
PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Problem 1. Let F be a σ-algebra of subsets of Ω.

(1) Show that F is closed under countable intersections (
⋂
n
An), under set differences

(A \B), under symmetric differences (A∆B).

(2) If An is a countable sequence of subsets of Ω, the set lim supnAn (respectively
lim infnAn) is defined as the set of all ω ∈ Ω that belongs to infinitely many (re-
spectively, all but finitely many) of the sets An.

If An ∈ F for all n, show that lim supAn ∈ F and lim inf An ∈ F . [Hint: First
express lim supAn and lim inf An in terms of Ans and basic set operations].

(3) If A1 ⊆ A2 ⊆ A3 ⊆ . . ., what are lim supAn and lim inf An?

Problem 2. Let (Ω,F) be a set with a σ-algebra.

(1) Suppose P is a probability measure on F . If An ∈ F and An increase to A (re-
spectively, decrease to A), show that P(An) increases to (respectively, decreases
to) P(A).

(2) Suppose P : F → [0, 1] is a function such that (a) P(Ω) = 1, (b) P is finitely additive,
(c) if An, A ∈ F and Ans increase to A, then P(An) ↑ P(A). Then, show that P is a
probability measure on F .

Problem 3. Suppose S is a π-system and is further closed under complements (A ∈ S
implies Ac ∈ S). Show that S is an algebra.

Problem 4. Let P be a p.m. on a σ-algebra F and suppose S ⊆ F be a π-system. If
Ak ∈ S for k ≤ n, write P(A1 ∪A2 ∪ . . . ∪An) in terms of probabilities of sets in S.

Problem 5. Let (Ω,F ,P) be a probability space. Let G = {A ∈ F : P(A) = 0 or 1}. Show
that G is a σ-algebra.

Problem 6. Suppose σ(S) = F and P,Q are two probability measure on F . If P(A) = Q(A)
for all A ∈ S, is it necessarily true that P(A) = Q(A) for all A ∈ F? If yes, prove it. If not,
give a counterexample.
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Problem 7. (1) Let B be the Borel sigma-algebra of R. Show that B contains all closed
sets, all compact sets, all intervals of the form (a, b] and [a, b).

(2) Show that there is a countable family S of subsets of R such that σ(S) = BR.

(3) Let K be the 1/3-Cantor set. Show that µ∗(K) = 0.

Problem 8. (1) Let X be an arbitrary set. Let S be the collection of all singletons in
Ω. Describe σ(S).

(2) Let S = {(a, b]∪[−b,−a) : a < b are real numbers}. Show that σ(S) is strictly smaller
than the Borel σ-algebra of R.

(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that
any set in S either contains a and b both, or contains neither. Let F = σ(S). Show
that any set in F has the same property (either contains both a and b or contains
neither).

Problem 9. Let Ω be an infinite set and let A = {A ⊆ Ω : A is finite or Ac is finite }. Define
µ : A → R+ by µ(A) = 0 if A is finite and µ(A) = 1 if Ac is finite.

(1) Show that A is an algebra and that µ is finitely additive on A.

(2) Under what conditions does µ extend to a probability measure on F = σ(A)?

Problem 10. If G ⊆ F are sigma algebras on Ω and F is countably generated, then is it
necessarily true that G is countably generated? [Soln: False. G =Countable-cocountable
sigma algebra of R and F = BR.]

Problem 11. Let A1, A2, . . . be a finite or countable partition of a non-empty set Ω (i.e.,
Ai are pairwise disjoint and their union is Ω). What is the σ-algebra generated by the
collection of subsets {An}? What is the algebra generated by the same collection of
subsets?

Problem 12. Let X = [0, 1]N be the countable product of copies of [0, 1]. We define two
sigma algebras of subsets of X.

(1) Define a metric on X by d(x, y) = supn |xn − yn|. Let BX be the Borel sigma-algebra
of (X, d). [Note: For those who know topology, it is better to define BX as the
Borel sigma algebra for the product topology on X. The point is that the metric
is flexible. We can take d(x, y) =

∑
n |xn − yn|2−n or many or other things. What

matters is only the topology on X.]
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(2) Let CX be the sigma-algebra generated by the collection of all cylinder sets. Recall
that cylinder sets are sets of the form A = U1 ×U2 × . . .×Un ×R×R× . . . where Ui
are Borel subsets of [0, 1].

Show that BX = CX .

Problem 13. Let µ be the Lebesgue p.m. on the Cartheodary σ-algebra B̄ and let µ∗ be
the corresponding outer Lebesgue measure defined on all subsets of [0, 1]. We say that a
subset N ⊆ [0, 1] is a null set if µ∗(N) = 0. Show that

B̄ = {B ∪N : B ∈ B and N is null}

where B is the Borel σ-algebra of [0, 1].
[Note: The point of this exercise is to show how much larger is the Lebesgue σ-algebra

than the Borel σ-algebra. The answer is, not much. Up to a null set, every Lebesgue
measurable set is a Borel set. However, cardinality-wise, there is a difference. The
Lebesgue σ-algebra is in bijection with 2R while the Borel σ-algebra is in bijection with
R.]

Problem 14. Suppose (Ω,F ,P) is a probability space. Say that a subset N ⊆ Ω is P-null
if there exists A ∈ F with P(A) = 0 and such that N ⊆ A. Define G = {A ∪ N : A ∈
F and N is null}.

(1) Show that G is a σ-algebra.

(2) For A ∈ G, write A = B ∪N with b ∈ F and a null set N , and define Q(A) = P(B).
Show that Q is well-defined, that Q is a probability measure on G and Q

∣∣∣
F

= P.

[Note: G is called the P-completion of F . It is a cheap way to enlarge the σ-algebra
and extend the measure to the larger σ-algebra. Another description of the extended
σ-algebra is G = {A ⊆ Ω : ∃B,C ∈ F such that B ⊆ A ⊆ C and P(B) = P(C)}. Combined
with the previous problem, we see that the Lebesgue σ-algebra is just the completion
of the Borel σ-algebra under the Lebesgue measure. However, note that completion
depends on the probability measure (for a discrete probability measure on R, the com-
pletion will be the power set σ-algebra!). For this reason, we prefer to stick to the Borel
σ-algebra and not bother to extend it.]

Problem 15. Follow these steps to obtain Sierpinski’s construction of a non-measurable
set. Here µ∗ is the outer Lebesgue measure on R.

(1) Regard R as a vector space over Q and choose a basis H (why is it possible?).

