PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Problem 1. Let \mathcal{F} be a σ-algebra of subsets of Ω.
(1) Show that \mathcal{F} is closed under countable intersections $\left(\bigcap_{n} A_{n}\right)$, under set differences ($A \backslash B$), under symmetric differences $(A \Delta B$).
(2) If A_{n} is a countable sequence of subsets of Ω, the set $\lim \sup _{n} A_{n}$ (respectively $\liminf _{n} A_{n}$) is defined as the set of all $\omega \in \Omega$ that belongs to infinitely many (respectively, all but finitely many) of the sets A_{n}.

If $A_{n} \in \mathcal{F}$ for all n, show that $\limsup A_{n} \in \mathcal{F}$ and $\liminf A_{n} \in \mathcal{F}$. [Hint: First express $\limsup A_{n}$ and $\liminf A_{n}$ in terms of $A_{n} \mathbf{s}$ and basic set operations].
(3) If $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \ldots$, what are $\lim \sup A_{n}$ and $\lim \inf A_{n}$?

Problem 2. Let (Ω, \mathcal{F}) be a set with a σ-algebra.
(1) Suppose \mathbf{P} is a probability measure on \mathcal{F}. If $A_{n} \in \mathcal{F}$ and A_{n} increase to A (respectively, decrease to A), show that $\mathbf{P}\left(A_{n}\right)$ increases to (respectively, decreases to) $\mathbf{P}(A)$.
(2) Suppose $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ is a function such that (a) $\mathbf{P}(\Omega)=1$, (b) \mathbf{P} is finitely additive, (c) if $A_{n}, A \in \mathcal{F}$ and A_{n} s increase to A, then $\mathbf{P}\left(A_{n}\right) \uparrow \mathbf{P}(A)$. Then, show that \mathbf{P} is a probability measure on \mathcal{F}.

Problem 3. Suppose S is a π-system and is further closed under complements ($A \in S$ implies $A^{c} \in S$). Show that S is an algebra.

Problem 4. Let \mathbf{P} be a p.m. on a σ-algebra \mathcal{F} and suppose $S \subseteq \mathcal{F}$ be a π-system. If $A_{k} \in S$ for $k \leq n$, write $\mathbf{P}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$ in terms of probabilities of sets in S.

Problem 5. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Let $\mathcal{G}=\{A \in \mathcal{F}: \mathbf{P}(A)=0$ or 1$\}$. Show that \mathcal{G} is a σ-algebra.

Problem 6. Suppose $\sigma(S)=\mathcal{F}$ and \mathbf{P}, \mathbf{Q} are two probability measure on \mathcal{F}. If $\mathbf{P}(A)=\mathbf{Q}(A)$ for all $A \in S$, is it necessarily true that $\mathbf{P}(A)=\mathbf{Q}(A)$ for all $A \in \mathcal{F}$? If yes, prove it. If not, give a counterexample.

Problem 7. (1) Let \mathcal{B} be the Borel sigma-algebra of \mathbb{R}. Show that \mathcal{B} contains all closed sets, all compact sets, all intervals of the form $(a, b]$ and $[a, b)$.
(2) Show that there is a countable family \mathcal{S} of subsets of \mathbb{R} such that $\sigma(\mathcal{S})=\mathcal{B}_{\mathbb{R}}$.
(3) Let K be the $1 / 3$-Cantor set. Show that $\mu_{*}(K)=0$.

Problem 8. (1) Let X be an arbitrary set. Let S be the collection of all singletons in Ω. Describe $\sigma(S)$.
(2) Let $S=\{(a, b] \cup[-b,-a): a<b$ are real numbers $\}$. Show that $\sigma(S)$ is strictly smaller than the Borel σ-algebra of \mathbb{R}.
(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set in S either contains a and b both, or contains neither. Let $\mathcal{F}=\sigma(S)$. Show that any set in \mathcal{F} has the same property (either contains both a and b or contains neither).

Problem 9. Let Ω be an infinite set and let $\mathcal{A}=\left\{A \subseteq \Omega: A\right.$ is finite or A^{c} is finite $\}$. Define $\mu: \mathcal{A} \rightarrow \mathbb{R}_{+}$by $\mu(A)=0$ if A is finite and $\mu(A)=1$ if A^{c} is finite.
(1) Show that \mathcal{A} is an algebra and that μ is finitely additive on \mathcal{A}.
(2) Under what conditions does μ extend to a probability measure on $\mathcal{F}=\sigma(\mathcal{A})$?

Problem 10. If $\mathcal{G} \subseteq \mathcal{F}$ are sigma algebras on Ω and \mathcal{F} is countably generated, then is it necessarily true that \mathcal{G} is countably generated? [Soln: False. $\mathcal{G}=$ Countable-cocountable sigma algebra of \mathbb{R} and $\mathcal{F}=\mathcal{B}_{\mathbb{R}}$.]

Problem 11. Let A_{1}, A_{2}, \ldots be a finite or countable partition of a non-empty set Ω (i.e., A_{i} are pairwise disjoint and their union is Ω). What is the σ-algebra generated by the collection of subsets $\left\{A_{n}\right\}$? What is the algebra generated by the same collection of subsets?

Problem 12. Let $X=[0,1]^{\mathbb{N}}$ be the countable product of copies of $[0,1]$. We define two sigma algebras of subsets of X.
(1) Define a metric on X by $d(x, y)=\sup _{n}\left|x_{n}-y_{n}\right|$. Let \mathcal{B}_{X} be the Borel sigma-algebra of (X, d). [Note: For those who know topology, it is better to define \mathcal{B}_{X} as the Borel sigma algebra for the product topology on X. The point is that the metric is flexible. We can take $d(x, y)=\sum_{n}\left|x_{n}-y_{n}\right| 2^{-n}$ or many or other things. What matters is only the topology on X.]
(2) Let \mathcal{C}_{X} be the sigma-algebra generated by the collection of all cylinder sets. Recall that cylinder sets are sets of the form $A=U_{1} \times U_{2} \times \ldots \times U_{n} \times \mathbb{R} \times \mathbb{R} \times \ldots$ where U_{i} are Borel subsets of $[0,1]$.
Show that $\mathcal{B}_{X}=\mathcal{C}_{X}$.

Problem 13. Let μ be the Lebesgue p.m. on the Cartheodary σ-algebra $\overline{\mathcal{B}}$ and let μ_{*} be the corresponding outer Lebesgue measure defined on all subsets of $[0,1]$. We say that a subset $N \subseteq[0,1]$ is a null set if $\mu_{*}(N)=0$. Show that

$$
\overline{\mathcal{B}}=\{B \cup N: B \in \mathcal{B} \text { and } N \text { is null }\}
$$

where \mathcal{B} is the Borel σ-algebra of $[0,1]$.
[Note: The point of this exercise is to show how much larger is the Lebesgue σ-algebra than the Borel σ-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a Borel set. However, cardinality-wise, there is a difference. The Lebesgue σ-algebra is in bijection with $2^{\mathbb{R}}$ while the Borel σ-algebra is in bijection with \mathbb{R}.]

Problem 14. Suppose $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space. Say that a subset $N \subseteq \Omega$ is \mathbf{P}-null if there exists $A \in \mathcal{F}$ with $\mathbf{P}(A)=0$ and such that $N \subseteq A$. Define $\mathcal{G}=\{A \cup N: A \in$ \mathcal{F} and N is null $\}$.
(1) Show that \mathcal{G} is a σ-algebra.
(2) For $A \in \mathcal{G}$, write $A=B \cup N$ with $b \in \mathcal{F}$ and a null set N, and define $\mathbf{Q}(A)=\mathbf{P}(B)$. Show that \mathbf{Q} is well-defined, that \mathbf{Q} is a probability measure on \mathcal{G} and $\left.\mathbf{Q}\right|_{\mathcal{F}}=\mathbf{P}$.
[Note: \mathcal{G} is called the \mathbf{P}-completion of \mathcal{F}. It is a cheap way to enlarge the σ-algebra and extend the measure to the larger σ-algebra. Another description of the extended σ-algebra is $\mathcal{G}=\{A \subseteq \Omega: \exists B, C \in \mathcal{F}$ such that $B \subseteq A \subseteq C$ and $\mathbf{P}(B)=\mathbf{P}(C)\}$. Combined with the previous problem, we see that the Lebesgue σ-algebra is just the completion of the Borel σ-algebra under the Lebesgue measure. However, note that completion depends on the probability measure (for a discrete probability measure on \mathbb{R}, the completion will be the power set σ-algebra!). For this reason, we prefer to stick to the Borel σ-algebra and not bother to extend it.]

