn converges, almost surely.

Kolmogorov showed that if
∑

nXn converges a.s., then for any A > 0, the three series (a), (b)

and (c) must converge. Together with the above stated result, this gives a complete and satis-
factory answer, as the question of convergence of a random series (with independent entries) is
reduced to that of checking the convergence of three non-random series! We skip the proof of this
converse implication.

14. CENTRAL LIMIT THEOREM - STATEMENT, HEURISTICS AND DISCUSSION

If Xi are i.i.d with zero mean and finite variance σ2, then we know that E[S2
n] = nσ2, which can

roughly be interpreted as saying that Sn ≈
√
n (That the sum of n random zero-mean quantities

grows like
√
n rather than n is sometimes called the fundamental law of statistics). The central limit

theorem makes this precise, and shows that on the order of
√
n, the fluctuations (or randomness)

of Sn are independent of the original distribution of X1! We give the precise statement and some
heuristics as to why such a result may be expected.

Theorem 28: Central limit theorem for i.i.d. variables

Let Xn be i.i.d with mean µ and finite variance σ2.Then, Sn−nµ
σ
√
n

converges in distribution to
N(0, 1).

Informally, letting χ denote a standard Normal variable, we may write Sn ≈ nµ + σ
√
nχ. This

means, the distribution of Sn is hardly dependent on the distribution of X1 that we started with,
except for the two parameters - mean and variance. This is a statement about a remarkable sym-
metry, where replacing one distribution by another makes no difference to the distribution of the
sum. In the rest of the section, we discuss various aspects of the theorem, and in later sections we
give proofs of this and even more general central limit theorems.

Why this scaling?: Without loss of generality, let us take µ = 0 and σ2 = 1. First point to note is
that the standard deviation of Sn/

√
n is 1, which gives hope that in the limit we may get a non-

degenerate distribution. Indeed, if the variance were going to zero, then we could only expect the
limiting distribution to have zero variance and thus be degenerate. Further, since the variance is
bounded above, it follows that the distributions of Sn/

√
n form a tight family. Therefore, there are

at least subsequences that have distributional limits.

Why Normal distribution?: Let us make a leap of faith and assume that the entire sequence
Sn/
√
n converges in distribution to some Y . If so, what can be the distribution of Y ? Observe that

(2n)−
1
2S2n

d→ Y and further,
X1 +X3 + . . .+X2n−1√

n

d→ Y,
X2 +X4 + . . .+X2n√

n

d→ Y.
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But (X1, X3, . . .) is independent of (X2, X4, . . .). Therefore (this was an exercise earlier), we also
get (

X1 +X3 + . . .+X2n−1√
n

,
X2 +X4 + . . .+X2n√

n

)
d→ (Y1, Y2)

where Y1, Y2 are i.i.d copies of Y . But then, (yet another exercise), we get

S2n√
2n

=
1√
2

(
X1 +X3 + . . .+X2n−1√

n
+
X2 +X4 + . . .+X2n√

n

)
d→ Y1 + Y2√

2

Thus we must have Y1 + Y2
d
=
√

2Y . If Y1 ∼ N(0, σ2), then certainly it is true that Y1 + Y2
d
=
√

2Y .
We claim that N(0, σ2) are the only distributions that have this property. If so, then it gives a
strong heuristic that the central limit theorem is true.

To show that N(0, σ2) is the only distribution that satisfies Y1 + Y2
d
=
√

2Y (where Y1, Y2, Y are
i.i.d. N(0, σ2)) is not trivial. Here are two ways to do it.

(1) The cleanest way is to use characteristic functions. If ψ(t) denotes the characteristic func-
tion of Y , then

ψ(t) = E
[
eitY

]
= E

[
eitY/

√
2
]2

= ψ

(
t√
2

)2

.

From this, by standard methods (note that characteristic functions are necessarily contin-
uous), one can deduce that ψ(t) = e−at

2
for some a > 0. By uniqueness of characteristic

functions, Y ∼ N(0, 2a). Since we expect E[Y 2] = 1, we must get N(0, 1).

(2) If we assume further that Y has all moments, write αk = E[Y k] and observe that

2m/2αm =
m∑
k=0

(
m

k

)
αkαm−k for all m ≥ 1.

Starting from α0 = 1, one deduces that α1 = 0 (because
√

2α2 = 2α1) and α2 is arbitrary.
But then onwards, it is clear that αms can be inductively deduced in terms of α2. We leave
it as an exercise to show that

αm =

0 if m is odd

α2 × (m− 1)× (m− 3)× . . .× 3× 1 if m is even.

But these are precisely the moments of N(0, α2) distribution. Does that imply that Y must
have N(0, α2) distribution? The answer is yes6, thus justifying the appearance of the nor-
mal distribution.

6A beautiful part of classical analysis is the moment problem, which asks whether a given sequence of numbers

(αm)m≥1 forms the moment sequence of a probability measure on R, and if so, whether the measure is unique. There

are precise answers to both questions, and an easy part of the answer is that any measure for which
∫
etxdµ(x) is finite

for |t| ≤ δ for some δ > 0, has a unique moment sequence (i.e., no other measure can have the same sequence of

moments as µ). This certainly applies to the Gaussian distribution.
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Justification by example: Assuming that Sn/
√
n has a distributional limit, we have justified that

the limit must be Gaussian. There are specific examples where one may easily verify the statement
of the central limit theorem directly (indeed, that was how the theorem was arrived at).

One is of course the Demoivre-Laplace limit theorem (CLT for Bernoulli random variables),
which is well known and we omit it here. We just recall that sums of independent Bernoullis
have binomial distribution, with explicit formula for the probability mass function and whose
asymptotics can be calculated using Stirling’s formula.

Instead, let us consider the slightly less familiar case of exponential distribution. If Xi are i.i.d
Exp(1) so that E[X1] = 1 and Var(X1) = 1. Then Sn ∼ Gamma(n, 1) and hence Sn−n√

n
has density

fn(x) =
1

Γ(n)
e−n−x

√
n(n+ x

√
n)n−1

√
n

=
e−nnn−

1
2

Γ(n)
e−x
√
n

(
1 +

x√
n

)n−1
→ 1√

2π
e−

1
2
x2

by elementary calculations (use Stirling’s approximation for Γ(n) and for terms involving x write
the exponent as −x

√
n+ log(1 + x/

√
n) and use the Taylor expansion of logarithm). By an earlier

exercise (Scheffe’s lemma) convergence of densities implies convergence in distribution and thus
we get CLT for sums of exponential random variables.

Exercise 9

Prove the CLT for X1 ∼ Ber(p). Note that this also implies CLT for X1 ∼ Bin(k, p).

Justification under stronger hypotheses: Lastly, we show how the CLT can be derived under
strong assumptions by the method of moments. As justifying all the steps here would take time,
let us simply present it as a heuristic for CLT for Bernoulli random variables. Let Xi be i.i.d.
Ber±(1/2). Then Sn has a symmetric distribution and hence all odd moments are zero (but first,
|Sn| ≤ n, hence all moments exist). For even moments,

E[S2p
n ] =

∑
1≤ki≤n

E[Xk1 . . . Xkn ].

Fix k = (k1, . . . , k2p) and consider the corresponding summand. The expectation factors as a
product of E[X`i ], 1 ≤ i ≤ n, where `i is the number of j for which kj = i. Unless each `i is even,
the summand vanishes. The terms for which each `i contribute 1 each, and these terms may be
divided into two parts.