(2) Let A0 = H ∪ (−H) = {x : x ∈ H or − x ∈ H}. For n ≥ 1, define An := An−1 − An−1

(may also write An = An−1 + An−1 since A0 is symmetric about 0). Show that⋃
n≥0

⋃
q≥1

1
qAn = R where 1

qAn is the set {xq : x ∈ An}.
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(3) Let N := min{n ≥ 0 : µ∗(An) > 0} (you must show that N is finite!). If AN is
measurable, show that ∪n≥N+1An = R.

(4) Get a contradiction to the fact that H is a basis and conclude that AN cannot be
measurable.

[Remark: If you start with H which has zero Lebesgue measure, then N ≥ 1 and A :=
EN−1 is a Lebesgue measurable set such that A + A is not Lebesgue measurable! That
was the motivation for Sierpinski. To find such a basis H, show that the Cantor set
spans R and then choose a basis H contained inside the Cantor set.]

Problem 16. We saw that for a Borel probability measure µ on R, the pushforward of
Lebesgue measure on [0, 1] under the map F−1

µ : [0, 1] → R (as defined in lectures) is
precisely µ. This is also a practical tool in simulating random variables. We assume
that a random number generator gives us uniform random numbers from [0, 1]. Apply
the above idea to simulate random numbers from the following distributions (in mat-
lab/mathematica or a program of your choice) a large number of times and compare the
histogram to the actual density/mass function.

(1) Uniform distribution on [a, b], (2) Exponential(λ) distribution, (3) Cauchy distribu-
tion, (4) Poisson(λ) distribution. What about the normal distribution?

Problem 17. Let Ω = X = R and let T : Ω → X be defined by T (x) = x. We give a pair of
σ-algebras, F on Ω and G on X by taking F and G to be one of 2R or BR or {∅,R}. Decide
for each of the nine pairs, whether T is measurable or not.

Problem 18. (1) Define T : Ω→ Rn by T (ω) = (1A1(ω), . . . ,1An(ω)) where A1, . . . , An are
given subsets of Ω. What is the smallest σ-algebra on Ω for which T becomes a
random variable?

(2) Suppose (Ω,F ,P) is a probability space and assume that Ak ∈ F . Describe the
push-forward measure P ◦ T−1 on Rn.

Problem 19. For k ≥ 0, define the functions rk : [0, 1) → R by writing [0, 1) =
⊔

0≤j<2k
I

(k)
j

where I(k)
j is the dyadic interval [j2−k, (j + 1)2−k) and setting

rk(x) =

−1 if x ∈ I(k)
j for odd j,

+1 if x ∈ I(k)
j for even j.

Fix n ≥ 1 and define Tn : [0, 1) → {−1, 1}n by Tn(x) = (r0(x), . . . , rn−1(x)). Find the push-
forward of the Lebesgue measure on [0, 1) under Tn
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Problem 20. Let G be the countable-cocountable sigma algebra on R. Define the proba-
bility measure µ on G by µ(A) = 0 if A is countable and µ(A) = 1 if Ac is countable. Show
that µ is not the push-forward of Lebesgue measure on [0, 1], i.e., there does not exist a
measurable function T : [0, 1] 7→ Ω (w.r.t. the σ-algebras B and G) such that µ = λ ◦ T−1.

Problem 21. (1) If T : Rn → Rm, show that T is Borel measurable if it is (a) contin-
uous or (b) right continuous or (c) lower semicontinuous or (d) non-decreasing
(take m = n = 1 for the last one).

(2) If Rn and Rm are endowed with the Lebesgue sigma-algebra, show that even if T
is continuous, it need not be measurable! Just do this for n = m = 1.

Problem 22. Show that composition of random variables is a random variable. Show
that real-valued random variables on a given (Ω,F) are closed under linear combina-
tions, under multiplication, under countable suprema (or infima) and under limsup (or
liminf) of countable sequences.

Problem 23. Let µn = 1
n

n∑
k=1

δk/n and let µ be the uniform p.m. on [0, 1]. Show directly by

definition that d(µn, µ)→ 0 as n→∞.

Problem 24 (Change of variable for densities). (1) Let µ be a p.m. on R with den-
sity f by which we mean that its CDF Fµ(x) =

∫ x
−∞ f(t)dt (you may assume that

f is continuous, non-negative and the Riemann integral
∫

R f = 1). Then, find the
(density of the) push forward measure of µ under (a) T (x) = x+ a (b) T (x) = bx (c)
T is any increasing and differentiable function.

(2) If X has N(µ, σ2) distribution, find the distribution of (X − µ)/σ.

Problem 25. (1) Let X = (X1, . . . , Xn). Show that X is an Rd-valued r.v. if and
only if X1, . . . , Xn are (real-valued) random variables. How does σ(X) relate to
σ(X1), . . . , σ(Xn)?

(2) Let X : Ω1 → Ω2 be a random variable. If X(ω) = X(ω′) for some ω, ω′ ∈ Ω1, show
that there is no set A ∈ σ(X) such that ω ∈ A and ω′ 6∈ A or vice versa. [Extra! If
Y : Ω1 → Ω2 is another r.v. which is measurable w.r.t. σ(X) on Ω1, then show that
Y is a function of X].

Problem 26 (Lévy metric). (1) Show that the Lévy metric on P(Rd) defined in class
is actually a metric.
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(2) Show that under the Lévy metric, P(Rd) is a complete and seperable metric space.

Problem 27 (Lévy-Prohorov metric). If (X, d) is a metric space, let P(X) denote the
space of Borel probability measures on X. For µ, ν ∈ P(X), define

D(µ, ν) = inf{r ≥ 0 : µ(Ar) + r ≥ ν(A) and ν(Ar) + r ≥ µ(A) for all closed sets A}.

Here Ar = {y ∈ X : d(x, y) ≤ r for some x ∈ A} is the closed r-neighbourhood of A.

(1) Show that D is a metric on P(X).

(2) When X is Rd, show that this agrees with the definition of Lévy metric given in
class (i.e., for any µn, µ, we have that µn → µ in both metrics or neither).

Problem 28 (Lévy metric). Let P([−1, 1]) ⊆ P(R) be the set of all Borel probability mea-
sures µ such that µ([−1, 1]) = 1. For ε > 0, find a finite ε-net for P([−1, 1]). [Note: Recall
that an ε-net means a subset such that every element of P([−1, 1]) is within ε distance
of some element of the subset. Since P([−1, 1]) is compact, we know that a finite ε-net
exists for all ε > 0.]