Problem 15. Follow these steps to obtain Sierpinski's construction of a non-measurable set. Here μ_{*} is the outer Lebesgue measure on \mathbb{R}.
(1) Regard \mathbb{R} as a vector space over \mathbb{Q} and choose a basis H (why is it possible?).
(2) Let $A_{0}=H \cup(-H)=\{x: x \in H$ or $-x \in H\}$. For $n \geq 1$, define $A_{n}:=A_{n-1}-A_{n-1}$ (may also write $A_{n}=A_{n-1}+A_{n-1}$ since A_{0} is symmetric about 0). Show that $\bigcup_{n \geq 0} \bigcup_{q \geq 1} \frac{1}{q} A_{n}=\mathbb{R}$ where $\frac{1}{q} A_{n}$ is the set $\left\{\frac{x}{q}: x \in A_{n}\right\}$.
(3) Let $N:=\min \left\{n \geq 0: \mu_{*}\left(A_{n}\right)>0\right\}$ (you must show that N is finite!). If A_{N} is measurable, show that $\cup_{n \geq N+1} A_{n}=\mathbb{R}$.
(4) Get a contradiction to the fact that H is a basis and conclude that A_{N} cannot be measurable.
[Remark: If you start with H which has zero Lebesgue measure, then $N \geq 1$ and $A:=$ E_{N-1} is a Lebesgue measurable set such that $A+A$ is not Lebesgue measurable! That was the motivation for Sierpinski. To find such a basis H, show that the Cantor set spans \mathbb{R} and then choose a basis H contained inside the Cantor set.]

Problem 16. We saw that for a Borel probability measure μ on \mathbb{R}, the pushforward of Lebesgue measure on $[0,1]$ under the map $F_{\mu}^{-1}:[0,1] \rightarrow \mathbb{R}$ (as defined in lectures) is precisely μ. This is also a practical tool in simulating random variables. We assume that a random number generator gives us uniform random numbers from [0, 1]. Apply the above idea to simulate random numbers from the following distributions (in matlab/mathematica or a program of your choice) a large number of times and compare the histogram to the actual density/mass function.
(1) Uniform distribution on $[a, b]$, (2) Exponential(λ) distribution, (3) Cauchy distribution, (4) Poisson (λ) distribution. What about the normal distribution?

Problem 17. Let $\Omega=X=\mathbb{R}$ and let $T: \Omega \rightarrow X$ be defined by $T(x)=x$. We give a pair of σ-algebras, \mathcal{F} on Ω and \mathcal{G} on X by taking \mathcal{F} and \mathcal{G} to be one of $2^{\mathbb{R}}$ or $\mathcal{B}_{\mathbb{R}}$ or $\{\emptyset, \mathbb{R}\}$. Decide for each of the nine pairs, whether T is measurable or not.

Problem 18. (1) Define $T: \Omega \rightarrow \mathbb{R}^{n}$ by $T(\omega)=\left(\mathbf{1}_{A_{1}}(\omega), \ldots, \mathbf{1}_{A_{n}}(\omega)\right)$ where A_{1}, \ldots, A_{n} are given subsets of Ω. What is the smallest σ-algebra on Ω for which T becomes a random variable?
(2) Suppose $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space and assume that $A_{k} \in \mathcal{F}$. Describe the push-forward measure $\mathbf{P} \circ T^{-1}$ on \mathbb{R}^{n}.

Problem 19. For $k \geq 0$, define the functions $r_{k}:[0,1) \rightarrow \mathbb{R}$ by writing $[0,1)=\underset{0 \leq j<2^{k}}{\bigsqcup} I_{j}^{(k)}$ where $I_{j}^{(k)}$ is the dyadic interval $\left[j 2^{-k},(j+1) 2^{-k}\right)$ and setting

$$
r_{k}(x)= \begin{cases}-1 & \text { if } x \in I_{j}^{(k)} \text { for odd } j \\ +1 & \text { if } x \in I_{j}^{(k)} \text { for even } j\end{cases}
$$

Fix $n \geq 1$ and define $T_{n}:[0,1) \rightarrow\{-1,1\}^{n}$ by $T_{n}(x)=\left(r_{0}(x), \ldots, r_{n-1}(x)\right)$. Find the pushforward of the Lebesgue measure on $[0,1)$ under T_{n}

Problem 20. Let \mathcal{G} be the countable-cocountable sigma algebra on \mathbb{R}. Define the probability measure μ on \mathcal{G} by $\mu(A)=0$ if A is countable and $\mu(A)=1$ if A^{c} is countable. Show that μ is not the push-forward of Lebesgue measure on $[0,1]$, i.e., there does not exist a measurable function $T:[0,1] \mapsto \Omega$ (w.r.t. the σ-algebras \mathcal{B} and \mathcal{G}) such that $\mu=\lambda \circ T^{-1}$.

Problem 21. (1) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, show that T is Borel measurable if it is (a) continuous or (b) right continuous or (c) lower semicontinuous or (d) non-decreasing (take $m=n=1$ for the last one).
(2) If \mathbb{R}^{n} and \mathbb{R}^{m} are endowed with the Lebesgue sigma-algebra, show that even if T is continuous, it need not be measurable! Just do this for $n=m=1$.

Problem 22. Show that composition of random variables is a random variable. Show that real-valued random variables on a given (Ω, \mathcal{F}) are closed under linear combinations, under multiplication, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

Problem 23. Let $\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{k / n}$ and let μ be the uniform p.m. on [0, 1]. Show directly by definition that $d\left(\mu_{n}, \mu\right) \rightarrow 0$ as $n \rightarrow \infty$.

Problem 24 (Change of variable for densities). (1) Let μ be a p.m. on \mathbb{R} with density f by which we mean that its CDF $F_{\mu}(x)=\int_{-\infty}^{x} f(t) d t$ (you may assume that f is continuous, non-negative and the Riemann integral $\int_{\mathbb{R}} f=1$). Then, find the (density of the) push forward measure of μ under (a) $T(x)=x+a \quad$ (b) $T(x)=b x \quad$ (c) T is any increasing and differentiable function.
(2) If X has $N\left(\mu, \sigma^{2}\right)$ distribution, find the distribution of $(X-\mu) / \sigma$.

Problem 25. (1) Let $X=\left(X_{1}, \ldots, X_{n}\right)$. Show that X is an \mathbb{R}^{d}-valued r.v. if and only if X_{1}, \ldots, X_{n} are (real-valued) random variables. How does $\sigma(X)$ relate to $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$?
(2) Let $X: \Omega_{1} \rightarrow \Omega_{2}$ be a random variable. If $X(\omega)=X\left(\omega^{\prime}\right)$ for some $\omega, \omega^{\prime} \in \Omega_{1}$, show that there is no set $A \in \sigma(X)$ such that $\omega \in A$ and $\omega^{\prime} \notin A$ or vice versa. [Extra! If $Y: \Omega_{1} \rightarrow \Omega_{2}$ is another r.v. which is measurable w.r.t. $\sigma(X)$ on Ω_{1}, then show that Y is a function of $X]$.

Problem 26 (Lévy metric).
(1) Show that the Lévy metric on $\mathcal{P}\left(\mathbb{R}^{d}\right)$ defined in class is actually a metric.
(2) Show that under the Lévy metric, $\mathcal{P}\left(\mathbb{R}^{d}\right)$ is a complete and seperable metric space.

Problem 27 (Lévy-Prohorov metric). If (X, d) is a metric space, let $\mathcal{P}(X)$ denote the space of Borel probability measures on X. For $\mu, \nu \in \mathcal{P}(X)$, define
$D(\mu, \nu)=\inf \left\{r \geq 0: \mu\left(A_{r}\right)+r \geq \nu(A)\right.$ and $\nu\left(A_{r}\right)+r \geq \mu(A)$ for all closed sets $\left.A\right\}$.
Here $A_{r}=\{y \in X: d(x, y) \leq r$ for some $x \in A\}$ is the closed r-neighbourhood of A.
(1) Show that D is a metric on $\mathcal{P}(X)$.
(2) When X is \mathbb{R}^{d}, show that this agrees with the definition of Levy metric given in class (i.e., for any μ_{n}, μ, we have that $\mu_{n} \rightarrow \mu$ in both metrics or neither).

Problem 28 (Lévy metric). Let $\mathcal{P}([-1,1]) \subseteq \mathcal{P}(\mathbb{R})$ be the set of all Borel probability measures μ such that $\mu([-1,1])=1$. For $\epsilon>0$, find a finite ϵ-net for $\mathcal{P}([-1,1])$. [Note: Recall that an ϵ-net means a subset such that every element of $\mathcal{P}([-1,1])$ is within ϵ distance of some element of the subset. Since $\mathcal{P}([-1,1])$ is compact, we know that a finite ϵ-net exists for all $\epsilon>0$.]

Problem 29. On the probabiity space $([0,1], \mathcal{B}, \mu)$, for $k \geq 1$, define the functions

$$
X_{k}(t):= \begin{cases}0 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j}{2^{k}}, \frac{2 j+1}{2^{k}}\right) . \\ 1 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j+1}{2^{k}}, \frac{2 j+2}{2^{k}}\right) \text { or } t=1\end{cases}
$$

(1) For any $n \geq 1$, what is the distribution of X_{n} ?
(2) For any fixed $n \geq 1$, find the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$.
[Note: $X_{k}(t)$ is just the $k^{\text {th }}$ digit in the binary expansion of t. Dyadic rationals have two binary expansions, and we have chosen the finite expansion (except at $t=1$)].

Problem 30 (Coin tossing space). Continuing with the previous example, consider the mapping $X:[0,1] \rightarrow\{0,1\}^{\mathbb{N}}$ defined by $X(t)=\left(X_{1}(t), X_{2}(t), \ldots\right)$. With the Borel σ-algebra on $[0,1]$ and the σ-algebra generated by cylinder sets on $\{0,1\}^{\mathbb{N}}$, show that X is a random variable and find the push-foward of the Lebesue measure under X.