First, those in which each `i is 0 or 2. The number of ways to ways to choose the p indices i for
which `i = 2 is n(n− 1) . . . (n− p+ 1), and the number of ways that these indices may be chosen
is (2p− 1)(2p− 3) . . . (3)(1).
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Next those terms in which at least one `i is equal to 4. The contribution is afgThere are n ways
to choose that i, and there are

15. STRATEGIES OF PROOF OF CENTRAL LIMIT THEOREM

In the next few sections, we shall prove CLT as stated in Theorem 28 as well as a more gen-
eral CLT for triangular arrays to be stated in Theorem 33. We shall in fact give two proofs, one
via the replacement strategy of Lindeberg and another via characteristic functions. Both proofs
teach useful techniques in probability. To separate the key ideas from technical details that are
less essential, we shall first prove a weaker version of Theorem 28 (assuming that X1 has finite
third moment) by both approaches. Then we prove the more general Theorem 33 (which implies
Theorem 28 anyway) by adding minor technical details to both approaches.

What are these two strategies? The starting point is the following fact that we have seen before.

Lemma 29

Yn
d→ Y if and only if E[f(Yn)] → E[f(Y )] for all f ∈ Cb(R). Here Cb(R) is the space of

bounded continuous functions on R.

The implication that we shall use is one way, and let us recall how that is proved.

Proof of one implication. Suppose E[f(Yn)]→ E[f(Y )] for all f ∈ Cb(R). Fix t, a continuity point of
FY , and for each k ≥ 1 define a function fk ∈ Cb(R) such that 0 ≤ fk ≤ 1, fk(x) = 1 for x ≤ t and
fk(x) = 0 for x ≥ t+ 1

k . For example, we may take fk to be linear in [t, t+ 1
k ].

As fk ∈ Cb(R), we get E[fk(Yn)]→ E[fk(Y )] as n→∞. But FY (t) ≤ E[fk(Y )] ≤ FY (t+ 1
k ) and

FYn(t) ≤ E[fk(Yn)] ≤ FYn(t+ 1
k ). Hence, lim supn→∞ FYn(t) ≤ FY (t+ 1

k ). This being true for every
k, we let k →∞ and get lim supn→∞ FYn(t) ≤ FY (t). Similarly, use the function gk(x) := fk(x+ 1

k )

to get

lim inf
n→∞

FYn(t) ≥ lim
n→∞

E[gk(Yn)] = E[gk(Y )] ≥ FY (t− 1

k
).

Again, letting k → ∞ and using continuity of FY at t we get lim infn→∞ FYn(t) ≥ FY (t). Thus,

Yn
d→ Y . �

Continuous functions are more easy to work with than indicators of intervals, hence the use-
fulness of the above lemma. However, it is even more convenient that we can restrict to smaller
subclasses of the space of continuous functions. We state two results to that effect.

Lemma 30

Suppose E[f(Yn)]→ E[f(Y )] for all f ∈ C(3)
b (R), the space of all functions whose first three

derivatives exist, are continuous and bounded. Then, Yn
d→ Y .

Proof. Repeat the proof given for Lemma 29 but take fk to be a smooth function such that 0 ≤ fk ≤
1, fk(x) = 1 for x ≤ t and fk(x) = 0 for x ≥ t+ 1

k . �
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Here is the further reduction, which unlike the first, is not so obvious! It is proved in the
appendix, and goes by the name Lévy’s continuity theorem.

Lemma 31: Lévy’s continuity theorem

Suppose E[eiλYn ]→ E[eiλY ] for all λ ∈ R. Then, Yn
d→ Y .

In this lemma, we only check convergence of expectations for the very special class of functions
eλ(y) := eiλy, for λ ∈ R. Note that by the expectation of a complex valued random variable U + iV

withU, V real-valued, we simply mean E[U ]+iE[V ]. The functionϕY : R→ C defined by ϕY (λ) =

E[eiλY ] is called the characteristic function of Y . It is a very useful tool in probability and analysis,
and a brief introduction including the proof of the above lemma is give in the appendix 20.

15.1. General approach to proving central limit theorem(s). The statement of central limit the-
orem is that E[ϕ(Sn/

√
n)] → E[ϕ(Z)] whenever ϕ ∈ {1(−∞,t] : t ∈ R} (and Z denotes a N(0, 1)

random variable). We do not have a direct handle on the expectations of indicator variables. The
point of the previous discussions is that we can replace them by a suitable class of nicer functions.

Characteristic functions: For example, to invoke Lemma 31, we only need to prove E[et(Sn/
√
n)]→

E[et(Z)] where et(x) = eitx. The usefulness of this comes from the fact that et(Sn/
√
n) =

∏n
k=1 et(Xn,k)

whereXn,k = Xk/
√
n and by the independence assumption, the expectation factors as

∏n
k=1E[et(Xn,k)].

How this is handled will be seen later in the proof. We should also know what it is supposed to
converge to, namely E[et(Z)]. It is shown in the appendix 20 that E[et(Z)] = e−t

2/2. Thus the
proof of CLT reduces to showing that

n∏
k=1

E[et(Xn,k)]→ e−
1
2
t2 as n→∞.

Invariance principle: The other method of proof that we show is to use Lemma 30. Then we need
to show that E[f(Sn/

√
n)]→ E[f(Z)] for all f ∈ C(3)

b (R). Unlike for complex exponentials, we do
not have any formula7 for E[f(Z)] for general f . Our approach will be to show that if Xi are i.i.d.
and Yi are i.i.d., both having zero means and unit variances, then E[f(SXn /

√
n)] ≈ E[f(SYn /

√
n)]

for large n. If Yi are i.i.d. N(0, 1), the right hand side is precisely E[f(Z)], and from that we shall
be able to prove that the left hand side converges to E[f(Z)], for f ∈ C(3)

b .

7However as shown in the appendix, we do have the identity E[Zf(Z)] = E[f ′(Z)] for all nice enough f . Further,

it can be shown that if a random variable Z satisfies this for a large class of f , then Z ∼ N(0, 1). Charles Stein found

a proof of central limit theorem by showing (a) If W = Sn/
√
n, then E[Wf(W )] ≈ E[f ′(W )] for large enough n, and

(b) this approximate identity implies that W has approximately N(0, 1) distribution. . This is known as Stein’s method,

and has some advantages over the usual proofs.
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16. CENTRAL LIMIT THEOREM - TWO PROOFS ASSUMING THIRD MOMENTS

We give two proofs of the following slightly weaker version of CLT.

Theorem 32

Let Xn be i.i.d with finite third moment, and having zero mean and unit variance. Then,
Sn√
n

converges in distribution to N(0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume
Theorem 28.

16.1. Proof via characteristic functions. We shall need the following facts.
Exercise 10

Let zn be complex numbers such that nzn → z. Then, (1 + zn)n → ez .

Proof of Theorem 32. By Lévy’s continuity theorem (Lemma 31), it suffices to show that the char-
acteristic functions of n−

1
2Sn converge to the characteristic function of N(0, 1). The characteristic

function of Sn/
√
n is ψn(t) := E

[
eitSn/

√
n
]
. Writing Sn = X1 + . . .+Xn and using independence,

ψn(t) = E

[
n∏
k=1

eitXk/
√
n

]

=
n∏
k=1

E
[
eitXk/

√
n
]

= ψ

(
t√
n

)n
where ψ denotes the characteristic function of X1.