Problem 29. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two
binary expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 30 (Coin tossing space). Continuing with the previous example, consider the
mapping X : [0, 1] → {0, 1}N defined by X(t) = (X1(t), X2(t), . . .). With the Borel σ-algebra
on [0, 1] and the σ-algebra generated by cylinder sets on {0, 1}N, show that X is a random
variable and find the push-foward of the Lebesue measure under X.

Problem 31 (Equivalent conditions for weak convergence). Show that the following

statements are equivalent to µn
d→ µ (you may work in P(R)).

(1) lim supn→∞ µn(F ) ≤ µ(F ) if F is closed.

(2) lim infn→∞ µn(G) ≥ µ(G) if G is open.
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(3) lim supn→∞ µn(A) = µ(A) if A ∈ F and µ(∂A) = 0.

Problem 32. Fix µ ∈ P(R). For s ∈ R and r > 0, let µr,s ∈ P(R) be defined as µr,s(A) =
µ(rA + s) where rA + s = {rx + s : x ∈ A}. For which R ⊆ (0,∞) and S ⊆ R is it true that
{µr,s : r ∈ R, s ∈ S} a tight family? [Remark: If not clear, just take µ to be the Lebesgue
measure on [0, 1].]

Problem 33. (1) Show that the family of Normal distributions {N(µ, σ2) : µ ∈ R and σ2 >

0} is not tight.

(2) For what A ⊆ R and B ⊆ (0,∞) is the restricted family {N(µ, σ2) : µ ∈ A and σ2 ∈
B} tight?

Problem 34. (1) Show that the family of exponential distributions {Exp(λ) : λ > 0} is
not tight.

(2) For what A ⊆ R is the restricted family {Exp(λ) : λ > 0} tight?

Problem 35. Suppose µn, µ ∈ P(R) and that the distribution function of µ is continuous.

If µn
d→ µ, show that Fµn(t) − Fµ(t) → 0 uniformly over t ∈ R. [Restatement: When Fµ

is continuous, convergence to µ in Lévy-Prohorov metric also implies convergence in
Kolmogorov-Smirnov metric. ]

Problem 36. Show that the statement in the previous problem cannot be quantified.
That is,

Given any εn ↓ 0 (however fast) and δn ↓ 0 (however slow), show that there is some µn, µ
with Fµ continuous, such that dLP (µn, µ) ≤ εn and dKS(µn, µ) ≥ δn.

Problem 37. Consider the family of Normal distributions, {N(µ, σ2) : µ ∈ R, σ2 > 0}. Show
that the map (µ, σ2) → N(µ, σ2) from R × R+ to P(R) is continuous. (Complicated way of

saying that if (µn, σ2
n)→ (µ, σ2), then N(µn, σ2

n) d→ N(µ, σ2)).
Do the same for other natural families if distributions, (1) Exp(λ), (2) Uniform[a, b],

(3) Bin(n, p) (fix n and show continuity in p), (4) Pois(λ).

Problem 38. Suppose µn, µ are discrete probability measures supported on Z having

probability mass functions (pn(k))k∈Z and (p(k))k∈Z. Show that µn
d→ µ if and only if

pn(k)→ p(k) for each k ∈ Z.
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Problem 39. Given a Borel p.m. µ on R, show that it can be written as a convex combi-
nation αµ1 + (1 − α)µ2 with α ∈ [0, 1], where µ1 is a purely atomic Borel p.m and µ2 is a
Borel p.m with no atoms.

Problem 40. Let F be a CDF on R.

(1) Show that F can have at most countably many discontinuity points. [Hint: How
many jumps of size more than 1/10 can it have?]

(2) Give example of a CDF that has a dense set of discontinuity points.

Problem 41. Let X be a random variable with distribution µ and Xn are random vari-
ables defined as follows. If µn is the distribution of Xn, in each case, show that µn

d→ µ

as n→∞.

(1) (Truncation). Xn = (X ∧ n) ∨ (−n).

(2) (Discretization). Xn = 1
nbnXc.

Problem 42. Consider the space X = [0, 1]N := {x = (x(1), x(2), . . .) : 0 ≤ x(i) ≤ 1 for each i ∈
N}. Define the metric d(x,y) = supi

|x(i)−y(i)|
i .

(1) Show that xn → x in (X, d) if and only if xn(i)→ x(i) for each i, as n→∞.
[Note: What matters is this pointwise convergence criterion, not the specific

metric. The resulting topology is called product topology. The same convergence
would hold if we had defined the metric as d(x,y) =

∑
i 2−i|x(i) − y(i)| or d(x,y) =∑

i i
−2|x(i) − y(i)| etc., But not the metric supi |x(i) − y(i)| as convergence in this

metric is equivalent to uniform convergence over all i ∈ N].

(2) Show that X is compact.

[Note: What is this problem doing here? The purpose is to reiterate a key technique we
used in the proof of Helly’s selection principle!]

Problem 43. Recall the Cantor set C =
⋂
nKn where K0 = [0, 1], K1 = [0, 1/3]∪ [2/3, 1], etc.

In general, Kn =
⋃

1≤j≤2n [an,j , bn,j ] where bn,j − an,j = 3−n for each j.

(1) Let µn be the uniform probability measure on Kn. Describe its CDF Fn.

(2) Show that Fn converges uniformly to a CDF F .

(3) Let µ be the probability measure with CDF equal to F . Show that µ(C) = 1.

Problem 44. Let µ ∈ P(R).
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(1) For any n ≥ 1, define a new probability measure by µn(A) = µ(n.A) where n.A =
{nx : x ∈ A}. Does µn converge as n→∞?

(2) Let µn be defined by its CDF

Fn(t) =


0 if t < −n,

F (t) if − n ≤ t < n,

1 if t ≥ n.

Does µn converge as n→∞?

(3) In each of the cases, describe µn in terms of random variables. That is, if X has
distribution µ, describe a transformation Tn(X) that has the distribution µn.

Problem 45 (Bernoulli convolutions). For any λ > 1, define Xλ : [0, 1] → R by X(ω) =∑∞
k=1 λ

−kXk(ω). Check that Xλ is measurable, and define µλ = µX−1
λ . Show that for any

λ > 2, show that µλ is singular w.r.t. Lebesgue measure.

Problem 46. For p = 1, 2,∞, check that ‖X − Y ‖p is a metric on the space Lp :=
{[X] : ‖X‖p < ∞} (here [X] denotes the equivalence class of X under the above equiv-
alence relation).

Problem 47. (1) Give an example of a sequence of r.v.s Xn such that lim inf E[Xn] <
E[lim inf Xn].

(2) Give an example of a sequence of r.v.s Xn such that Xn
a.s.→ X, E[Xn] = 1, but

E[X] = 0.