Problem 31 (Equivalent conditions for weak convergence). Show that the following statements are equivalent to $\mu_{n} \xrightarrow{d} \mu$ (you may work in $\mathcal{P}(\mathbb{R})$).
(1) $\lim \sup _{n \rightarrow \infty} \mu_{n}(F) \leq \mu(F)$ if F is closed.
(2) $\liminf _{n \rightarrow \infty} \mu_{n}(G) \geq \mu(G)$ if G is open.
(3) $\lim \sup _{n \rightarrow \infty} \mu_{n}(A)=\mu(A)$ if $A \in \mathcal{F}$ and $\mu(\partial A)=0$.

Problem 32. Fix $\mu \in \mathcal{P}(\mathbb{R})$. For $s \in \mathbb{R}$ and $r>0$, let $\mu_{r, s} \in \mathcal{P}(\mathbb{R})$ be defined as $\mu_{r, s}(A)=$ $\mu(r A+s)$ where $r A+s=\{r x+s: x \in A\}$. For which $R \subseteq(0, \infty)$ and $S \subseteq \mathbb{R}$ is it true that $\left\{\mu_{r, s}: r \in R, s \in S\right\}$ a tight family? [Remark: If not clear, just take μ to be the Lebesgue measure on [0,1].]

Problem 33. (1) Show that the family of Normal distributions $\left\{N\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}\right.$ and $\sigma^{2}>$ 【 $0\}$ is not tight.
(2) For what $A \subseteq \mathbb{R}$ and $B \subseteq(0, \infty)$ is the restricted family $\left\{N\left(\mu, \sigma^{2}\right): \mu \in A\right.$ and $\sigma^{2} \in$ B \} tight?

Problem 34. (1) Show that the family of exponential distributions $\{\operatorname{Exp}(\lambda): \lambda>0\}$ is not tight.
(2) For what $A \subseteq \mathbb{R}$ is the restricted family $\{\operatorname{Exp}(\lambda): \lambda>0\}$ tight?

Problem 35. Suppose $\mu_{n}, \mu \in \mathcal{P}(\mathbb{R})$ and that the distribution function of μ is continuous. If $\mu_{n} \xrightarrow{d} \mu$, show that $F_{\mu_{n}}(t)-F_{\mu}(t) \rightarrow 0$ uniformly over $t \in \mathbb{R}$. [Restatement: When F_{μ} is continuous, convergence to μ in Lévy-Prohorov metric also implies convergence in Kolmogorov-Smirnov metric.]

Problem 36. Show that the statement in the previous problem cannot be quantified. That is,

Given any $\epsilon_{n} \downarrow 0$ (however fast) and $\delta_{n} \downarrow 0$ (however slow), show that there is some μ_{n}, μ with F_{μ} continuous, such that $d_{L P}\left(\mu_{n}, \mu\right) \leq \epsilon_{n}$ and $d_{K S}\left(\mu_{n}, \mu\right) \geq \delta_{n}$.

Problem 37. Consider the family of Normal distributions, $\left\{N\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma^{2}>0\right\}$. Show that the map $\left(\mu, \sigma^{2}\right) \rightarrow N\left(\mu, \sigma^{2}\right)$ from $\mathbb{R} \times \mathbb{R}_{+}$to $\mathcal{P}(\mathbb{R})$ is continuous. (Complicated way of saying that if $\left(\mu_{n}, \sigma_{n}^{2}\right) \rightarrow\left(\mu, \sigma^{2}\right)$, then $N\left(\mu_{n}, \sigma_{n}^{2}\right) \xrightarrow{d} N\left(\mu, \sigma^{2}\right)$).

Do the same for other natural families if distributions, (1) $\operatorname{Exp}(\lambda)$, (2) Uniform $[a, b]$, (3) $\operatorname{Bin}(n, p)$ (fix n and show continuity in p), (4) $\operatorname{Pois}(\lambda)$.

Problem 38. Suppose μ_{n}, μ are discrete probability measures supported on \mathbb{Z} having probability mass functions $\left(p_{n}(k)\right)_{k \in \mathbb{Z}}$ and $(p(k))_{k \in \mathbb{Z}}$. Show that $\mu_{n} \xrightarrow{d} \mu$ if and only if $p_{n}(k) \rightarrow p(k)$ for each $k \in \mathbb{Z}$.

Problem 39. Given a Borel p.m. μ on \mathbb{R}, show that it can be written as a convex combination $\alpha \mu_{1}+(1-\alpha) \mu_{2}$ with $\alpha \in[0,1]$, where μ_{1} is a purely atomic Borel p.m and μ_{2} is a Borel p.m with no atoms.

Problem 40. Let F be a CDF on \mathbb{R}.
(1) Show that F can have at most countably many discontinuity points. [Hint: How many jumps of size more than $1 / 10$ can it have?]
(2) Give example of a CDF that has a dense set of discontinuity points.

Problem 41. Let X be a random variable with distribution μ and X_{n} are random variables defined as follows. If μ_{n} is the distribution of X_{n}, in each case, show that $\mu_{n} \xrightarrow{d} \mu$ as $n \rightarrow \infty$.
(1) (Truncation). $X_{n}=(X \wedge n) \vee(-n)$.
(2) (Discretization). $X_{n}=\frac{1}{n}\lfloor n X\rfloor$.

Problem 42. Consider the space $X=[0,1]^{\mathbb{N}}:=\{\mathbf{x}=(x(1), x(2), \ldots): 0 \leq x(i) \leq 1$ for each $i \in$ $\mathbb{N}\}$. Define the metric $d(\mathbf{x}, \mathbf{y})=\sup _{i} \frac{|x(i)-y(i)|}{i}$.
(1) Show that $\mathbf{x}_{n} \rightarrow \mathbf{x}$ in (X, d) if and only if $x_{n}(i) \rightarrow x(i)$ for each i, as $n \rightarrow \infty$.
[Note: What matters is this pointwise convergence criterion, not the specific metric. The resulting topology is called product topology. The same convergence would hold if we had defined the metric as $d(\mathbf{x}, \mathbf{y})=\sum_{i} 2^{-i}|x(i)-y(i)|$ or $d(\mathbf{x}, \mathbf{y})=$ $\sum_{i} i^{-2}|x(i)-y(i)|$ etc., But not the metric $\sup _{i}|x(i)-y(i)|$ as convergence in this metric is equivalent to uniform convergence over all $i \in \mathbb{N}$].
(2) Show that X is compact.
[Note: What is this problem doing here? The purpose is to reiterate a key technique we used in the proof of Helly's selection principle!]

Problem 43. Recall the Cantor set $C=\bigcap_{n} K_{n}$ where $K_{0}=[0,1], K_{1}=[0,1 / 3] \cup[2 / 3,1]$, etc. In general, $K_{n}=\bigcup_{1 \leq j \leq 2^{n}}\left[a_{n, j}, b_{n, j}\right]$ where $b_{n, j}-a_{n, j}=3^{-n}$ for each j.
(1) Let μ_{n} be the uniform probability measure on K_{n}. Describe its CDF F_{n}.
(2) Show that F_{n} converges uniformly to a CDF F.
(3) Let μ be the probability measure with CDF equal to F. Show that $\mu(C)=1$.

Problem 44. Let $\mu \in \mathcal{P}(\mathbb{R})$.
(1) For any $n \geq 1$, define a new probability measure by $\mu_{n}(A)=\mu(n . A)$ where $n \cdot A=$ $\{n x: x \in A\}$. Does μ_{n} converge as $n \rightarrow \infty$?
(2) Let μ_{n} be defined by its CDF

$$
F_{n}(t)= \begin{cases}0 & \text { if } t<-n, \\ F(t) \text { if }-n \leq t<n, \\ 1 & \text { if } t \geq n\end{cases}
$$

Does μ_{n} converge as $n \rightarrow \infty$?
(3) In each of the cases, describe μ_{n} in terms of random variables. That is, if X has distribution μ, describe a transformation $T_{n}(X)$ that has the distribution μ_{n}.

Problem 45 (Bernoulli convolutions). For any $\lambda>1$, define $X_{\lambda}:[0,1] \rightarrow \mathbb{R}$ by $X(\omega)=$ $\sum_{k=1}^{\infty} \lambda^{-k} X_{k}(\omega)$. Check that X_{λ} is measurable, and define $\mu_{\lambda}=\mu X_{\lambda}^{-1}$. Show that for any $\lambda>2$, show that μ_{λ} is singular w.r.t. Lebesgue measure.

Problem 46. For $p=1,2, \infty$, check that $\|X-Y\|_{p}$ is a metric on the space $L^{p}:=$ $\left\{[X]:\|X\|_{p}<\infty\right\}$ (here $[X]$ denotes the equivalence class of X under the above equivalence relation).

Problem 47. (1) Give an example of a sequence of r.v.s X_{n} such that $\liminf \mathbf{E}\left[X_{n}\right]<$ $\mathbf{E}\left[\liminf X_{n}\right]$.
(2) Give an example of a sequence of r.v.s X_{n} such that $X_{n} \xrightarrow{\text { a.s. }} X, \mathbf{E}\left[X_{n}\right]=1$, but $\mathbf{E}[X]=0$.