Use Taylor expansion to third order for the function x→ eitx to write,

eitx = 1 + itx− 1

2
t2x2 − i

6
t3eitx

∗
x3 for some x∗ ∈ [0, x] or [x, 0].

Apply this with X1 in place of x and tn−1/2 in place of t. Then take expectations and recall that
E[X1] = 0 and E[X2

1 ] = 1 to get

ψ

(
t√
n

)
= 1− t2

2n
+Rn(t), where Rn(t) = − i

6n
3
2

t3E
[
eitX

∗
1X3

1

]
.

Clearly, |Rn(t)| ≤ Ctn
−3/2 for a constant Ct (that depends on t but not n). Hence nRn(t) → 0 and

by Exercise 10 we conclude that for each fixed t ∈ R,

ψn(t) =

(
1− t2

2n
+Rn(t)

)n
→ e−

t2

2

which is the characteristic function of N(0, 1). �

16.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we
observe that the central limit theorem is trivial for (Y1+ . . .+Yn)/

√
n, if Yi are independentN(0, 1)
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random variables. The key idea of Lindeberg is to go from X1 + . . .+Xn to Y1 + . . .+ Yn in steps,
replacing each Xi by Yi, one at a time, and arguing that the distribution does not change much!

Proof. We assume, without loss of generality, that Xi and Yi are defined on the same probability
space, are all independent, Xi have the given distribution (with zero mean and unit variance) and
Yi have N(0, 1) distribution.

Fix f ∈ C(3)
b (R) and let

√
nUk =

∑k−1
j=1 Xj +

∑n
j=k+1 Yj and

√
nVk =

∑k
j=1Xj +

∑n
j=k+1 Yj for

0 ≤ k ≤ n and empty sums are regarded as zero. Then, V0 = SYn /
√
n and Vn = SXn /

√
n. Also,

SYn /
√
n has the same distribution as Y1. Thus,

E

[
f

(
1√
n
SXn

)]
−E[f(Y1)] =

n∑
k=1

E [f (Vk)− f (Vk−1)]

=

n∑
k=1

E [f (Vk)− f (Uk)]−
n∑
k=1

E [f (Vk−1)− f (Uk)] .

By Taylor expansion, we see that

f(Vk)− f(Uk) = f ′(Uk)
Xk√
n

+ f ′′(Uk)
X2
k

2n
+ f ′′′(U∗k )

X3
k

6n
3
2

,

f(Vk−1)− f(Uk) = f ′(Uk)
Yk√
n

+ f ′′(Uk)
Y 2
k

2n
+ f ′′′(U∗∗k )

Y 3
k

6n
3
2

.

Take expectations and subtract. A key observation is that Uk is independent of Xk, Yk. Therefore,
E[f ′(Uk)X

p
k ] = E[f ′(Uk)]E[Xp

k ] etc. Consequently, using equality of the first two moments of
Xk, Yk, we get

E[f(Vk)− f(Vk−1)] =
1

6n
3
2

{
E[f ′′′(U∗k )X3

k ] + E[f ′′′(U∗∗k )Y 3
k ]
}
.

Now, U∗k and U∗∗k are not independent of Xk, Yk, hence we cannot factor the expectations. We put
absolute values and use the bound on derivatives of f to get∣∣∣E[f(Vk)]−E[f(Vk−1)]

∣∣∣ ≤ 1

n
3
2

Cf
{
E[|X1|3] + E[|Y1|3]

}
.

Add up over k from 1 to n to get∣∣∣E [f ( 1√
n
SXn

)]
−E[f(Y1)]

∣∣∣ ≤ 1

n
1
2

Cf
{
E[|X1|3] + E[|Y1|3]

}
which goes to zero as n → ∞. Thus, E[f(Sn/

√
n)] → E[f(Y1)] for any f ∈ C

(3)
b (R) and conse-

quently, by Lemma 30 we see that 1√
n
Sn

d→ N(0, 1). �

17. CENTRAL LIMIT THEOREM FOR TRIANGULAR ARRAYS

The CLT does not really require the third moment assumption, and we can modify the above
proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where
we don’t have one infinite sequence, but the random variables that we add to get Sn depend on n
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themselves. Further, observe that we assume independence but not identical distributions in each
row of the triangular array.

Theorem 33: Lindeberg-Feller CLT

Suppose Xn,k, k ≤ n, n ≥ 1, are random variables. We assume that

(1) For each n, the random variables Xn,1, . . . , Xn,n are defined on the same probability
space, are independent, and have finite variances.

(2) E[Xn,k] = 0 and
∑n

k=1E[X2
n,k]→ σ2, as n→∞.

(3) For any δ > 0, we have
∑n

k=1E[X2
n,k1|Xn,k|>δ]→ 0 as n→∞.

Then, Xn,1 + . . .+Xn,n
d→ N(0, σ2) as n→∞.

First we show how this theorem implies the standard central limit theorem under second mo-
ment assumptions.

Proof of Theorem ?? from Theorem 33. Let Xn,k = n−
1
2Xk for k = 1, 2, . . . , n. Then, E[Xn,k] = 0 while∑n

k=1E[X2
n,k] = 1

n

∑n
k=1E[X2

1 ] = σ2, for each n. Further,
∑n

k=1E[X2
n,k1|Xn,k|>δ] = E[X2

11|X1|>δ
√
n]

which goes to zero as n→∞ by DCT, since E[X2
1 ] <∞. Hence the conditions of Lindeberg Feller

theorem are satisfied and we conclude that Sn√
n

converges in distribution to N(0, 1). �

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-
Feller CLT. We consider some examples.

Example 7

Let Xk ∼ Ber(pk) be independent random variables with 0 < pk < 1. Is Sn asymptotically
normal? By this we mean, does (Sn−E[Sn])/

√
Var(Sn) converge in distribution to N(0, 1)?

Obviously the standard CLT does not apply.
To fit it in the framework of Theorem 33, define Xn,k = Xk−pk

τn
where τ2n =

∑n
k=1 pk(1− pk)

is the variance of Sn. The first assumption in Theorem 33 is obviously satisfied. Further,
Xn,k has mean zero and variance pk(1 − pk)/τ

2
n which sum up to 1 (when summed over

1 ≤ k ≤ n). As for the crucial third assumption, observe that 1|Xn,k|>δ = 1|Xk−pk|>δτn . If
τn ↑ ∞ as n → ∞, then the indicator becomes zero (since |Xk − pk| ≤ 1). This shows that
whenever τn →∞, asymptotic normality holds for Sn.
If τn does not go to infinity, there is no way CLT can hold. We leave it for the reader to think
about, just pointing out that in this case,X1 has a huge influence on (Sn−E[Sn])/τn. Chang-
ing X1 from 0 to 1 or vice versa will induce a big change in the value of (Sn − E[Sn])/τn

from which one can argue that the latter cannot be asymptotically normal.

The above analysis works for any uniformly bounded sequence of random variables. Here is a
generalization to more general, independent but not identically distributed random variables.
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Exercise 11

Suppose Xk are independent random variables and E[|Xk|2+δ] ≤ M for some δ > 0 and
M <∞. If Var(Sn)→∞, show that Sn is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 8

If Xn are i.i.d (mean zero and unit variance) random variable, what can we say about the
asymptotics of Tn := X1 + 2X2 + . . .+ nXn? Clearly E[Tn] = 0 and E[T 2

n ] =
∑n

k=1 k
2 ∼ n3

3 .