Problem 48 (Alternate construction of Cantor measure). Let K1 = [0, 1/3] ∪ [2/3, 1],
K2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1], etc., be the decreasing sequence of compact
sets whose intersection is K. Observe that Kn is a union of 2n intervals each of length
3−n. Let µn be the p.m. which is the “renormalized Lebesgue measure” on Kn. That is,

µn(A) := 3n2−nµ(A ∩Kn) for A ∈ BR. Then each µn is a Borel p.m. Show that µn
d→ µ, the

Cantor measure (which was defined differently in class).

Problem 49 (A quantitative characterization of absolute continuity). Suppose µ� ν.
Then, show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε.
(The converse statement is obvious but worth noticing). [Hint: Argue by contradiction].
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Problem 50. Suppose f : [a, b] → R is a Borel measurable function. Then, show that
g(x) :=

∫ x
0 f(u)du is a continuous function on [0, 1]. [Note: It is in fact true that g is

differentiable at almost every x and that g′ = f a.s., but that is a more sophisticated
fact, called Lebesgue’s differentiation theorem. In this course, we only need Lebesgue
integration, not differentiation. The latter may be covered in your measure theory class].

Problem 51. (Differentiating under the integral). Let f : [a, b] × R → R, satisfy the
following assumptions.

(1) x→ f(x, θ) is Borel measurable for each θ.

(2) θ → f(x, θ) is continuously differentiable for each x.

(3) f(x, θ) and ∂f
∂θ (x, θ) are uniformly bounded functions of (x, θ).

Then, justify the following “differentiation under integral sign” (including the fact that
the integrals here make sense).

d

dθ

∫ b

a
f(x, θ)dx =

∫ b

a

∂f

∂θ
(x, θ) dx

[Hint: Remember that derivative is the limit of difference quotients, h′(t) = limε→0
h(t+ε)−h(t)

ε .

Problem 52. (1) Let X ≥ 0 be a r.v on (Ω,F ,P) with 0 < E[X] < ∞. Then, define
Q(A) = E[X1A]/E[X] for any A ∈ F . Show that Q is a probability measure on F .
Further, show that for any bounded random variable Y , we have EQ[Y ] = E[Y X]

E[X] .

(2) If µ and ν are Borel probability measures on the line with continuous densities
f and g (respectively) w.r.t. Lebesgue measure. Under what conditions can you
assert that µ has a density w.r.t ν? In that case, what is that density?

Problem 53. For p = 1, 2,∞, check that ‖X − Y ‖p is a metric on the space Lp :=
{[X] : ‖X‖p < ∞} (here [X] denotes the equivalence class of X under the equivalence
relation X ∼ Y if P(X = Y ) = 1).

Problem 54. Let X be a non-negative random variable.

(1) Show that E[X] =
∫∞
0 P{X > t}dt (in particular, if X is a non-negative integer

valued, then E[X] =
∑∞

n=1 P(X ≥ n)).

(2) Show that E[Xp] =
∫∞
0 ptp−1P{X ≥ t}dt for any p > 0.

Problem 55. Let X be a non-negative random variable. If E[X] is finite, show that∑∞
n=1 P{X ≥ an} is finite for any a > 0. Conversely, if

∑∞
n=1 P{X ≥ an} for some a > 0,

show that E[X] is finite.
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Problem 56. Show that the values E[f ◦ X] as f varies over the class of all smooth
(infinitely differentiable), compactly supported functions determine the distribution of
X.

Problem 57. (i) Express the mean and variance of of aX + b in terms of the same quan-
tities for X (a, b are constants).

(ii) Show that Var(X) = E[X2]−E[X]2.

Problem 58. Compute mean, variance and moments (as many as possible!) of the Nor-
mal(0,1), exponential(1), Beta(p,q) distributions.

Problem 59. (1) Suppose Xn ≥ 0 and Xn → X a.s. If E[Xn] → E[X], show that
E[|Xn −X|]→ 0.

(2) If E[|X|] <∞, then E[|X|1|X|>A]→ 0 as A→∞.

Problem 60. (1) Suppose (X,Y ) has a continuous density f(x, y). Find the density of
X/Y . Apply to the case when (X,Y ) has the standard bivariate normal distribution
with density f(x, y) = (2π)−1 exp{−x2+y2

2 }.

(2) Find the distribution of X + Y if (X,Y ) has the standard bivariate normal distri-
bution.

(3) Let U = min{X,Y } and V = max{X,Y }. Find the density of (U, V ).

Problem 61. Let µn, µ ∈ P(Rn). Show that µn
d→ µ if and only if

∫
fdµn →

∫
fdµ for every

f ∈ Cb(R). What if we only assume
∫
fdµn →

∫
fdµ for all f ∈ Cc(Rn) - can we conclude

that µn
d→ µ?

Problem 62. Let µn, µ ∈ P(Rn) having densities fn, f with respect to Lebesgue measure.

If fn → f a.e. (w.r.t. Lebesgue measure), show that µn
d→ µ.

Problem 63 (Moment matrices). Let µ ∈ P(R) and let αk =
∫
xkdµ(x) (assume that all

moments exist). Then, for any n ≥ 1, show that the matrix (αi+j)0≤i,j≤n is non-negative
definite. [Suggestion: First solve n = 1].

Problem 64. Let X be a non-negative random variable with all moments (i.e., E[Xp] <∞
for all p <∞). Show that log E[Xp] is a convex function of p.

11



Problem 65. (1) Let µn, µ ∈ P(Rd). Assume that µn has density fn and µ has density

f w.r.t Lebesgue measure on Rn. If fn(t)→ f(t) for all t, then show that µn
d→ µ.

(2) Show that N(µn, σ2
n) d→ N(µ, σ) if and only if µn → µ and σ2

n → σ2.

Problem 66. (1) Let X ∼ Γ(α, 1) and Y ∼ Γ(α′, 1) be independent random variables
on a common probability space. Find the distribution of X

X+Y .

(2) If U, V are independent and have uniform([0,1]) distribution, find the distribution
of U + V .

Problem 67. Let Ω = {1, 2, . . . , n}. For a probability measure P on Ω, we define it “en-
tropy” H(P) := −

∑n
k=1 pk log pk where pk = P{k} and it is understood that x log x = 0 if

x = 0. Show that among all probability measures on Ω, the uniform probability measure
(the one with pk = 1

n for each k) is the unique maximizer of entropy.

Problem 68. (1) If µn � ν for each n and µn
d→ µ, then is it necessarily true that

µ � ν? If µn ⊥ ν for each n and µn
d→ µ, then is it necessarily true that µ ⊥ ν? In

either case, justify or give a counterexample.