Problem 48 (Alternate construction of Cantor measure). Let $K_{1}=[0,1 / 3] \cup[2 / 3,1]$, $K_{2}=[0,1 / 9] \cup[2 / 9,3 / 9] \cup[6 / 9,7 / 9] \cup[8 / 9,1]$, etc., be the decreasing sequence of compact sets whose intersection is K. Observe that K_{n} is a union of 2^{n} intervals each of length 3^{-n}. Let μ_{n} be the p.m. which is the "renormalized Lebesgue measure" on K_{n}. That is, $\mu_{n}(A):=3^{n} 2^{-n} \mu\left(A \cap K_{n}\right)$ for $A \in \mathcal{B}_{\mathbb{R}}$. Then each μ_{n} is a Borel p.m. Show that $\mu_{n} \xrightarrow{d} \mu$, the Cantor measure (which was defined differently in class).

Problem 49 (A quantitative characterization of absolute continuity). Suppose $\mu \ll \nu$. Then, show that given any $\epsilon>0$, there exists $\delta>0$ such that $\nu(A)<\delta$ implies $\mu(A)<\epsilon$. (The converse statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 50. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a Borel measurable function. Then, show that $g(x):=\int_{0}^{x} f(u) d u$ is a continuous function on $[0,1]$. [Note: It is in fact true that g is differentiable at almost every x and that $g^{\prime}=f$ a.s., but that is a more sophisticated fact, called Lebesgue's differentiation theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be covered in your measure theory class].

Problem 51. (Differentiating under the integral). Let $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$, satisfy the following assumptions.
(1) $x \rightarrow f(x, \theta)$ is Borel measurable for each θ.
(2) $\theta \rightarrow f(x, \theta)$ is continuously differentiable for each x.
(3) $f(x, \theta)$ and $\frac{\partial f}{\partial \theta}(x, \theta)$ are uniformly bounded functions of (x, θ).

Then, justify the following "differentiation under integral sign" (including the fact that the integrals here make sense).

$$
\frac{d}{d \theta} \int_{a}^{b} f(x, \theta) d x=\int_{a}^{b} \frac{\partial f}{\partial \theta}(x, \theta) d x
$$

[Hint: Remember that derivative is the limit of difference quotients, $h^{\prime}(t)=\lim _{\epsilon \rightarrow 0} \frac{h(t+\epsilon)-h(t)}{\epsilon}$.

Problem 52. (1) Let $X \geq 0$ be a r.v on $(\Omega, \mathcal{F}, \mathbf{P})$ with $0<\mathbf{E}[X]<\infty$. Then, define $\mathbf{Q}(A)=\mathbf{E}\left[X \mathbf{1}_{A}\right] / \mathbf{E}[X]$ for any $A \in \mathcal{F}$. Show that \mathbf{Q} is a probability measure on \mathcal{F}. Further, show that for any bounded random variable Y, we have $\mathbf{E}_{\mathbf{Q}}[Y]=\frac{\mathbf{E}[Y X]}{\mathbf{E}[X]}$.
(2) If μ and ν are Borel probability measures on the line with continuous densities f and g (respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that μ has a density w.r.t ν ? In that case, what is that density?

Problem 53. For $p=1,2, \infty$, check that $\|X-Y\|_{p}$ is a metric on the space $L^{p}:=$ $\left\{[X]:\|X\|_{p}<\infty\right\}$ (here $[X]$ denotes the equivalence class of X under the equivalence relation $X \sim Y$ if $\mathbf{P}(X=Y)=1)$.

Problem 54. Let X be a non-negative random variable.
(1) Show that $\mathbf{E}[X]=\int_{0}^{\infty} \mathbf{P}\{X>t\} d t$ (in particular, if X is a non-negative integer valued, then $\mathbf{E}[X]=\sum_{n=1}^{\infty} \mathbf{P}(X \geq n)$).
(2) Show that $\mathbf{E}\left[X^{p}\right]=\int_{0}^{\infty} p t^{p-1} \mathbf{P}\{X \geq t\} d t$ for any $p>0$.

Problem 55. Let X be a non-negative random variable. If $\mathbf{E}[X]$ is finite, show that $\sum_{n=1}^{\infty} \mathbf{P}\{X \geq a n\}$ is finite for any $a>0$. Conversely, if $\sum_{n=1}^{\infty} \mathbf{P}\{X \geq a n\}$ for some $a>0$, show that $\mathbf{E}[X]$ is finite.

Problem 56. Show that the values $\mathbf{E}[f \circ X]$ as f varies over the class of all smooth (infinitely differentiable), compactly supported functions determine the distribution of X.

Problem 57. (i) Express the mean and variance of of $a X+b$ in terms of the same quantities for X (a, b are constants).
(ii) Show that $\operatorname{Var}(X)=\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$.

Problem 58. Compute mean, variance and moments (as many as possible!) of the Nor$\operatorname{mal}(0,1)$, exponential(1), Beta(p,q) distributions.

Problem 59. (1) Suppose $X_{n} \geq 0$ and $X_{n} \rightarrow X$ a.s. If $\mathbf{E}\left[X_{n}\right] \rightarrow \mathbf{E}[X]$, show that $\mathbf{E}\left[\left|X_{n}-X\right|\right] \rightarrow 0$.
(2) If $\mathbf{E}[|X|]<\infty$, then $\mathbf{E}\left[|X| \mathbf{1}_{|X|>A}\right] \rightarrow 0$ as $A \rightarrow \infty$.

Problem 60. (1) Suppose (X, Y) has a continuous density $f(x, y)$. Find the density of X / Y. Apply to the case when (X, Y) has the standard bivariate normal distribution with density $f(x, y)=(2 \pi)^{-1} \exp \left\{-\frac{x^{2}+y^{2}}{2}\right\}$.
(2) Find the distribution of $X+Y$ if (X, Y) has the standard bivariate normal distribution.
(3) Let $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$. Find the density of (U, V).

Problem 61. Let $\mu_{n}, \mu \in \mathcal{P}\left(\mathbb{R}^{n}\right)$. Show that $\mu_{n} \xrightarrow{d} \mu$ if and only if $\int f d \mu_{n} \rightarrow \int f d \mu$ for every $f \in C_{b}(\mathbb{R})$. What if we only assume $\int f d \mu_{n} \rightarrow \int f d \mu$ for all $f \in C_{c}\left(\mathbb{R}^{n}\right)$ - can we conclude that $\mu_{n} \xrightarrow{d} \mu$?

Problem 62. Let $\mu_{n}, \mu \in \mathcal{P}\left(\mathbb{R}^{n}\right)$ having densities f_{n}, f with respect to Lebesgue measure. If $f_{n} \rightarrow f$ a.e. (w.r.t. Lebesgue measure), show that $\mu_{n} \xrightarrow{d} \mu$.

Problem 63 (Moment matrices). Let $\mu \in \mathcal{P}(\mathbb{R})$ and let $\alpha_{k}=\int x^{k} d \mu(x)$ (assume that all moments exist). Then, for any $n \geq 1$, show that the matrix $\left(\alpha_{i+j}\right)_{0 \leq i, j \leq n}$ is non-negative definite. [Suggestion: First solve $n=1$].

Problem 64. Let X be a non-negative random variable with all moments (i.e., $\mathbf{E}\left[X^{p}\right]<\infty$ for all $p<\infty$). Show that $\log \mathbf{E}\left[X^{p}\right]$ is a convex function of p.

Problem 65. (1) Let $\mu_{n}, \mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$. Assume that μ_{n} has density f_{n} and μ has density f w.r.t Lebesgue measure on \mathbb{R}^{n}. If $f_{n}(t) \rightarrow f(t)$ for all t, then show that $\mu_{n} \xrightarrow{d} \mu$.
(2) Show that $N\left(\mu_{n}, \sigma_{n}^{2}\right) \xrightarrow{d} N(\mu, \sigma)$ if and only if $\mu_{n} \rightarrow \mu$ and $\sigma_{n}^{2} \rightarrow \sigma^{2}$.

Problem 66. (1) Let $X \sim \Gamma(\alpha, 1)$ and $Y \sim \Gamma\left(\alpha^{\prime}, 1\right)$ be independent random variables on a common probability space. Find the distribution of $\frac{X}{X+Y}$.
(2) If U, V are independent and have uniform $([0,1])$ distribution, find the distribution of $U+V$.

Problem 67. Let $\Omega=\{1,2, \ldots, n\}$. For a probability measure \mathbf{P} on Ω, we define it "entropy" $H(\mathbf{P}):=-\sum_{k=1}^{n} p_{k} \log p_{k}$ where $p_{k}=\mathbf{P}\{k\}$ and it is understood that $x \log x=0$ if $x=0$. Show that among all probability measures on Ω, the uniform probability measure (the one with $p_{k}=\frac{1}{n}$ for each k) is the unique maximizer of entropy.

Problem 68. (1) If $\mu_{n} \ll \nu$ for each n and $\mu_{n} \xrightarrow{d} \mu$, then is it necessarily true that $\mu \ll \nu$? If $\mu_{n} \perp \nu$ for each n and $\mu_{n} \xrightarrow{d} \mu$, then is it necessarily true that $\mu \perp \nu$? In either case, justify or give a counterexample.
(2) Suppose X, Y are independent (real-valued) random variables with distribution μ and ν respectively. If μ and ν are absolutely continuous w.r.t Lebesgue measure, show that the distribution of $X+Y$ is also absolutely continuous w.r.t Lebesgue measure.

