

MID-TERM EXAMINATION 1 (PROBABILITY THEORY)

28/SEP/2019, 10:00-12:30

ANSWER AS MUCH AS YOU CAN. THE MAXIMUM YOU CAN SCORE IS 50.

Problem 1. (4 × 4 marks) State whether true or false and justify.

- (1) If X is a random variable such that $\mathbf{E}[|X|^n] \leq n2^n$ for all n , then $|X| \leq 2$, a.s.
- (2) Let $X : [0, 1] \mapsto \mathbb{R}$ be Borel measurable. If the sigma-algebra generated by X is the Borel sigma-algebra on $[0, 1]$, then X is an injective function.
- (3) If $\{\mu_i : i \in I\} \subseteq \mathcal{P}(\mathbb{R})$ is tight, then $\{\mu_i \otimes \mu_j : i, j \in I\}$ is tight in $\mathcal{P}(\mathbb{R}^2)$.
- (4) If $\mu \ll \nu$ and X is the density of μ with respect to ν , then $\nu \ll \mu$ if and only if $X > 0$ a.s. $[\nu]$.

Problem 2. (10 marks) Let $(\Omega, \mathcal{F}, \mu)$ be a probability space.

- (1) Let $S \subseteq \mathcal{F}$ be a finite collection of sets. Then show that $\sigma(S)$ is also a finite collection.
- (2) Let \mathcal{A} be an algebra that generates \mathcal{F} . For any $A \in \mathcal{F}$ and any $\epsilon > 0$, show that there is some $B \in \mathcal{A}$ such that $\mu(A \Delta B) < \epsilon$ (here $A \Delta B = (A \setminus B) \cup (B \setminus A)$ is the symmetric difference).

Problem 3. (10 marks)

- (1) Let S be the set of all $x \in [0, 1]$ whose base b -expansion contains all the digits $0, 1, \dots, b-1$, for every $b \in \{2, 3, 4, \dots\}$. Show that $\lambda(S) = 1$, where λ is the Lebesgue measure on $[0, 1]$.
- (2) Let X, Y be i.i.d. $N(0, 1)$ random variables. Find the density of X/Y .

Problem 4. (10 marks) Let $X \geq 0$ be a random variable on $(\Omega, \mathcal{F}, \mathbf{P})$.

- (1) Assume that $\mathbf{E}[X^p] < \infty$ and $\mathbf{E}[X^{-p}] < \infty$ for some $p > 0$. Then show that $\log X$ is integrable.
- (2) Show that $\mathbf{E}[X] < \infty$ if and only if $\sum_{n=1}^{\infty} \mathbf{P}\{X \geq n\} < \infty$.

Problem 5. (10 marks) Let μ_n, μ be Borel probability measures on \mathbb{R} . Show that $\mu_n \xrightarrow{d} \mu$ in each of the following situations (the two parts are not related to each other).

- (1) $\int f d\mu_n \rightarrow \int f d\mu$ for each bounded continuous function $f : \mathbb{R} \mapsto \mathbb{R}$.
- (2) μ_n, μ have densities φ_n, φ with respect to Lebesgue measure on \mathbb{R} , and $\varphi_n \rightarrow \varphi$ a.e. (w.r.t Lebesgue measure).