(2) Suppose X,Y are independent (real-valued) random variables with distribution µ

and ν respectively. If µ and ν are absolutely continuous w.r.t Lebesgue measure,
show that the distribution of X + Y is also absolutely continuous w.r.t Lebesgue
measure.

Problem 69. Suppose {µα : α ∈ I} and {νβ : α ∈ J} are two families of Borel probability
measures on R. If both these families are tight, show that the family {µα ⊗ νβ : α ∈ I, β ∈
J} is also tight.

Problem 70. Let X be a non-negative random variable. If E[X] ≤ 1, then show that
E[X−1] ≥ 1.

Problem 71. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?
12



(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two
binary expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 72. If A ∈ B(R2) has positive Lebesgue measure, show that for some x ∈ R the
set Ax := {y ∈ R : (x, y) ∈ A} has positive Lebesgue measure in R.

Problem 73 (A quantitative characterization of absolute continuity). Suppose µ� ν.
Then, show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε.
(The converse statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 74. Let Z1, . . . , Zn be i.i.d N(0, 1) and write Z for the vector with components
Z1, . . . , Zn. Let A be an m×n matrix and let µ be a vector in Rm. Then the m-dimensional
random vector X = µ + AZ is said to have distribution Nm(µ,Σ) where Σ = AAt (‘Normal
distribution with mean vector µ and covariance matrix Σ’).

(1) If m ≤ n and A has rank m, show that X has density (2π)−
m
2 exp{−1

2x
tA−1x} w.r.t

Lebesgue measure on Rm. In particular, note that the distribution depends only
on µ and AAt. ( Note: If m > n or if rank(A) < m, then satisfy yourself that X has
no density w.r.t Lebesgue measure on Rm - you do not need to submit this).

(2) Check that E[Xi] = µi and Cov(Xi, Xj) = Σi,j.

(3) What is the distribution of (i) (X1, . . . , Xk), for k ≤ n? (ii) BX, where B is a p ×m
matrix? (iii) X1 + . . .+Xm?

Problem 75. (1) If X,Y are independent random variables, show that Cov(X,Y ) = 0.

(2) Give a counterexample to the converse by giving an infinite sequence of random
variables X1, X2, . . . such that Cov(Xi, Xj) = 0 for any i 6= j but such that Xi are
not independent.

(3) Suppose (X1, . . . , Xm) has (joint) normal distribution (see the first question). If
Cov(Xi, Xj) = 0 for all i ≤ k and for all j ≥ k + 1, then show that (X1, . . . , Xk) is
independent of (Xk+1, . . . , Xm).

Problem 76. (1) Suppose 2 ≤ k < n. Give an example of random variables X1, . . . , Xn

such that any subset of k of these random variables are independent but no
subset of k + 1 of them is independent.

(2) Suppose (X1, . . . , Xn) has a multivariate Normal distribution. Show that if Xi are
pairwise independent, then they are independent.

13



Problem 77. Show that it is not possible to define uncountably many independent
Ber(1/2) random variables on the probability space ([0, 1],B, λ).

Problem 78. Let Xi, i ≥ 1 be random variables on a common probability space. Let
f : RN → R be a measurable function (with product sigma algebra on RN and Borel sigma
algebra on R) and let Y = f(X1, X2, . . .). Show that the distribution of Y depends only on
the joint distribution of (X1, X2, . . .) and not on the original probability space. [Hint: We
used this to say that if Xi are independent Bernoulli random variables, then

∑
i≥1Xi2−i

has uniform distribution on [0, 1], irrespective of the underlying probability space.]

Problem 79. Suppose (X1, . . . , Xn) has density f (w.r.t Lebesgue measure on Rn).

(1) If f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some one-variable functions gk,

k ≤ n. Then show that X1, . . . , Xn are independent. (Don’t assume that gk is a
density!)

(2) If X1, . . . , Xn are independent, then f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for

some one-variable densities g1, . . . , gn.

Problem 80. Among all n! permutations of [n], pick one at random with uniform proba-
bility. Show that the probability that this random permutation has no fixed points is at
most 1

2 for any n.

Problem 81. Suppose each of r = λn balls are put into n boxes at random (more than
one ball can go into a box). If Nn denotes the number of empty boxes, show that for any
δ > 0, as n→∞,

P
(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 82. Let Xn be i.i.d random variables such that E[|X1|] <∞. Define the random
power series f(z) =

∑∞
k=0Xnz

n. Show that almost surely, the radius of convergence of f
is equal to 1. [Note: Recall from Analysis class that the radius of convergence of a power
series

∑
cnz

n is given by (lim sup |cn|
1
n )−1].

Problem 83. (1) Let X be a real values random variable with finite variance. Show
that f(a) := E[(X − a)2] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X − a|]? [Hint: First consider X
that takes finitely many values with equal probability each].

14



Problem 84 (Existence of Markov chains). Let S be a countable set (with the power
set sigma algebra). Two ingredients are given: A transition matrix, that is, a function
p : S × S → [0, 1] be a function such that p(x, ·) is a probability mass function on S for
each x ∈ S. (1) An initial distribution, that is a probability mass function µ0 on S.

For n ≥ 0 define the probability measure νn on Sn+1 (with the product sigma algebra)
by

νn(A0 ×A1 × . . .×An) =
∑

(x0,...,xn)∈A0×...×An

µ0(x0)
n−1∏
j=0

p(xj , xj+1).

Show that νn form a consistent family of probability distributions and conclude that a
Markov chain with initial distribution µ0 and transition matrix p exists.

Problem 85. Show that it is not possible to define uncountably many independent
Ber(1/2) random variables on the probability space ([0, 1],B, λ).

Problem 86. Let (Ωi,Fi,Pi), i ∈ I, be probability spaces and let Ω = ×iΩi with F = ⊗iFi
and P = ⊗iPi. If A ∈ F , show that for any ε > 0, there is a cylinder set B such that
P(A∆B) < ε.

Problem 87. Let ξ, ξn be i.i.d. random variables with E[log+ ξ] <∞ and P(ξ = 0) < 1.

(1) Show that lim supn→∞ |ξn|
1
n = 1 a.s.

(2) Let cn be (non-random) complex numbers. Show that the radius of convergence
of the random power series

∑∞
n=0 cnξnz

n is almost surely equal to the radius of
convergence of the non-random power series

∑∞
n=0 cnz

n.

Problem 88. (Ergodicity of product measure). This problem guides you to a proof of a
different zero-one law.