Problem 69. Suppose $\left\{\mu_{\alpha}: \alpha \in I\right\}$ and $\left\{\nu_{\beta}: \alpha \in J\right\}$ are two families of Borel probability measures on \mathbb{R}. If both these families are tight, show that the family $\left\{\mu_{\alpha} \otimes \nu_{\beta}: \alpha \in I, \beta \in\right.$ $J\}$ is also tight.

Problem 70. Let X be a non-negative random variable. If $\mathbf{E}[X] \leq 1$, then show that $\mathbf{E}\left[X^{-1}\right] \geq 1$.

Problem 71. On the probabiity space $([0,1], \mathcal{B}, \mu)$, for $k \geq 1$, define the functions

$$
X_{k}(t):= \begin{cases}0 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j}{2^{k}}, \frac{2 j+1}{2^{k}}\right) . \\ 1 & \text { if } t \in \bigcup_{j=0}^{2^{k-1}-1}\left[\frac{2 j+1}{2^{k}}, \frac{2 j+2}{2^{k}}\right) \text { or } t=1 .\end{cases}
$$

(1) For any $n \geq 1$, what is the distribution of X_{n} ?
(2) For any fixed $n \geq 1$, find the joint distribution of $\left(X_{1}, \ldots, X_{n}\right)$.
[Note: $X_{k}(t)$ is just the $k^{\text {th }}$ digit in the binary expansion of t. Dyadic rationals have two binary expansions, and we have chosen the finite expansion (except at $t=1$)].

Problem 72. If $A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ has positive Lebesgue measure, show that for some $x \in \mathbb{R}$ the set $A_{x}:=\{y \in \mathbb{R}:(x, y) \in A\}$ has positive Lebesgue measure in \mathbb{R}.

Problem 73 (A quantitative characterization of absolute continuity). Suppose $\mu \ll \nu$. Then, show that given any $\epsilon>0$, there exists $\delta>0$ such that $\nu(A)<\delta$ implies $\mu(A)<\epsilon$. (The converse statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 74. Let Z_{1}, \ldots, Z_{n} be i.i.d $N(0,1)$ and write \mathbf{Z} for the vector with components Z_{1}, \ldots, Z_{n}. Let A be an $m \times n$ matrix and let μ be a vector in \mathbb{R}^{m}. Then the m-dimensional random vector $\mathbf{X}=\mu+A \mathbf{Z}$ is said to have distribution $N_{m}(\mu, \Sigma)$ where $\Sigma=A A^{t}$ ('Normal distribution with mean vector μ and covariance matrix Σ^{\prime}).
(1) If $m \leq n$ and A has rank m, show that \mathbf{X} has density $(2 \pi)^{-\frac{m}{2}} \exp \left\{-\frac{1}{2} \mathbf{x}^{t} A^{-1} \mathbf{x}\right\}$ w.r.t Lebesgue measure on \mathbb{R}^{m}. In particular, note that the distribution depends only on μ and $A A^{t}$. (Note: If $m>n$ or if $\operatorname{rank}(A)<m$, then satisfy yourself that \mathbf{X} has no density w.r.t Lebesgue measure on \mathbb{R}^{m} - you do not need to submit this).
(2) Check that $\mathbf{E}\left[X_{i}\right]=\mu_{i}$ and $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\Sigma_{i, j}$.
(3) What is the distribution of (i) $\left(X_{1}, \ldots, X_{k}\right)$, for $k \leq n$? (ii) $B \mathbf{X}$, where B is a $p \times m$ matrix? (iii) $X_{1}+\ldots+X_{m}$?

Problem 75. (1) If X, Y are independent random variables, show that $\operatorname{Cov}(X, Y)=0$.
(2) Give a counterexample to the converse by giving an infinite sequence of random variables X_{1}, X_{2}, \ldots such that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for any $i \neq j$ but such that X_{i} are not independent.
(3) Suppose $\left(X_{1}, \ldots, X_{m}\right)$ has (joint) normal distribution (see the first question). If $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ for all $i \leq k$ and for all $j \geq k+1$, then show that $\left(X_{1}, \ldots, X_{k}\right)$ is independent of $\left(X_{k+1}, \ldots, X_{m}\right)$.

Problem 76. (1) Suppose $2 \leq k<n$. Give an example of random variables X_{1}, \ldots, X_{n} such that any subset of k of these random variables are independent but no subset of $k+1$ of them is independent.
(2) Suppose $\left(X_{1}, \ldots, X_{n}\right)$ has a multivariate Normal distribution. Show that if X_{i} are pairwise independent, then they are independent.

Problem 77. Show that it is not possible to define uncountably many independent $\operatorname{Ber}(1 / 2)$ random variables on the probability space $([0,1], \mathcal{B}, \lambda)$.

Problem 78. Let $X_{i}, i \geq 1$ be random variables on a common probability space. Let $f: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ be a measurable function (with product sigma algebra on $\mathbb{R}^{\mathbb{N}}$ and Borel sigma algebra on \mathbb{R}) and let $Y=f\left(X_{1}, X_{2}, \ldots\right)$. Show that the distribution of Y depends only on the joint distribution of $\left(X_{1}, X_{2}, \ldots\right)$ and not on the original probability space. [Hint: We used this to say that if X_{i} are independent Bernoulli random variables, then $\sum_{i \geq 1} X_{i} 2^{-i}$ has uniform distribution on [0, 1], irrespective of the underlying probability space.]

Problem 79. Suppose $\left(X_{1}, \ldots, X_{n}\right)$ has density f (w.r.t Lebesgue measure on \mathbb{R}^{n}).
(1) If $f\left(x_{1}, \ldots, x_{n}\right)$ can be written as $\prod_{k=1}^{n} g_{k}\left(x_{k}\right)$ for some one-variable functions g_{k}, $k \leq n$. Then show that X_{1}, \ldots, X_{n} are independent. (Don't assume that g_{k} is a density!)
(2) If X_{1}, \ldots, X_{n} are independent, then $f\left(x_{1}, \ldots, x_{n}\right)$ can be written as $\prod_{k=1}^{n} g_{k}\left(x_{k}\right)$ for some one-variable densities g_{1}, \ldots, g_{n}.

Problem 80. Among all $n!$ permutations of $[n]$, pick one at random with uniform probability. Show that the probability that this random permutation has no fixed points is at most $\frac{1}{2}$ for any n.

Problem 81. Suppose each of $r=\lambda n$ balls are put into n boxes at random (more than one ball can go into a box). If N_{n} denotes the number of empty boxes, show that for any $\delta>0$, as $n \rightarrow \infty$,

$$
\mathbf{P}\left(\left|\frac{N_{n}}{n}-e^{-\lambda}\right|>\delta\right) \rightarrow 0
$$

Problem 82. Let X_{n} be i.i.d random variables such that $\mathbf{E}\left[\left|X_{1}\right|\right]<\infty$. Define the random power series $f(z)=\sum_{k=0}^{\infty} X_{n} z^{n}$. Show that almost surely, the radius of convergence of f is equal to 1. [Note: Recall from Analysis class that the radius of convergence of a power series $\sum c_{n} z^{n}$ is given by $\left.\left(\limsup \left|c_{n}\right|^{\frac{1}{n}}\right)^{-1}\right]$.

Problem 83. (1) Let X be a real values random variable with finite variance. Show that $f(a):=\mathbf{E}\left[(X-a)^{2}\right]$ is minimized at $a=\mathbf{E}[X]$.
(2) What is the quantity that minimizes $g(a)=\mathbf{E}[|X-a|]$? [Hint: First consider X that takes finitely many values with equal probability each].

Problem 84 (Existence of Markov chains). Let S be a countable set (with the power set sigma algebra). Two ingredients are given: A transition matrix, that is, a function $p: S \times S \rightarrow[0,1]$ be a function such that $p(x, \cdot)$ is a probability mass function on S for each $x \in S$. (1) An initial distribution, that is a probability mass function μ_{0} on S.

For $n \geq 0$ define the probability measure ν_{n} on S^{n+1} (with the product sigma algebra) by

$$
\nu_{n}\left(A_{0} \times A_{1} \times \ldots \times A_{n}\right)=\sum_{\left(x_{0}, \ldots, x_{n}\right) \in A_{0} \times \ldots \times A_{n}} \mu_{0}\left(x_{0}\right) \prod_{j=0}^{n-1} p\left(x_{j}, x_{j+1}\right) .
$$

Show that ν_{n} form a consistent family of probability distributions and conclude that a Markov chain with initial distribution μ_{0} and transition matrix p exists.

Problem 85. Show that it is not possible to define uncountably many independent $\operatorname{Ber}(1 / 2)$ random variables on the probability space $([0,1], \mathcal{B}, \lambda)$.

Problem 86. Let $\left(\Omega_{i}, \mathcal{F}_{i}, \mathbf{P}_{i}\right), i \in I$, be probability spaces and let $\Omega=\times_{i} \Omega_{i}$ with $\mathcal{F}=\otimes_{i} \mathcal{F}_{i}$ and $\mathbf{P}=\otimes_{i} \mathbf{P}_{i}$. If $A \in \mathcal{F}$, show that for any $\epsilon>0$, there is a cylinder set B such that $\mathbf{P}(A \Delta B)<\epsilon$.