Thus, if we expect any convergence to Gaussian, then it must be that n−
3
2Tn

d→ N(0, 1/3).
To prove that this is indeed so, write n−

3
2Tn =

∑n
k=1Xn,k, where Xn,k = n−

3
2kXk. Let us

check the crucial third condition of Theorem 33.
E[X2

n,k1|Xn,k|>δ] = n−3k2E[X2
k1|Xk|>δk−1n3/2 ]

≤ n−1E[X21|X|>δ
√
n] (since k ≤ n)

which when added over k gives E[X21|X|>δ
√
n]. Since E[X2] < ∞, this goes to zero as

n→∞, for any δ > 0.

Exercise 12

Let 0 < a1 < a2 < . . . be fixed numbers and letXk be i.i.d. random variables with zero mean
and unit variance. Find simple sufficient conditions on ak to ensure asymptotic normality
of Tn :=

∑n
k=1 akXk.

18. TWO PROOFS OF THE LINDEBERG-FELLER CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with
the earlier proofs and see where some modifications are required.

18.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a prod-
uct to an exponential.

Exercise 13

If zk, wk ∈ C and |zk|, |wk| ≤ θ for all k, then
∣∣∣ n∏
k=1

zk −
n∏
k=1

wk

∣∣∣ ≤ θn−1 n∑
k=1

|zk − wk|.

Proof of Theorem 33. The characteristic function of Sn = Xn,1 + . . . + Xn,n is given by ψn(t) =
n∏
k=1

E
[
eitXn,k

]
. Again, we shall use the Taylor expansion of eitx, but we shall need both the second

and first order expansions.

eitx =

1 + itx− 1
2 t

2x2 − i
6 t

3eitx
∗
x3 for some x∗ ∈ [0, x] or [x, 0].

1 + itx− 1
2 t

2eitx
+
x2 for some x+ ∈ [0, x] or [x, 0].
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Fix δ > 0 and use the first equation for |x| ≤ δ and the second one for |x| > δ to write

eitx = 1 + itx− 1

2
t2x2 +

1|x|>δ

2
t2x2(1− eitx+)−

i1|x|≤δ

6
t3x3eitx

∗
.

Apply this with x = Xn,k, take expectations and write σ2n,k := E[X2
n,k] to get

E[eitXn,k ] = 1− 1

2
σ2n,kt

2 +Rn,k(t)

where, Rn,k(t) := t2

2 E
[
1|Xn,k|>δX

2
n,k

(
1− eitX

+
n,k

)]
− it3

6 E
[
1|Xn,k|≤δX

3
n,ke

itX∗n,k
]
. We can bound

Rn,k(t) from above by using |Xn,k|31|Xn,k|≤δ ≤ δX
2
n,k and |1− eitx| ≤ 2, to get

(21) |Rn,k(t)| ≤ t2E
[
1|Xn,k|>δX

2
n,k

]
+
|t|3δ

6
E
[
X2
n,k

]
.

We want to apply Exercise 13 to zk = E
[
eitXn,k

]
and wk = 1 − 1

2σ
2
n,kt

2. Clearly |zk| ≤ 1 by
properties of c.f. If we prove that max

k≤n
σ2n,k → 0, then it will follow that |wk| ≤ 1 and hence with

θ = 1 in Exercise 13, we get

lim sup
n→∞

∣∣∣ n∏
k=1

E
[
eitXn,k

]
−

n∏
k=1

(
1− 1

2
σ2n,kt

2

) ∣∣∣ ≤ lim sup
n→∞

n∑
k=1

|Rn,k(t)|

≤ 1

6
|t|3σ2δ (by 21)

To see that max
k≤n

σ2n,k → 0, fix any δ > 0 note that σ2n,k ≤ δ2 + E
[
X2
n,k1|Xn,k|>δ

]
from which we get

max
k≤n

σ2n,k ≤ δ2 +
n∑
k=1

E
[
X2
n,k1|Xn,k|>δ

]
→ δ2.

As δ is arbitrary, it follows that max
k≤n

σ2n,k → 0 as n→∞. As δ > 0 is arbitrary, we get

(22) lim
n→∞

n∏
k=1

E
[
eitXn,k

]
= lim

n→∞

n∏
k=1

(
1− 1

2
σ2n,kt

2

)
.

For n large enough (and fixed t), max
k≤n

t2σ2n,k ≤
1
2 and then

e−
1
2
σ2
n,kt

2− 1
4
σ4
n,kt

4

≤ 1− 1

2
σ2n,kt

2 ≤ e−
1
2
σ2
n,kt

2

.

Take product over k ≤ n, and observe that
∑n

k=1 σ
4
n,k → 0 (why?). Hence,

n∏
k=1

(
1− 1

2
σ2n,kt

2

)
→ e−

σ2t2

2 .

From 22 and Lévy’s continuity theorem, we get
∑n

k=1Xn,k
d→ N(0, σ2). �

18.2. Proof of Lindeberg-Feller CLT by replacement method.

Proof. As before, without loss of generality, we assume that on the same probability space as the
random variables Xn,k we also have the Gaussian random variables Yn,k that are independent
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among themselves and independent of all the Xn,ks and further satisfy E[Yn,k] = E[Xn,k] and
E[Y 2

n,k] = E[X2
n,k].

Similarly to the earlier proof of CLT, fix n and define Uk =
∑k−1

j=1 Xn,j +
∑n

j=k+1 Yn,j and Vk =∑k
j=1Xn,j +

∑n
j=k+1 Yn,j for 0 ≤ k ≤ n. Then, V0 = Yn,1 + . . . + Yn,n and Vn = Xn,1 + . . . + Xn,n.

Also, Vn ∼ N(0, σ2). Thus,

E [f (Vn)]−E[f(V0)] =

n∑
k=1

E [f (Vk)− f (Vk−1)](23)

=
n∑
k=1

E [f (Vk)− f (Uk)]−
n∑
k=1

E [f (Vk−1)− f (Uk)] .

We expand f(Vk)− f(Uk) by Taylor series, both of third order and second order and write

f(Vk)− f(Uk) = f ′(Uk)Xn,k +
1

2
f ′′(Uk)X

2
n,k +

1

6
f ′′′(U∗k )X3

n,k,

f(Vk)− f(Uk) = f ′(Uk)Xn,k +
1

2
f ′′(U#

k )X2
n,k

where U∗k and U#
k are between Vk and Uk. Write analogous expressions for f(Vk−1) − f(Uk) (ob-

serve that Vk−1 = Uk + Yn,k) and subtract from the above to get

f(Vk)− f(Vk−1) = f ′(Uk)(Xn,k − Yn,k) +
1

2
f ′′(Uk)(X

2
n,k − Y 2

n,k) +
1

6
(f ′′′(U∗k )X3

n,k − f ′′′(U∗∗k )Y 3
n,k),

f(Vk)− f(Vk−1) = f ′(Uk)(Xn,k − Yn,k) +
1

2
(f ′′(U#

k )X2
n,k − f ′′(U

##
k )Y 2

n,k).