(1) Consider the product measure space (RZ,B(RZ),⊗Zµ) where µ ∈ P(R). Define
τ : RZ → RZ by (τω)n = ωn+1. Let I = {A ∈ B(RZ) : τ(A) = A}. Then, show that I is
a sigma-algebra (called the invariant sigma algebra) and that every event in I has
probability equal to 0 or 1.

(2) Let Xn, n ≥ 1 be i.i.d. random variables on a common probability space. Suppose
f : RN → R is a measurable function such that f(x1, x2, . . .) = f(x2, x3, . . .) for
any (x1, x2, . . .) ∈ RN. Then deduce from the first part that the random variable
f(X1, X2, . . .) is a constant, a.s.

[Hint: Approximate A by cylinder sets. Use translation by τm to show that P(A) = P(A)2.]
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Problem 89. Consider the invariant sigma algebra and the tail sigma algebra. Show that
neither is contained in the other.

Problem 90. (Chung-Erdös inequality).

(1) Let Ai be events in a probability space. Show that

P

{
n⋃
k=1

Ak

}
≥

(
∑n

k=1 P(Ak))2∑n
k,`=1 P(Ak ∩A`)

(2) Place rm balls in m bins at random and count the number of empty bins Zm. Fix
δ > 0. If rm > (1 + δ)m logm, show that P(Zm > 0) → 0 while if rm < (1 − δ)m logm,
show that P(Zm > 0)→ 1.

Problem 91. Give example of an infinite sequence of pairwise independent random vari-
ables for which Kolmogorov’s zero-one law fails.

Problem 92. Let Xi, i ∈ I be random variables on a probability space. Suppose that for
some p > 0 and M <∞ we have E[|Xi|p] ≤M for all i ∈ I. Show that the family {Xi : i ∈ I}
is tight (by which we mean that {µXi : i ∈ I} is tight, where µXi is the distribution of Xi).

Problem 93. Let Xi be i.i.d. random variables with zero mean and finite variance. Let
Sn = X1 + . . .+Xn. Show that the collection { 1√

n
Sn : n ≥ 1} is tight. [Note: Tightness is es-

sential for convergence in distribution. In the case at hand, convergence in distribution
to N(0, 1) is what is called central limit theorem. We shall see it later.]

Problem 94. Among all n! permutations of [n], pick one at random with uniform proba-
bility. Show that the probability that this random permutation has no fixed points is at
most 1

2 for any n.

Problem 95. Suppose each of r = λn balls are put into n boxes at random (more than
one ball can go into a box). If Nn denotes the number of empty boxes, show that for any
δ > 0, as n→∞,

P
(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 96. Let Xn be i.i.d random variables such that E[|X1|] <∞. Define the random
power series f(z) =

∑∞
k=0Xnz

n. Show that almost surely, the radius of convergence of f
is equal to 1. [Note: Recall from Analysis class that the radius of convergence of a power
series

∑
cnz

n is given by (lim sup |cn|
1
n )−1].
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Problem 97. (1) Let X be a real values random variable with finite variance. Show
that f(a) := E[(X − a)2] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X − a|]? [Hint: First consider X
that takes finitely many values with equal probability each].

Problem 98. Let Xi be i.i.d. Cauchy random variables with density 1
π(1+t2)

. Show that
1
nSnfils the weak law of large numbers by completing the following steps.

(1) Show that tP{|X1| > t} → c for some constant c.

(2) Show that if δ > 0 is small enough, then P{| 1
n−1Sn−1| ≥ δ}+ P{| 1

n−1Sn−1| ≥ δ} does
not go to 0 as n→∞ [Hint: Consider the possibility that |Xn| > 2δn].

(3) Conclude that 1
nSn

P→ 0. [Extra: With a little more effort, you can try showing that

there does not exist deterministic numbers an such that 1
nSn − an

P→ 0].

Problem 99. Let Xn, X be random variables on a common probability space.

(1) If Xn
P→ X, show that some subsequence Xnk

a.s.→ X.

(2) If every subsequence of Xn has a further subsequence that converges almost

surely to X, show that Xn
P→ X.

Problem 100. For Rd-valued random vectors Xn, X, the notions of convergence almost
surely, in probability and in distribution are well-defined. If Xn = (Xn,1, . . . , Xn,d) and
X = (X1, . . . , Xd), which of the following is true? Justify or give counterexamples.

(1) Xn
a.s.→ X if and only if Xn,k

a.s.→ Xk for 1 ≤ k ≤ d.

(2) Xn
P→ X if and only if Xn,k

P→ Xk for 1 ≤ k ≤ d.

(3) Xn
d→ X if and only if Xn,k

d→ Xk for 1 ≤ k ≤ d.

Problem 101. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn +
bYn

P→ aX+ bY and XnYn
P→ XY . [Hint: You could try showing more generally that

f(Xn, Yn)→ f(X,Y ) for any continuous f : R2 → R.]

(2) If Xn
P→ X and Yn

d→ Y (all on the same probability space), then show that XnYn
d→

XY .

Problem 102. Let Xn, Yn, X, Y be random variables on a common probability space.
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(1) Suppose that Xn is independent of Yn for each n (no assumptions about indepen-

dence across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn) d→ (U, V ) where U
d= X,

V
d= Y and U, V are independent. Further, aXn + bYn

d→ aU + bV .

(2) Give counterexample to show that the previous statement is false if the assump-
tion of independence of Xn and Yn is dropped.

Problem 103. For Rd-valued random vectors Xn, X, we say that Xn
P→ X if P(‖Xn−X‖ >

δ)→ 0 for any δ > 0 (here you may take ‖ · ‖ to denote the usual norm, but any norm on
Rd gives the same definition).

(1) If Xn
P→ X and Yn

P→ Y , show that (Xn, Yn) P→ (X,Y ).

(2) If Xn
P→ X and Yn

P→ Y , show that Xn + Yn
P→ X + Y and 〈Xn, Yn〉

P→ XY . [Hint:
Show more generally that f(Xn, Yn) P→ f(X,Y ) for any continuous function f by
using the previous problem for random vectors].

Problem 104. (1) If Xn, Yn are independent random variables on the same probabil-

ity space and Xn
d→ X and Yn

d→ Y , then (Xn, Yn) d→ (U, V ) where U
d= X, V d= Y

and U, V are independent.

(2) If Xn
d→ X and Yn −Xn

P→ 0, then show that Yn
d→ X.

Problem 105. Show that the sequence {Xn} is tight if and only if cnXn
P→ 0 whenever

cn → 0.