Problem 87. Let ξ, ξ_{n} be i.i.d. random variables with $\mathbf{E}\left[\log _{+} \xi\right]<\infty$ and $\mathbf{P}(\xi=0)<1$.
(1) Show that $\lim \sup _{n \rightarrow \infty}\left|\xi_{n}\right|^{\frac{1}{n}}=1$ a.s.
(2) Let c_{n} be (non-random) complex numbers. Show that the radius of convergence of the random power series $\sum_{n=0}^{\infty} c_{n} \xi_{n} z^{n}$ is almost surely equal to the radius of convergence of the non-random power series $\sum_{n=0}^{\infty} c_{n} z^{n}$.

Problem 88. (Ergodicity of product measure). This problem guides you to a proof of a different zero-one law.
(1) Consider the product measure space $\left(\mathbb{R}^{\mathbb{Z}}, \mathcal{B}\left(\mathbb{R}^{\mathbb{Z}}\right), \otimes_{\mathbb{Z}} \mu\right)$ where $\mu \in \mathcal{P}(\mathbb{R})$. Define $\tau: \mathbb{R}^{\mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z}}$ by $(\tau \omega)_{n}=\omega_{n+1}$. Let $\mathcal{I}=\left\{A \in \mathcal{B}\left(\mathbb{R}^{\mathbb{Z}}\right): \tau(A)=A\right\}$. Then, show that \mathcal{I} is a sigma-algebra (called the invariant sigma algebra) and that every event in \mathcal{I} has probability equal to 0 or 1 .
(2) Let $X_{n}, n \geq 1$ be i.i.d. random variables on a common probability space. Suppose $f: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ is a measurable function such that $f\left(x_{1}, x_{2}, \ldots\right)=f\left(x_{2}, x_{3}, \ldots\right)$ for any $\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}$. Then deduce from the first part that the random variable $f\left(X_{1}, X_{2}, \ldots\right)$ is a constant, a.s.
[Hint: Approximate A by cylinder sets. Use translation by τ^{m} to show that $\mathbf{P}(A)=\mathbf{P}(A)^{2}$.]

Problem 89. Consider the invariant sigma algebra and the tail sigma algebra. Show that neither is contained in the other.

Problem 90. (Chung-Erdös inequality).
(1) Let A_{i} be events in a probability space. Show that

$$
\mathbf{P}\left\{\bigcup_{k=1}^{n} A_{k}\right\} \geq \frac{\left(\sum_{k=1}^{n} \mathbf{P}\left(A_{k}\right)\right)^{2}}{\sum_{k, \ell=1}^{n} \mathbf{P}\left(A_{k} \cap A_{\ell}\right)}
$$

(2) Place r_{m} balls in m bins at random and count the number of empty bins Z_{m}. Fix $\delta>0$. If $r_{m}>(1+\delta) m \log m$, show that $\mathbf{P}\left(Z_{m}>0\right) \rightarrow 0$ while if $r_{m}<(1-\delta) m \log m$, show that $\mathbf{P}\left(Z_{m}>0\right) \rightarrow 1$.

Problem 91. Give example of an infinite sequence of pairwise independent random variables for which Kolmogorov's zero-one law fails.

Problem 92. Let $X_{i}, i \in I$ be random variables on a probability space. Suppose that for some $p>0$ and $M<\infty$ we have $\mathbf{E}\left[\left|X_{i}\right|^{p}\right] \leq M$ for all $i \in I$. Show that the family $\left\{X_{i}: i \in I\right\}$ is tight (by which we mean that $\left\{\mu_{X_{i}}: i \in I\right\}$ is tight, where $\mu_{X_{i}}$ is the distribution of X_{i}).

Problem 93. Let X_{i} be i.i.d. random variables with zero mean and finite variance. Let $S_{n}=X_{1}+\ldots+X_{n}$. Show that the collection $\left\{\frac{1}{\sqrt{n}} S_{n}: n \geq 1\right\}$ is tight. [Note: Tightness is essential for convergence in distribution. In the case at hand, convergence in distribution to $N(0,1)$ is what is called central limit theorem. We shall see it later.]

Problem 94. Among all n ! permutations of $[n]$, pick one at random with uniform probability. Show that the probability that this random permutation has no fixed points is at most $\frac{1}{2}$ for any n.

Problem 95. Suppose each of $r=\lambda n$ balls are put into n boxes at random (more than one ball can go into a box). If N_{n} denotes the number of empty boxes, show that for any $\delta>0$, as $n \rightarrow \infty$,

$$
\mathbf{P}\left(\left|\frac{N_{n}}{n}-e^{-\lambda}\right|>\delta\right) \rightarrow 0
$$

Problem 96. Let X_{n} be i.i.d random variables such that $\mathbf{E}\left[\left|X_{1}\right|\right]<\infty$. Define the random power series $f(z)=\sum_{k=0}^{\infty} X_{n} z^{n}$. Show that almost surely, the radius of convergence of f is equal to 1. [Note: Recall from Analysis class that the radius of convergence of a power series $\sum c_{n} z^{n}$ is given by $\left.\left(\lim \sup \left|c_{n}\right|^{\frac{1}{n}}\right)^{-1}\right]$.

Problem 97. (1) Let X be a real values random variable with finite variance. Show that $f(a):=\mathbf{E}\left[(X-a)^{2}\right]$ is minimized at $a=\mathbf{E}[X]$.
(2) What is the quantity that minimizes $g(a)=\mathbf{E}[|X-a|]$? [Hint: First consider X that takes finitely many values with equal probability each].

Problem 98. Let X_{i} be i.i.d. Cauchy random variables with density $\frac{1}{\pi\left(1+t^{2}\right)}$. Show that $\frac{1}{n} S_{n}$ fils the weak law of large numbers by completing the following steps.
(1) Show that $t \mathbf{P}\left\{\left|X_{1}\right|>t\right\} \rightarrow c$ for some constant c.
(2) Show that if $\delta>0$ is small enough, then $\mathbf{P}\left\{\left|\frac{1}{n-1} S_{n-1}\right| \geq \delta\right\}+\mathbf{P}\left\{\left|\frac{1}{n-1} S_{n-1}\right| \geq \delta\right\}$ does not go to 0 as $n \rightarrow \infty$ [Hint: Consider the possibility that $\left.\left|X_{n}\right|>2 \delta n\right]$.
(3) Conclude that $\frac{1}{n} S_{n} \xrightarrow{P} 0$. [Extra: With a little more effort, you can try showing that there does not exist deterministic numbers a_{n} such that $\frac{1}{n} S_{n}-a_{n} \xrightarrow{P} 0$].

Problem 99. Let X_{n}, X be random variables on a common probability space.
(1) If $X_{n} \xrightarrow{P} X$, show that some subsequence $X_{n_{k}} \xrightarrow{\text { a.s. }} X$.
(2) If every subsequence of X_{n} has a further subsequence that converges almost surely to X, show that $X_{n} \xrightarrow{P} X$.

Problem 100. For \mathbb{R}^{d}-valued random vectors X_{n}, X, the notions of convergence almost surely, in probability and in distribution are well-defined. If $X_{n}=\left(X_{n, 1}, \ldots, X_{n, d}\right)$ and $X=\left(X_{1}, \ldots, X_{d}\right)$, which of the following is true? Justify or give counterexamples.
(1) $X_{n} \xrightarrow{\text { a.s. } X} X$ if and only if $X_{n, k} \xrightarrow{\text { a.s. }} X_{k}$ for $1 \leq k \leq d$.
(2) $X_{n} \xrightarrow{P} X$ if and only if $X_{n, k} \xrightarrow{P} X_{k}$ for $1 \leq k \leq d$.
(3) $X_{n} \xrightarrow{d} X$ if and only if $X_{n, k} \xrightarrow{d} X_{k}$ for $1 \leq k \leq d$.

Problem 101. Let X_{n}, Y_{n}, X, Y be random variables on a common probability space.
(1) If $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$ (all r.v.s on the same probability space), show that $a X_{n}+$ $b Y_{n} \xrightarrow{P} a X+b Y$ and $X_{n} Y_{n} \xrightarrow{P} X Y$. [Hint: You could try showing more generally that $f\left(X_{n}, Y_{n}\right) \rightarrow f(X, Y)$ for any continuous $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.]
(2) If $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{d} Y$ (all on the same probability space), then show that $X_{n} Y_{n} \xrightarrow{d}$ $X Y$.

Problem 102. Let X_{n}, Y_{n}, X, Y be random variables on a common probability space.
(1) Suppose that X_{n} is independent of Y_{n} for each n (no assumptions about independence across n). If $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$, then $\left(X_{n}, Y_{n}\right) \xrightarrow{d}(U, V)$ where $U \stackrel{d}{=} X$, $V \stackrel{d}{=} Y$ and U, V are independent. Further, $a X_{n}+b Y_{n} \xrightarrow{d} a U+b V$.
(2) Give counterexample to show that the previous statement is false if the assumption of independence of X_{n} and Y_{n} is dropped.

Problem 103. For \mathbb{R}^{d}-valued random vectors X_{n}, X, we say that $X_{n} \xrightarrow{P} X$ if $\mathbf{P}\left(\left\|X_{n}-X\right\|>\right.$ $\delta) \rightarrow 0$ for any $\delta>0$ (here you may take $\|\cdot\|$ to denote the usual norm, but any norm on \mathbb{R}^{d} gives the same definition).
(1) If $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$, show that $\left(X_{n}, Y_{n}\right) \xrightarrow{P}(X, Y)$.
(2) If $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$, show that $X_{n}+Y_{n} \xrightarrow{P} X+Y$ and $\left\langle X_{n}, Y_{n}\right\rangle \xrightarrow{P} X Y$. [Hint: Show more generally that $f\left(X_{n}, Y_{n}\right) \xrightarrow{P} f(X, Y)$ for any continuous function f by using the previous problem for random vectors].