Use the first one when |Xn,k| ≤ δ and the second one when |Xn,k| > δ and take expectations to get

|E[f(Vk)]−E[f(Vk−1)]| ≤
1

2
E[|f ′′(Uk)|]

∣∣∣E[X2
n,k1|Xn,k|≤δ]−E[Y 2

n,k1|Yn,k|≤δ]
∣∣∣(24)

+
1

2

∣∣∣E[|f ′′(U#
k )|X2

n,k1|Xn,k|>δ]
∣∣∣+

1

2

∣∣∣E[|f ′′(U##
k )|Y 2

n,k1|Yn,k|>δ]
∣∣∣(25)

+
1

6

∣∣∣E[|f ′′′(U∗k )||Xn,k|31|Xn,k|≤δ]
∣∣∣+

1

6

∣∣∣E[|f ′′′(U∗∗k )||Yn,k|31|Yn,k|≤δ]
∣∣∣(26)

Since E[X2
n,k] = E[Y 2

n,k], the term in the first line (24) is the same as 1
2E[|f ′′(Uk)|]

∣∣E[X2
n,k1|Xn,k|>δ]−

E[Y 2
n,k1|Yn,k|>δ]

∣∣which in turn is bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}.

The terms in (25) are also bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}.

To bound the two terms in (26), we show how to deal with the first.∣∣∣E[|f ′′′(U∗k )||Xn,k|31|Xn,k|≤δ]
∣∣∣ ≤ CfδE[X2

n,k].

The same bound holds for the second term in (26). Putting all this together, we arrive at

|E[f(Vk)]−E[f(Vk−1)]| ≤ Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}+ δ{E[|X2
n,k] + E[Y 2

n,k]}.
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Add up over k and use (23) to get∣∣∣E [f (Vn)]−E[f(V0)]
∣∣∣ ≤ δ n∑

k=1

E[|X2
n,k] + E[Y 2

n,k]

+ Cf

n∑
k=1

E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ].

As n → ∞, the first term on the right goes to 2δσ2. The second term goes to zero. This follows
directly from the assumptions for the terms involvingX whereas for the terms involving Y (which
are Gaussian), it is a matter of checking that the same conditions do hold for Y .

Consequently, we get lim sup
∣∣E[f(V0)] − E[f(Vn)]

∣∣ ≤ 2σ2δ. As δ is arbitrary, we have shown
that for any f ∈ C(3)

b (R), we have

E[f(Xn,1 + . . .+Xn,n)]→ E[f(Z)]

where Z ∼ N(0, σ2). This completes the proof that Xn,1 + . . .+Xn,n
d→ N(0, σ2). �

19. SUMS OF MORE HEAVY-TAILED RANDOM VARIABLES

Let Xi be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see
that the sums Sn converge to Gaussian distribution after shifting (by nE[X1]) and scaling (by

√
n).

What if we drop the assumption of second moments? Let us first consider the case of Cauchy
random variables to see that such results may be expected in general.

Example 9

Let Xi be i.i.d Cauchy(1), with density 1
π(1+x2)

. Then, one can check that Snn has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write Sn
n

d→ C1.
If Xi were i.i.d with density a

π(a2+(x−b)2) (which can be denoted Ca,b with a > 0, b ∈ R), then
Xi−b
a are i.i.d C1, and hence, we get

Sn − nb
an

d→ C1.

This is the analogue of CLT, except that the location change is nb instead of nE[X1], scaling
is by n instead of

√
n and the limit is Cauchy instead of Normal.

This raises the following questions.

(1) For general i.i.d sequences, how are the location and scaling parameter determined, so that
b−1n (Sn − an) converges in distribution to a non-trivial measure on the line?

(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what

distributions on X1 do we get b−1n (Sn − an)
d→ C1?
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For simplicity, let us restrict ourselves to symmetric distributions, i.e., X d
= −X . Then, clearly no

shifting is required, an = 0. Let us investigate the issue of scaling and what might be the limit.
It turns out that for each α ≤ 2, there is a unique (up to scaling) symmetric distribution µα

such that X + Y
d
= 2

1
αX if X,Y ∼ µ are independent. This is known as the symmetric α-stable

distribution and has characteristic function ψα(t) = e−c|t|
α

. For example, the normal distribution
corresponds to α = 2 and the Cauchy to α = 1. If Xi are i.i.d µα, then is is easy to see that

n−1/αSn
d→ µα. The fact is that there is a certain domain of attraction for each stable distribution,

and for i.i.d random variables from any such distribution n−1/αSn
d→ µα.

20. APPENDIX: CHARACTERISTIC FUNCTIONS AND THEIR PROPERTIES

Definition 6

Let µ be a probability measure on R. The function ψµ : Rd → R define by ψµ(t) :=∫
R e

itxdµ(x) is called the characteristic function or the Fourier transform of µ. If X is a ran-
dom variable on a probability space, we sometimes say “characteristic function of X” to
mean the c.f of its distribution (thus ψX(t) = E[eitX ]). We also write µ̂ instead of ψµ.

There are various other “integral transforms” of a measure that are closely related to the c.f. For
example, if we take ψµ(it) is the moment generating function of µ (if it exists). For µ supported
on N, its so called generating function Fµ(t) =

∑
k≥0 µ{k}tk (which exists for |t| < 1 since µ is

a probability measure) can be written as ψµ(−i log t) (at least for t > 0!) etc. The characteristic
function has the advantage that it exists for all t ∈ R and for all finite measures µ.

The importance of c.f comes from the following facts8.

(A) It transforms well under certain operations, such as shifting, scaling and under convolu-
tions.

(B) The characteristic function determines the measure. Further, the smoothness of the char-
acteristic function encodes the tail decay of the measure, and vice versa.

(C) µ̂n(t) → µ̂(t) pointwise, if and only if µn
d→ µ. This is the key property that was used in

proving central limit theorems.

(D) There exist necessary and sufficient conditions for a function ψ : R → C to be the c.f o f a
measure. Because of this and part (B), sometimes one defines a measure by its characteristic
function.

(A) Some basic observations.

8In addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is

an excellent resource for the basics of characteristic functions. Our presentation is based on it too.
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Theorem 34

Let X,Y be random variables.

(1) For any a, b ∈ R, we have ψaX+b(t) = eibtψX(at).

(2) If X,Y are independent, then ψX+Y (t) = ψX(t)ψY (t).

Proof. (1) ψaX+b(t) = E[eit(aX+b)] = E[eitaX ]eibt = eibtψX(at).

(2) ψX+Y (t) = E[eit(X+Y )] = E[eitXeitY ] = E[eitX ]E[eitY ] = ψX(t)ψY (t).
�

Lemma 35

Let µ ∈ P(R). Then, µ̂ is a uniformly continuous function on R with |µ̂(t)| ≤ 1 for all t with
µ̂(0) = 1. (equality may be attained elsewhere too).

Proof. Clearly µ̂(0) = 1 and |µ̂(t)| ≤
∫
|eitx|dµ(x) = 1. Further,

|µ̂(t+ h)− µ̂(t)| ≤
∫
|ei(t+h)x − eitx|dµ(x) =

∫
|eihx − 1|dµ(x).

As h → 0, the integrand |eihx − 1| → 0 and is also bounded by 2. Hence by the dominated
convergence theorem, the integral goes to zero as h → 0. The uniformity is clear as there is no
dependence on t. �

The more we assume about the continuity/smoothness of the measure µ, the stronger the con-
clusion that can be drawn about the decay of µ̂. And conversely, if the tail of µ decays fast, the
smoother µ̂ will be. We used this latter fact in the proof of central limit theorems.