Problem 106. Suppose Xn are i.i.d with E[|X1|4] <∞. Show that there is some constant
C (depending on the distribution of X1) such that P

(
|n−1Sn −E[X1]| > δ

)
≤ Cn−2. (What

is your guess if we assume E[|X1|6] <∞? You don’t need to show this in the homework).

Problem 107. (1) (Skorokhod’s representation theorem) If Xn
d→ X, then show

that there is a probability space with random variables Yn, Y such that Yn
d= Xn

and Y
d= X and Yn

a.s.→ Y . [Hint: Try to construct Yn, Y on the canonical probability
space ([0, 1],B, µ)]

(2) If Xn
d→ X, and f : R→ R is continuous, show that f(Xn) d→ f(X). [Hint: Use the

first part]
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Problem 108. Suppose Xi are i.i.d with the Cauchy distribution (density π−1(1+x2)−1 on
R). Note that X1 is not integrable. Then, show that Sn

n does not converge in probability
to any constant. [Hint: Try to find the probability P(X1 > t), and then use it].

Problem 109. Let {Xi}i∈I be a family of r.v on (Ω,F ,P).

(1) If {Xi}i∈I is uniformly integrable, then show that supiE|Xi| < ∞. Give a coun-
terexample to the converse statement.

(2) Suppose h : R+ → R+ is a non-decreasing function that goes to infinity and
supiE[|Xi|h(|Xi|)] < ∞. Show that {Xi}i∈I is uniformly integrable. In particular, if
supiE[|Xi|p] <∞ for some p > 1, then {Xi} is uniformly integrable.

Problem 110. Let Xn be i.i.d with P(X1 = +1) = P(X1 = −1) = 1
2 . Show that for any

γ > 1
2 ,

Sn
nγ

a.s.→ 0.

[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you
write the proof correctly, it should go for any random variable which has moments of all
orders. You do not need to show this for the homework].

Problem 111. Let Xn be independent real-valued random variables.

(1) Show by example that the event {
∑
Xn converges to a number in [1,3]} can have

probability strictly between 0 and 1.

(2) Show that the event {
∑
Xn converges to a finite number} has probability zero or

one.

Problem 112. Let Xn be i.i.d exponential(1) random variables.

(1) If bn is a sequence of numbers that converge to 0, show that lim sup bnXn is a
constant (a.s.). Find a sequence bn so that lim sup bnXn = 1 a.s.

(2) Let Mn be the maximum of X1, . . . , Xn. If an → ∞, show that lim sup Mn
an

is a
constant (a.s.). Find an so that lim sup Mn

an
= 1 (a.s.).

[Remark: Can you do the same if Xn are i.i.d N(0,1)? Need not show this for the home-
work, but note that the main ingredient is to find a simple expression for P(X1 > t)
asymptotically as t→∞].
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Problem 113. Let Xn be i.i.d real valued random variables with common distribution µ.
For each n, define the random probabilty measure µn as µn := 1

n

∑n
k=1 δXk . Let Fn be the

CDF of µn. Show that
sup
x∈R
|Fn(x)− F (x)| a.s.→ 0 a.s.

Problem 114. Let Xn be independent and P(Xn = na) = 1
2 = P(Xn = −na) where a > 0

is fixed. For what values of a does the series
∑
Xn converge a.s.? For which values of a

does the series converge absolutely, a.s.?

Problem 115. (Random series) Let Xn be i.i.d N(0, 1) for n ≥ 1.

(1) Show that the random series
∑
Xn

sin(nπt)
n converges a.s., for any t ∈ R.

(2) Show that the random series
∑
Xn

tn√
n!

converges for all t ∈ R, a.s.

[Note: The location of the phrase “a.s” is all important here. Let At and Bt denote the
event that the series converges for the fixed t in the first or second parts of the question,
respectively. Then, the first part is asking you to show that P(At) = 1 for each t ∈ R,
while the second part is asking you to show that P(∩t∈RBt) = 1. It is also true (and very
important!) that P(∩t∈RAt) = 1 but showing that is not easy.]

Problem 116. Suppose Xn are i.i.d random variables with finite mean. Which of the
following assumptions guarantee that

∑
Xn converges a.s.?

(1) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ 1] <∞.

(2) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ |Xn|] <∞.

Problem 117. (Large deviation for Bernoullis). Let Xn be i.i.d Ber(1/2). Fix p > 1
2 .

(1) Show that P(Sn > np) ≤ e−npλ
(
eλ+1

2

)n
for any λ > 0.

(2) Optimize over λ to get P(Sn > np) ≤ e−nI(p) where I(p) = −p log p− (1− p) log(1− p).
(Observe that this is the entropy of the Ber(p) measure introduced in the first class
test).

(3) Recall that Sn ∼ Binom(n, 1/2), to write P(Sn = dnpe) and use Stirling’s approxi-
mation to show that

P(Sn ≥ np) ≥
1√

2πnp(1− p)
e−nI(p).

(4) Deduce that P(Sn ≥ np) ≈ e−nI(p) for p > 1
2 and P(Sn < np) ≈ e−nI(p) for p < 1

2 where
the notation an ≈ bn means log an

log bn
→ 1 as n → ∞ (i.e., asymptotic equality on the

logarithmic scale).
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Problem 118. Carry out the same program for i.i.d exponential(1) random variables and
deduce that P(Sn > nt) ≈ e−nI(t) for t > 1 and P(Sn < nt) ≈ e−nI(t) for t < 1 where
I(t) := t− 1− log t.

Problem 119. Let Y1, . . . , Yn be independent random variables. A random variable τ

taking values in {1, 2, . . . , n} is called a stopping time if the event {τ ≤ k} ∈ σ (Y1, . . . , Yk)
for all k (equivalently {τ = k} ∈ σ (Y1, . . . , Yk) for all k).

(1) Which of the following are stopping times? τ1 := min{k ≤ n : Sk ∈ A} (for some
fixed A ⊆ R). τ2 := max{k ≤ n : Sk ∈ A}. τ3 := min{k ≤ n : Sk = max

j≤n
Sj}. In the first

two cases set τ = n if the desired event does not occur.

(2) Assuming each Xk has zero mean, show that E[Sτ ] = 0 for any stopping time τ .
Assuming that each Xk has zero mean and finite variance, show that E[S2

1 ] ≤
E[S2

τ ] ≤ E[S2
n] for any stopping time τ .

(3) Give examples of random τ that are not stopping times and for which the results
in the second part of the question fail.

Problem 120. Let Xk be independent random variables with zero mean and unit vari-
ance. Assume that E[|Xk|2+δ] ≤M for some δ < 0 and M <∞. Show that Sn is asymptot-
ically normal.