Problem 104. (1) If X_{n}, Y_{n} are independent random variables on the same probability space and $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$, then $\left(X_{n}, Y_{n}\right) \xrightarrow{d}(U, V)$ where $U \stackrel{d}{=} X, V \stackrel{d}{=} Y$ and U, V are independent.
(2) If $X_{n} \xrightarrow{d} X$ and $Y_{n}-X_{n} \xrightarrow{P} 0$, then show that $Y_{n} \xrightarrow{d} X$.

Problem 105. Show that the sequence $\left\{X_{n}\right\}$ is tight if and only if $c_{n} X_{n} \xrightarrow{P} 0$ whenever $c_{n} \rightarrow 0$.

Problem 106. Suppose X_{n} are i.i.d with $\mathbf{E}\left[\left|X_{1}\right|^{4}\right]<\infty$. Show that there is some constant C (depending on the distribution of X_{1}) such that $\mathbf{P}\left(\left|n^{-1} S_{n}-\mathbf{E}\left[X_{1}\right]\right|>\delta\right) \leq C n^{-2}$. (What is your guess if we assume $\mathbf{E}\left[\left|X_{1}\right|^{6}\right]<\infty$? You don't need to show this in the homework).

Problem 107. (1) (Skorokhod's representation theorem) If $X_{n} \xrightarrow{d} X$, then show that there is a probability space with random variables Y_{n}, Y such that $Y_{n} \stackrel{d}{=} X_{n}$ and $Y \stackrel{d}{=} X$ and $Y_{n} \xrightarrow{\text { a.s. }} Y$. [Hint: Try to construct Y_{n}, Y on the canonical probability space $([0,1], \mathcal{B}, \mu)]$
(2) If $X_{n} \xrightarrow{d} X$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, show that $f\left(X_{n}\right) \xrightarrow{d} f(X)$. [Hint: Use the first part]

Problem 108. Suppose X_{i} are i.i.d with the Cauchy distribution (density $\pi^{-1}\left(1+x^{2}\right)^{-1}$ on \mathbb{R}). Note that X_{1} is not integrable. Then, show that $\frac{S_{n}}{n}$ does not converge in probability to any constant. [Hint: Try to find the probability $\mathbf{P}\left(X_{1}>t\right)$, and then use it].

Problem 109. Let $\left\{X_{i}\right\}_{i \in I}$ be a family of r.v on $(\Omega, \mathcal{F}, \mathbf{P})$.
(1) If $\left\{X_{i}\right\}_{i \in I}$ is uniformly integrable, then show that $\sup _{i} \mathbf{E}\left|X_{i}\right|<\infty$. Give a counterexample to the converse statement.
(2) Suppose $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a non-decreasing function that goes to infinity and $\sup _{i} \mathbf{E}\left[\left|X_{i}\right| h\left(\left|X_{i}\right|\right)\right]<\infty$. Show that $\left\{X_{i}\right\}_{i \in I}$ is uniformly integrable. In particular, if $\sup _{i} \mathbf{E}\left[\left|X_{i}\right|^{p}\right]<\infty$ for some $p>1$, then $\left\{X_{i}\right\}$ is uniformly integrable.

Problem 110. Let X_{n} be i.i.d with $\mathbf{P}\left(X_{1}=+1\right)=\mathbf{P}\left(X_{1}=-1\right)=\frac{1}{2}$. Show that for any $\gamma>\frac{1}{2}$,

$$
\frac{S_{n}}{n^{\gamma}} \xrightarrow{\text { a.s. }} 0 .
$$

[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you write the proof correctly, it should go for any random variable which has moments of all orders. You do not need to show this for the homework].

Problem 111. Let X_{n} be independent real-valued random variables.
(1) Show by example that the event $\left\{\sum X_{n}\right.$ converges to a number in $\left.[1,3]\right\}$ can have probability strictly between 0 and 1 .
(2) Show that the event $\left\{\sum X_{n}\right.$ converges to a finite number $\}$ has probability zero or one.

Problem 112. Let X_{n} be i.i.d exponential(1) random variables.
(1) If b_{n} is a sequence of numbers that converge to 0 , show that $\lim \sup b_{n} X_{n}$ is a constant (a.s.). Find a sequence b_{n} so that $\limsup b_{n} X_{n}=1$ a.s.
(2) Let M_{n} be the maximum of X_{1}, \ldots, X_{n}. If $a_{n} \rightarrow \infty$, show that $\lim \sup \frac{M_{n}}{a_{n}}$ is a constant (a.s.). Find a_{n} so that $\lim \sup \frac{M_{n}}{a_{n}}=1$ (a.s.).
[Remark: Can you do the same if X_{n} are i.i.d $\mathrm{N}(0,1)$? Need not show this for the homework, but note that the main ingredient is to find a simple expression for $\mathbf{P}\left(X_{1}>t\right)$ asymptotically as $t \rightarrow \infty$].

Problem 113. Let X_{n} be i.i.d real valued random variables with common distribution μ. For each n, define the random probabilty measure μ_{n} as $\mu_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{X_{k}}$. Let F_{n} be the CDF of μ_{n}. Show that

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \xrightarrow{\text { a.s. }} 0 \quad \text { a.s. }
$$

Problem 114. Let X_{n} be independent and $\mathbf{P}\left(X_{n}=n^{a}\right)=\frac{1}{2}=\mathbf{P}\left(X_{n}=-n^{a}\right)$ where $a>0$ is fixed. For what values of a does the series $\sum X_{n}$ converge a.s.? For which values of a does the series converge absolutely, a.s.?

Problem 115. (Random series) Let X_{n} be i.i.d $N(0,1)$ for $n \geq 1$.
(1) Show that the random series $\sum X_{n} \frac{\sin (n \pi t)}{n}$ converges a.s., for any $t \in \mathbb{R}$.
(2) Show that the random series $\sum X_{n} \frac{t^{n}}{\sqrt{n!}}$ converges for all $t \in \mathbb{R}$, a.s.
[Note: The location of the phrase "a.s" is all important here. Let A_{t} and B_{t} denote the event that the series converges for the fixed t in the first or second parts of the question, respectively. Then, the first part is asking you to show that $\mathbf{P}\left(A_{t}\right)=1$ for each $t \in \mathbb{R}$, while the second part is asking you to show that $\mathbf{P}\left(\cap_{t \in \mathbb{R}} B_{t}\right)=1$. It is also true (and very important!) that $\mathbf{P}\left(\cap_{t \in \mathbb{R}} A_{t}\right)=1$ but showing that is not easy.]

Problem 116. Suppose X_{n} are i.i.d random variables with finite mean. Which of the following assumptions guarantee that $\sum X_{n}$ converges a.s.?
(1) (i) $\mathbf{E}\left[X_{n}\right]=0$ for all n and (ii) $\sum \mathbf{E}\left[X_{n}^{2} \wedge 1\right]<\infty$.
(2) (i) $\mathbf{E}\left[X_{n}\right]=0$ for all n and (ii) $\sum \mathbf{E}\left[X_{n}^{2} \wedge\left|X_{n}\right|\right]<\infty$.

Problem 117. (Large deviation for Bernoullis). Let X_{n} be i.i.d $\operatorname{Ber}(1 / 2)$. Fix $p>\frac{1}{2}$.
(1) Show that $\mathbf{P}\left(S_{n}>n p\right) \leq e^{-n p \lambda}\left(\frac{e^{\lambda}+1}{2}\right)^{n}$ for any $\lambda>0$.
(2) Optimize over λ to get $\mathbf{P}\left(S_{n}>n p\right) \leq e^{-n I(p)}$ where $I(p)=-p \log p-(1-p) \log (1-p)$. (Observe that this is the entropy of the $\operatorname{Ber}(p)$ measure introduced in the first class test).
(3) Recall that $S_{n} \sim \operatorname{Binom}(n, 1 / 2)$, to write $\mathbf{P}\left(S_{n}=\lceil n p\rceil\right)$ and use Stirling's approximation to show that

$$
\mathbf{P}\left(S_{n} \geq n p\right) \geq \frac{1}{\sqrt{2 \pi n p(1-p)}} e^{-n I(p)}
$$

(4) Deduce that $\mathbf{P}\left(S_{n} \geq n p\right) \approx e^{-n I(p)}$ for $p>\frac{1}{2}$ and $\mathbf{P}\left(S_{n}<n p\right) \approx e^{-n I(p)}$ for $p<\frac{1}{2}$ where the notation $a_{n} \approx b_{n}$ means $\frac{\log a_{n}}{\log b_{n}} \rightarrow 1$ as $n \rightarrow \infty$ (i.e., asymptotic equality on the logarithmic scale).

Problem 118. Carry out the same program for i.i.d exponential(1) random variables and deduce that $\mathbf{P}\left(S_{n}>n t\right) \approx e^{-n I(t)}$ for $t>1$ and $\mathbf{P}\left(S_{n}<n t\right) \approx e^{-n I(t)}$ for $t<1$ where $I(t):=t-1-\log t$.