Theorem 36

Let µ ∈ P(R). If µ has finite kth moment for some k ∈ N, then µ̂ ∈ C(k)(R) and µ̂(k)(t) =∫
R(ix)keitxdµ(x).

Theorem 37

Let µ ∈ P(R). Assume that µ has density f with respect to Lebesgue measure.

(1) (Riemann-Lebesgue lemma). µ̂(t)→ 0 as t→ ±∞.

(2) If f ∈ C(k), then µ̂(t) = o(|t|−k) as t→ ±∞.

For proofs, consult, Feller’s book.

(B) Examples. We give some examples.

(1) If µ = δ0, then µ̂(t) = 1. More generally, if µ = p1δa1 + . . . + pkδak , then µ̂(t) = p1e
ita1 +

. . .+ pke
itak .
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(2) If X ∼ Ber(p), then ψX(t) = peit + q where q = 1 − p. If Y ∼ Binomial(n, p), then,
Y

d
= X1 + . . .+Xn where Xk are i.i.d Ber(p). Hence, ψY (t) = (peit + q)n.

(3) If X ∼ Exp(λ), then ψX(t) =
∫∞
0 λe−λxeitxdx = λ

λ−it . If Y ∼ Gamma(ν, λ), then if ν is an

integer, then Y d
= X1 + . . .+Xν where Xk are i.i.d Exp(λ). Therefore, ψY (t) = λν

(λ−it)ν . This
is true even if ν is not an integer, but the proof would have to be a direct computation.

(4) Laplace distribution having density 1
2e
−|x| on all of R has characteristic function 1

1+t2
. This

is similar to the previous example and left as an exercise.

(5) Y ∼ Normal(µ, σ2). Then, Y = µ+σX , whereX ∼ N(0, 1) and by the transofrmatin rules,
ψY (t) = eiµtψX(σt). Thus it suffices to find the c.f of N(0, 1). Denote it by ψ.

ψ(t) =
1√
2π

∫
R
eitxe−

x2

2 dx = e−
t2

2

(
1√
2π

∫
R
e−

(x−it)2
2 dx

)
.

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of
a normal density with mean it and variance σ2. But if the mean is complex, what does
it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff
inside brackets is indeed equal to 19.

Alternately, one can obtain the characteristic function as follows.

Stein’s equation: Let f : R 7→ R be any reasonable function (C1
b is more than needed).

E[Zf(Z)] = E[f ′(Z)] (this is called Stein’s equation).
To see this, integrate by parts to get

E[f ′(Z)] =
1√
2π

∫
R
f ′(x)e−x

2/2dx =
1√
2π

∫
f(x)xe−x

2/2dx = E[Zf(Z)].

since the boundary terms vanish (provided f is grows slowly enough at±∞). Take f(x) =

eitx with a fixed t ∈ R to get itE[eitX ] = E[XeitX ] = 1
i
d
dtE[eitX ] (where the last inequality

is by differentiation under the expectation, which can be justified easily by dominated
convergence theorem). Thus, ψ′(t) = −ψ(t), which gives ψ(t) = Ce−t

2/2. As ψ(0) = 1, we
must have C = 1.

The final conclusion is that N(µ, σ2) has characteristic function eitµ−
σ2t2

2 .

(6) Let µ be the standard Cauchy measure 1
π(1+x2)

dx. Let t > 0 and considerψ(t) = 1
π

∫
eitx

1+x2
dx.

We use contour integration. Let γ(u) = u for −R ≤ u ≤ R and η(u) = Reis for 0 ≤ s ≤ π.

9Here is the argument: Fix R > 0 and let γ(u) = u and η(t) = u + it for −R ≤ u ≤ R and let η′x(s) = x + is for

0 ≤ s ≤ t. The integral that we want is the limit of the contour integrals
∫
η
e−

1
2
z2dz as R→∞. Since the integrand has

no poles, this is the same as the integral
∫
γ
+
∫
η′
R
−
∫
η′−R

of e−z
2/2. The integral over γ converges to

∫
R e
−x2/2dx which

is
√
2π. The integrals over η′R and η′−R converge to zero as R→∞. This is because the absolute value of the integrand

is e−
1
2
(R2+s2) ≤ e−R

2/2 for any 0 ≤ s ≤ t. Thus the two integrals are bounded in absolute value by e−R
2/2|t| which

goes to 0 as R→∞.
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Then by the residue theorem

1

π

∫
γ

eitz

1 + z2
dz +

1

π

∫
η

eitz

1 + z2
dz =

1

π
× 2πiRes

(
eitz

1 + z2
, i

)
= e−t.

However, on η, the integrand is bounded by e−t Im z

|1+z2| ≤
1

R2−1 , since t > 0. The length of

the contour is πR, hence the total integral over η is O(1/R) as R → ∞. Thus, 1
π

∫
γ

eitx

1+x2
dx

converges to e−t for t > 0. By the symmetry of the underlying measure, ψ(−t) = ψ(t),
whence we arrive at ψ(t) = e−|t|.

(C) Inversion formulas.
Theorem 38

If µ̂ = ν̂, then µ = ν.

Proof. Let θσ denote the N(0, σ2) distribution and letϕσ(x) = 1
σ
√
2π
e−x

2/2σ2
and Φσ(x) =

∫ x
−∞ ϕσ(u)du

and θ̂σ(t) = e−σ
2t2/2 denote the density and cdf and characteristic functions, respectively. Then,

by Parseval’s identity, we have for any α,∫
e−iαtµ̂(t)dθσ(t) =

∫
θ̂σ(x− α)dµ(x)

=

√
2π

σ

∫
ϕ 1
σ

(α− x)dµ(x)

where the last line comes by the explicit Gaussian form of θ̂σ. Let fσ(α) := σ√
2π

∫
e−iαtµ̂(t)dθσ(t)

and integrate the above equation to get that for any finite a < b,∫ b

a
fσ(α)dα =

∫ b

a

∫
R
ϕ 1
σ

(α− x) dµ(x) dα

=

∫
R

∫ b

a
ϕ 1
σ

(α− x) dα dµ(x) (by Fubini)

=

∫
R

(
Φ 1
σ

(b− x)− Φ 1
σ

(a− x)
)
dµ(x).

Now, we let σ →∞, and note that

Φ 1
σ

(u)→


0 if u < 0.

1 if u > 0.

1
2 if u = 0.

Further, Φσ−1 is bounded by 1. Hence, by DCT, we get

lim
σ→∞

∫ b

a
fσ(α)dα =

∫ [
1(a,b)(x) +

1

2
1{a,b}(x)

]
dµ(x) = µ(a, b) +

1

2
µ{a, b}.

Now we make two observations: (a) that fσ is determined by µ̂, and (b) that the measure µ is
determined by the values of µ(a, b) + 1

2µ{a, b} for all finite a < b. Thus, µ̂ determines µ. �

We can continue the reasoning in the above proof to get a formula for recovering a measure
from its characteristic function.
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Corollary 39: Fourier inversion formula

Let µ ∈ P(R).

(1) For all finite a < b, we have

(27) µ(a, b) +
1

2
µ{a}+

1

2
µ{b} = lim

σ→∞

1

2π

∫
R

e−iat − e−ibt

it
µ̂(t)e−

t2

2σ2 dt

(2) If
∫
R |µ̂(t)|dt <∞, then µ has a continuous density given by

f(x) :=
1

2π

∫
R
µ̂(t)e−ixtdt.