Problem 121. Let Xk be i.i.d. random variables with zero mean and unit variance. Let
0 < a1 < a2 < . . . be given numbers. Find sufficient conditions on (ai)i such that Sn is
asymptotically normal.

Problem 122. Fix α > 0.

(1) If X,Y are i.i.d. random variables such that X+Y

2
1
α

d= X, then show that X must

have characteristic function ϕX(λ) = e−c|λ|
α

for some constant c.

(2) Show that for α = 2 we get N(0, σ2) and for α = 1 we get symmetric Cauchy.

[Note: Only for 0 < α ≤ 2 is e−c|λ|
α

a characteristic function. Hence a distribution with
the desired property exists only for this range of α].

Problem 123. Let Xk be independent Ber(pk) random variables. If Var(Sn) stays bounded,
show that Sn cannot be asymptotically normal.
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Problem 124 (Weak law using characteristic functions). Let Xk be i.i.d. random variables
having characteristic function ϕ.

(1) If ϕ′(0) = iµ, show that the characteristic function of Sn/n converges to the char-
acteristic function of δµ. Conclude that weak law holds for Sn/n.

(2) If 1
nSn

P→ µ for some µ, then show that ϕ is differentiable at 0 and ϕ′(0) = iµ.

Problem 125. Find the characteristic functions of the distributions with the given den-
sities. (1) e−|x| for x ∈ R, (2) 1

2

(
1− |x|2

)
+

.

Problem 126 (Multidimensional central limit theorem). Let Xn be i.i.d. Rd-valued random
vectors with zero mean and covariance matrix Σ. Let Sn = X1 + . . . + Xn. Show that
1√
n
Sn

d→ Nd(0,Σ) using the replacement principle. Assume (for convenience) that third

moments are finite (i.e., E[‖X1‖3] <∞).

Problem 127. [3 marks each] For each of the following statements, state whether they
are true or false, and justify or give counterexample accordingly.

(1) If µ, ν are Borel probability measures on R and µ� ν, then either ν ⊥ µ or ν � µ.

(2) If
∑
n
Xn converges a.s. and P(Yn = Xn) = 1− 1

n2 . Then
∑
n
Yn converges a.s.

(3) If {Xn} is an L2 bounded sequence of random variables, and E[Xn] = 1 for all n,
then Xn cannot converge to zero in probability.

(4) If Xn
d→ X, then X2

n
d→ X2.

(5) Suppose Xn are independent with E[Xn] = 0 and
∑

Var(Xn) = ∞. Then, almost
surely

∑
Xn does not converge.

(6) Suppose Xn, Yn are random variables such that |Xn| ≤ |Yn| for all n. If
∑
Yn

converges almost surely, then
∑
Xn converges almost surely.

Problem 128. [2 marks+4 marks + 4 marks] Let X,Y be random variables on a common
probability space. Assume that both X and Y have finite variance.

(1) Show that E[(X − a)2] is minimized uniquely at a = E [X].

(2) Find values of a, b that minimize f(a, b) = E
[
(Y − a− bX)2

]
. Are they unique?

(3) Suppose P(X = k) = 1
10 for k = 1, 2 . . . , 10. At what value(s) of a is E [|X − a|]

minimized? Is the minimizer unique?
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Problem 129. [10 marks] Let G1, G2, . . . be i.i.d Geometric(p) random variables (this
means P(G1 = k) = p(1 − p)k−1 for k ≥ 1). Let X1, X2, . . . be i.i.d random variables with
E [|X1|] <∞. Define Nk := G1 +G2 + . . .+Gk. Show that as k →∞,

X1 +X2 + . . .+XNk

k

P→ 1
p
E [X1]

Problem 130. [5 marks+5 marks] Let Uk, Vk be i.i.d Uniform([0,1]) random variable.

(1) Show that
∑
k

U
1
k
k − V

1
k
k converges a.s.

(2) Let Sn = U1 +U2
2 + . . .+Unn . Show that Sn satisfies a CLT. In other words, find an, bn

such that Sn−an
bn

d→ N(0, 1).

Problem 131. [5 marks+5 marks] Let Z(n) = (Z(n)
1 , . . . , Z

(n)
n ) be a point sampled uniformly

from the sphere Sn−1 (this means that P(Z(n) ∈ A) = area(A)/area(Sn−1) for any Borel set
A ⊆ Sn−1).

(1) Find the density of Z(n)
1 .

(2) Using (1) or otherwise, show that
√
nZ

(n)
1

d→ N(0, 1) as n→∞.

[Hint: One way to generate Z(n) is to sample X1, . . . , Xn i.i.d N(0,1) and to set Z(n) =
1
‖X‖(X1, . . . , Xn) where ‖X‖ =

√
X2

1 +X2
2 + . . .+X2

n. You may assume this fact without
having to justify it].

Problem 132. [5 marks+5 marks]

(1) Let µ be a probability measure on R with characteristic function µ̂(t). Then, show
that for any t1, t2, . . . , tn ∈ R, the n × n matrix A with entries ai,j = µ̂(ti − tj) is
non-negative definite.

(2) Suppose |µ̂(t0)| = 1 for some t0 6= 0. Then, µ is supported on a lattice, that is,
µ(aZ + b) = 1 for some a, b ∈ R. [Hint: Use part (1) with n = 2 and appropriate
t1, t2].

Problem 133. [10 marks] Let X1, X2, . . . be i.i.d Bernoulli
(

1
2

)
random variables. For each

n ≥ 1, define Ln to be the longest run of ones in (X1, . . . , Xn), that is,

Ln := max{k : ∃j ≤ n− k such that Xj+1 = Xj+2 = . . . = Xj+k = 1}.

Prove that Ln
logn

P→ 1
log 2 .
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Problem 1. Show that it is not possible to define uncountably many independent, non-
constant random variables on ([0, 1],B, λ).

Solution. Let Xi, i ∈ I, be independent, non-constant random variables. Let FI =
σ{Xi : i ∈ I}. Let H = L2([0, 1],B, λ) and HI = L2([0, 1],FI , λ). Then, HI is a closed sub-
space of H and since H is separable, so is HI .

Let {Z1, Z2, . . .} be a countable dense subset in HI . Then, each Zn is FI measurable
and hence Zn ∈ FIn for some countable set In ⊆ I. Therefore, Zn ∈ HIn. If J = ∪nIn, then
it follows that HI = HJ .

Now if i ∈ I \ J , then Xi ∈ HJ , Xi is independent of all random variables in HJ and Xi

is not constant. �
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