Proof. (1) Recall that the left hand side of (27) is equal to lim
σ→∞

∫ b
a fσ where

fσ(α) :=
σ√
2π

∫
e−iαtµ̂(t)dθσ(t).

Writing out the density of θσ we see that∫ b

a
fσ(α)dα =

1

2π

∫ b

a

∫
R
e−iαtµ̂(t)e−

t2

2σ2 dtdα

=
1

2π

∫
R

∫ b

a
e−iαtµ̂(t)e−

t2

2σ2 dα dt (by Fubini)

=
1

2π

∫
R

e−iat − e−ibt

it
µ̂(t)e−

t2

2σ2 dt.

Thus, we get the first statement of the corollary.

(2) With fσ as before, we have fσ(α) := 1
2π

∫
e−iαtµ̂(t)e−

t2

2σ2 dt. Note that the integrand con-
verges to e−iαtµ̂(t) as σ → ∞. Further, this integrand is bounded by |µ̂(t)| which is as-
sumed to be integrable. Therefore, by DCT, for any α ∈ R, we conclude that fσ(α)→ f(α)

where f(α) := 1
2π

∫
e−iαtµ̂(t)dt.

Next, note that for any σ > 0, we have |fσ(α)| ≤ C for all α where C =
∫
|µ̂(t)|dt. Thus,

for finite a < b, using DCT again, we get
∫ b
a fσ →

∫ b
a f as σ →∞.

But the proof of Theorem 38 tells us that

lim
σ→∞

∫ b

a
fσ(α)dα = µ(a, b) +

1

2
µ{a}+

1

2
µ{b}.

Therefore, µ(a, b) + 1
2µ{a}+ 1

2µ{b} =
∫ b
a f(α)dα. Fixing a and letting b ↓ a, this shows that

µ{a} = 0 and hence µ(a, b) =
∫ b
a f(α)dα. Thus f is the density of µ.

The proof that a c.f. is continuous carries over verbatim to show that f is continuous
(since f is the Fourier transform of µ̂, except for a change of sign in the exponent). �

An application of Fourier inversion formula Recall the Cauchy distribution µ with with density
1

π(1+x2)
whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is

a way to compute this integral).
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Consider the seemingly unrelated p.m ν with density 1
2e
−|x| (a symmetrized exponential, this is

also known as Laplace’s distribution). Its c.f is easy to compute and we get

ν̂(t) =
1

2

∫ ∞
0

eitx−xdx+
1

2

∫ 0

−∞
eitx+xdx =

1

2

(
1

1− it
+

1

1 + it

)
=

1

1 + t2
.

By the Fourier inversion formula (part (b) of the corollary), we therefore get
1

2
e−|x| =

1

2π

∫
ν̂(t)eitxdt =

1

2π

∫
1

1 + t2
eitxdt.

This immediately shows that the Cauchy distribution has c.f. e−|t| without having to compute the
integral!!

(D) Continuity theorem. Now we come to the key result that was used in the proof of central limit
theorems. This is the equivalence between convergence in distribution and pointwise convergence
of characteristic functions.

Theorem 40: Lévy’s continuity theorem

Let µn, µ ∈ P(R).

(1) If µn
d→ µ then µ̂n(t)→ µ̂(t) pointwise for all t.

(2) If µ̂n(t) → ψ(t) pointwise for all t and ψ is continuous at 0, then ψ = µ̂ for some

µ ∈ P(R) and µn
d→ µ.

Proof. (1) If µn
d→ µ, then

∫
fdµn →

∫
fdµ for any f ∈ Cb(R) (bounded continuous function).

Since x→ eitx is a bounded continuous function for any t ∈ R, it follows that µ̂n(t)→ µ̂(t)

pointwise for all t.

(2) Now suppose µ̂n(t) → ψ(t) pointwise for all t and ψ is continuous at zero. We first claim
that the sequence {µn} is tight. Assuming this, the proof can be completed as follows.

Let µnk be any subsequence that converges in distribution, say to ν. By tightness, ν ∈
P(R). Therefore, by the first part, µ̂nk → ν̂ pointwise. But obviously, µ̂nk → µ̂ since
µ̂n → µ̂. Thus, ν̂ = µ̂ which implies that ν = µ. That is, any convergent subsequence of

{µn} converges in distribution to µ. This shows that µn
d→ µ.

It remains to show tightness10. From Lemma 41 below, as n→∞,

µn ([−2/δ, 2/δ]c) ≤ 1

δ

δ∫
−δ

(1− µ̂n(t))dt −→ 1

δ

δ∫
−δ

(1− ψ(t))dt

where the last implication follows by DCT (since 1 − µ̂n(t) → 1 − ψ(t) for each t and
also |1 − µ̂n(t)| ≤ 2 for all t). Further, as δ ↓ 0, we get 1

δ

∫ δ
−δ(1 − ψ(t))dt → 0 (be-

cause, 1 − µ̂(0) = 0 and ψ is continuous at 0). Thus, given ε > 0, we can find δ > 0

such that lim supn→∞ µn ([−2/δ, 2/δ]c) < ε. This means that for some finite N , we have

10I would like to thank Pablo De Nápoli for pointing out a flaw in the statement and proof of the second part.
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µn ([−2/δ, 2/δ]c) < ε for all n ≥ N . Now, find A > 2/δ such that for any n ≤ N , we
get µn ([−2/δ, 2/δ]c) < ε. Thus, for any ε > 0, we have produced an A > 0 so that
µn ([−A,A]c) < ε for all n. This is the definition of tightness. �

Lemma 41

Let µ ∈ P(R). Then, for any δ > 0, we have

µ

([
−2

δ
,
2

δ

]c)
≤ 1

δ

δ∫
−δ

(1− µ̂(t))dt.

Proof. We write ∫ δ

−δ
(1− µ̂(t))dt =

∫ δ

−δ

∫
R

(1− eitx)dµ(x)dt

=

∫
R

∫ δ

−δ
(1− eitx)dtdµ(x)

=

∫
R

(
2δ − 2 sin(xδ)

x

)
dµ(x)

= 2δ

∫
R

(
1− sin(xδ)

xδ

)
dµ(x).

When δ|x| > 2, we have sin(xδ)
xδ ≤ 1

2 (since sin(xδ) ≤ 1). Therefore, the integrand is at least 1
2 when

|x| > 2
δ and the integrand is always non-negative since | sin(x)| ≤ |x|. Therefore we get∫ δ

−δ
(1− µ̂(t))dt ≥ δµ ([−2/δ, 2/δ]c) . �

(D) Positive semi-definiteness. What functions arise as characteristic functions of probability
measures on R? If ϕ(t) =

∫
eitxdµ(x) for a probability measure µ, then ϕ(−t) = ϕ(t) for all t ∈ R.

Further, for any m ≥ 1 and any complex numbers c1, . . . , cm and any real numbers t1, . . . tm, we
must have

0 ≤
∫ ∣∣∣ m∑

k=1

cke
itkx
∣∣∣2dµ(x) =

n∑
k,`=1

ckc`

∫
ei(tk−t`)xdµ(x)

=
n∑

k,`=1

ckc`ϕ(tk − t`).

This motivates the following definition.

Definition 7: Positive definite functions

A function ϕ : R 7→ R is said to be positive definite if the matrix Mϕ[t1, . . . , tn] := (ϕ(tj −
tk))1≤j,k≤n is Hermitian and positive semi-definite for any n ≥ 1 and any t1, . . . , tn ∈ R.
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Thus characteristic functions are necessarily positive definite functions. We have also seen that
they are continuous and take the value 1 at 0. These are all the properties that it takes to make a
characteristic function.

Theorem 42: Bochner’s theorem

A function ϕ : R 7→ R is a characteristic function of a Borel probability measure on R if and
only if ϕ is continuous, positive definite and ϕ(0) = 1.

Before starting the proof, we make some basic observations about positive definite functions.

• If ϕ is positive definite, then |ϕ| ≤ 1. Indeed, for any t, the positive semi-definiteness of
Mϕ[0, t] shows that 1−|ϕ(t)|2 ≥ 0 (note that ϕ(−t) = ϕ(t) is part of the condition of positive
definiteness).

• If ϕ and ψ are positive definite functions and θ(t) = ϕ(t)ψ(t), then θ is also positive def-
inite. The matrix C = Mθ[t1, . . . , tn] is the Hadamard product (entry-wise product) of
A = Mϕ[t1, . . . , tn] and B = Mψ[t1, . . . , tn]. It is a theorem of Schur that a Hadamard
product of positive semi-definite matrices is also positive demi-definite. It is not hard to
see: As A is positive semi-definite, we can find random variables X1, . . . , Xn such that
ai,j = E[XiXj ]. Similarly B = E[YiYj ] for some random variables Y1, . . . , Yn. We can con-
struct Xis and Yjs on the same probability space, so that (X1, . . . , Xn) is independent of
(Y1, . . . , Yn). Then, the covariance matrix of Zi = XiYi, 1 ≤ i ≤ n, is precisely C. Hence C
is positive semi-definite.

• For any nice function c : R 7→ C, we have∫ ∫
c(t)c(s)ϕ(t− s)dtds ≥ 0.(28)

This is just a continuum analogue of
∑

j,k cjckϕ(tj − tk) and can be got by approximating
the integral by sums. We omit details.

Now we come to the proof of Bochner’s theorem. What we need to prove is that given a continu-
ous positive definite function ϕ satisfying ϕ(0), there is a probability measure whose characteristic
function it is. The idea is simple. We have already seen inversion formulas that recover a measure
from its characteristic function. We just apply these inversion formulas to ϕ and then try to show
that the object we get is a probability measure.

Proof of Bochner’s theorem. Let ϕ be a continuous, positive-definite function such that ϕ(0) = 1.

Case: ϕ is absolutely integrable: Taking a cue from the Fourier inversion formula,

f(x) =
1

2π

∫
R
ϕ(t)e−itxdt.
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The integral is well-defined as ϕ is bounded. We want to show that f is a probability density. First
we show that f is non-negative11. Fix an interval IM = [−M,M ] and observe that

f(x) =
1

2π(2M)

∫
IM

∫
R
eix(t−s)ϕ(t− s)dtds (the inner integral does not depend on s)

=
1

2π(2M)

∫
IM

∫
IM

eix(t−s)ϕ(t− s)dtds+
1

2π(2M)

∫
IM

∫
IcM

eix(t−s)ϕ(t− s)dtds.

The first integral is positive by (28) (take c(t) = eixt1|t|≤M ). As for the second integral, we claim
that it goes to zero as M → ∞. Indeed, fix δ > 0 and observe that for |s| ≤ (1 − δ)M , the inner
integral is less than cM :=

∫
IδMc
|ϕ(u)|du (as |t− s| ≥ δM for any |s| < (1− δ)M and any |t| > M ).

If |s| > (1 − δ)M , we just use the trivial bound C :=
∫
R |ϕ| for the inner integral. Overall, the

bound for the second term becomes
1

2π(2M)
(2(1− δ)McM + CδM) ≤ cM + δC.

Let M → ∞ and then δ ↓ 0 (or just take δ = 1√
M

) to see that this goes to zero as M → ∞. This
proves that f(x) ≥ 0 for all x.

The formula for f shows that it is the inverse Fourier transform (need an argument first showing
integrability of f ) of ϕ (up to a factor of 1/2π). Applying the Fourier inversion formula, we see
that ϕ(t) =

∫
R f(x)eitxdx, showing that ϕ is the characteristic function of the measure f(x)dx. In

particular,
∫
R f(x)dx = ϕ(0) = 1 showing that f is a probability density.

General case: For any σ > 0, define ϕσ(t) = ϕ(t)e−σ
2t2/2 (the idea behind: If ϕ is the characteristic

function of a random variable X , then ϕσ would be that of X + σZ, where Z ∼ N(0, 1)). Since
ϕ is bounded, ϕσ is absolutely integrable for any σ > 0. Further, ϕσ is continuous and positive
definite by the Schur product theorem. Thus, by the first case, ϕσ is the characteristic function of
a measure µσ (in fact, dµσ(x) = fσ(x)dx, where fσ(x) = 1

2π

∫
R e
−itxϕσ(t)dt).

ϕσ → ϕ point-wise as σ ↓ 0. By the second part of Lévy’s continuity theorem, this shows that
ϕ is a characteristic function of the probability measure µ which is the distributional limit of µσ as
σ ↓ 0. �

11It may be easier to first see the following formal argument. Fix x ∈ R and use c(t) = eixt in (28) to get

0 ≤
∫ ∫

eix(t−s)ϕ(t− s)dtds =

∫ [∫
eixuϕ(u)du

]
ds

= f(x)

(∫
1ds

)
.

Of course, the integral here is infinite, hence the proof is only formal, but it gives a hint why f(x) ≥ 0. The actual proof

makes this precise by integrating s over a finite interval.
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Remark 8

Fourier analysis on general locally compact abelian groups goes almost in parallel to that
on the real line. If G is a locally compact abelian group (eg., Rd, (S1)d, Zd, finite abelian
groups, their products), then the set of characters (continuous homomorphisms from G to
S1) form a collection Ĝ called the dual of G. It can be endowed with a topology (basically
of point-wise convergence on G) and these characters form a dense set in L2(G) (w.r.t. Haar
measure). For a measure µ on G, one defines its Fourier transform µ̂ : Ĝ 7→ C by µ̂(χ) =∫
G χ(x)dµ(x). Plancherel’s theorem, Lévy’s theorem, Bochner’s theorem all go through with

minimal modification of languagea.

aA good resource is the book Fourier analysis on groups by Walter Rudin.

61


	1. Introduction
	2. Some basic tools in probability
	3. Applications of first and second moment methods
	4. Applications of Borel-Cantelli lemmas and Kolmogorov's zero-one law
	5. Weak law of large numbers
	6. Applications of weak law of large numbers
	7. Modes of convergence
	8. Uniform integrability
	9. Strong law of large numbers
	10. The law of iterated logarithm
	11. Proof of LIL for Bernoulli random variables
	12. Hoeffding's inequality
	13. Random series with independent terms
	14. Central limit theorem - statement, heuristics and discussion
	15. Strategies of proof of central limit theorem
	16. Central limit theorem - two proofs assuming third moments
	17. Central limit theorem for triangular arrays
	18. Two proofs of the Lindeberg-Feller CLT
	19. Sums of more heavy-tailed random variables
	20. Appendix: Characteristic functions and their properties