Problem 119. Let Y_{1}, \ldots, Y_{n} be independent random variables. A random variable τ taking values in $\{1,2, \ldots, n\}$ is called a stopping time if the event $\{\tau \leq k\} \in \sigma\left(Y_{1}, \ldots, Y_{k}\right)$ for all k (equivalently $\{\tau=k\} \in \sigma\left(Y_{1}, \ldots, Y_{k}\right)$ for all k).
(1) Which of the following are stopping times? $\tau_{1}:=\min \left\{k \leq n: S_{k} \in A\right\}$ (for some fixed $A \subseteq \mathbb{R}$). $\tau_{2}:=\max \left\{k \leq n: S_{k} \in A\right\} . \tau_{3}:=\min \left\{k \leq n: S_{k}=\max _{j \leq n} S_{j}\right\}$. In the first two cases set $\tau=n$ if the desired event does not occur.
(2) Assuming each X_{k} has zero mean, show that $\mathbf{E}\left[S_{\tau}\right]=0$ for any stopping time τ. Assuming that each X_{k} has zero mean and finite variance, show that $\mathbf{E}\left[S_{1}^{2}\right] \leq$ $\mathbf{E}\left[S_{\tau}^{2}\right] \leq \mathbf{E}\left[S_{n}^{2}\right]$ for any stopping time τ.
(3) Give examples of random τ that are not stopping times and for which the results in the second part of the question fail.

Problem 120. Let X_{k} be independent random variables with zero mean and unit variance. Assume that $\mathbf{E}\left[\left|X_{k}\right|^{2+\delta}\right] \leq M$ for some $\delta<0$ and $M<\infty$. Show that S_{n} is asymptotically normal.

Problem 121. Let X_{k} be i.i.d. random variables with zero mean and unit variance. Let $0<a_{1}<a_{2}<\ldots$ be given numbers. Find sufficient conditions on $\left(a_{i}\right)_{i}$ such that S_{n} is asymptotically normal.

Problem 122. Fix $\alpha>0$.
(1) If X, Y are i.i.d. random variables such that $\frac{X+Y}{2^{\frac{1}{\alpha}}} \stackrel{d}{=} X$, then show that X must have characteristic function $\varphi_{X}(\lambda)=e^{-c|\lambda|^{\alpha}}$ for some constant c.
(2) Show that for $\alpha=2$ we get $N\left(0, \sigma^{2}\right)$ and for $\alpha=1$ we get symmetric Cauchy.
[Note: Only for $0<\alpha \leq 2$ is $e^{-c|\lambda|^{\alpha}}$ a characteristic function. Hence a distribution with the desired property exists only for this range of α].

Problem 123. Let X_{k} be independent $\operatorname{Ber}\left(p_{k}\right)$ random variables. If $\operatorname{Var}\left(S_{n}\right)$ stays bounded, show that S_{n} cannot be asymptotically normal.

Problem 124 (Weak law using characteristic functions). Let X_{k} be i.i.d. random variables having characteristic function φ.
(1) If $\varphi^{\prime}(0)=i \mu$, show that the characteristic function of S_{n} / n converges to the characteristic function of δ_{μ}. Conclude that weak law holds for S_{n} / n.
(2) If $\frac{1}{n} S_{n} \xrightarrow{P} \mu$ for some μ, then show that φ is differentiable at 0 and $\varphi^{\prime}(0)=i \mu$.

Problem 125. Find the characteristic functions of the distributions with the given densities. (1) $e^{-|x|}$ for $x \in \mathbb{R}$, (2) $\frac{1}{2}\left(1-\frac{|x|}{2}\right)_{+}$.

Problem 126 (Multidimensional central limit theorem). Let X_{n} be i.i.d. \mathbb{R}^{d}-valued random vectors with zero mean and covariance matrix Σ. Let $S_{n}=X_{1}+\ldots+X_{n}$. Show that $\frac{1}{\sqrt{n}} S_{n} \xrightarrow{d} N_{d}(0, \Sigma)$ using the replacement principle. Assume (for convenience) that third moments are finite (i.e., $\mathbf{E}\left[\left\|X_{1}\right\|^{3}\right]<\infty$).

Problem 127. [3 marks each] For each of the following statements, state whether they are true or false, and justify or give counterexample accordingly.
(1) If μ, ν are Borel probability measures on \mathbb{R} and $\mu \ll \nu$, then either $\nu \perp \mu$ or $\nu \ll \mu$.
(2) If $\sum_{n} X_{n}$ converges a.s. and $\mathbf{P}\left(Y_{n}=X_{n}\right)=1-\frac{1}{n^{2}}$. Then $\sum_{n} Y_{n}$ converges a.s.
(3) If $\left\{X_{n}\right\}$ is an L^{2} bounded sequence of random variables, and $\mathbf{E}\left[X_{n}\right]=1$ for all n, then X_{n} cannot converge to zero in probability.
(4) If $X_{n} \xrightarrow{d} X$, then $X_{n}^{2} \xrightarrow{d} X^{2}$.
(5) Suppose X_{n} are independent with $\mathbf{E}\left[X_{n}\right]=0$ and $\sum \operatorname{Var}\left(X_{n}\right)=\infty$. Then, almost surely $\sum X_{n}$ does not converge.
(6) Suppose X_{n}, Y_{n} are random variables such that $\left|X_{n}\right| \leq\left|Y_{n}\right|$ for all n. If $\sum Y_{n}$ converges almost surely, then $\sum X_{n}$ converges almost surely.

Problem 128. [2 marks+4 marks + 4 marks] Let X, Y be random variables on a common probability space. Assume that both X and Y have finite variance.
(1) Show that $\mathbf{E}\left[(X-a)^{2}\right]$ is minimized uniquely at $a=\mathbf{E}[X]$.
(2) Find values of a, b that minimize $f(a, b)=\mathbf{E}\left[(Y-a-b X)^{2}\right]$. Are they unique?
(3) Suppose $\mathbf{P}(X=k)=\frac{1}{10}$ for $k=1,2 \ldots, 10$. At what value(s) of a is $\mathbf{E}[|X-a|]$ minimized? Is the minimizer unique?

Problem 129. [10 marks] Let G_{1}, G_{2}, \ldots be i.i.d Geometric (p) random variables (this means $\mathbf{P}\left(G_{1}=k\right)=p(1-p)^{k-1}$ for $\left.k \geq 1\right)$. Let X_{1}, X_{2}, \ldots be i.i.d random variables with $\mathbf{E}\left[\left|X_{1}\right|\right]<\infty$. Define $N_{k}:=G_{1}+G_{2}+\ldots+G_{k}$. Show that as $k \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\ldots+X_{N_{k}}}{k} \xrightarrow{P} \frac{1}{p} \mathbf{E}\left[X_{1}\right]
$$

Problem 130. [$\mathbf{5}$ marks+5 marks] Let U_{k}, V_{k} be i.i.d Uniform([0, 1]) random variable.
(1) Show that $\sum_{k} U_{k}^{\frac{1}{k}}-V_{k}^{\frac{1}{k}}$ converges a.s.
(2) Let $S_{n}=U_{1}+U_{2}^{2}+\ldots+U_{n}^{n}$. Show that S_{n} satisfies a CLT. In other words, find a_{n}, b_{n} such that $\frac{S_{n}-a_{n}}{b_{n}} \xrightarrow{d} N(0,1)$.

Problem 131. [$\mathbf{5}$ marks+5 marks] Let $\mathbf{Z}^{(n)}=\left(Z_{1}^{(n)}, \ldots, Z_{n}^{(n)}\right)$ be a point sampled uniformly from the sphere S^{n-1} (this means that $\mathbf{P}\left(\mathbf{Z}^{(n)} \in A\right)=\operatorname{area}(A) /$ area $\left(S^{n-1}\right)$ for any Borel set $A \subseteq S^{n-1}$).
(1) Find the density of $Z_{1}^{(n)}$.
(2) Using (1) or otherwise, show that $\sqrt{n} Z_{1}^{(n)} \xrightarrow{d} N(0,1)$ as $n \rightarrow \infty$.
[Hint: One way to generate $\mathbf{Z}^{(n)}$ is to sample X_{1}, \ldots, X_{n} i.i.d $\mathrm{N}(0,1)$ and to set $\mathbf{Z}^{(n)}=$ $\frac{1}{\|X\|}\left(X_{1}, \ldots, X_{n}\right)$ where $\|X\|=\sqrt{X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}}$. You may assume this fact without having to justify it].

Problem 132. [5 marks+5 marks]

(1) Let μ be a probability measure on \mathbb{R} with characteristic function $\hat{\mu}(t)$. Then, show that for any $t_{1}, t_{2}, \ldots, t_{n} \in \mathbb{R}$, the $n \times n$ matrix A with entries $a_{i, j}=\hat{\mu}\left(t_{i}-t_{j}\right)$ is non-negative definite.
(2) Suppose $\left|\hat{\mu}\left(t_{0}\right)\right|=1$ for some $t_{0} \neq 0$. Then, μ is supported on a lattice, that is, $\mu(a \mathbb{Z}+b)=1$ for some $a, b \in \mathbb{R}$. [Hint: Use part (1) with $n=2$ and appropriate $\left.t_{1}, t_{2}\right]$.

Problem 133. [10 marks] Let X_{1}, X_{2}, \ldots be i.i.d Bernoulli $\left(\frac{1}{2}\right)$ random variables. For each $n \geq 1$, define L_{n} to be the longest run of ones in $\left(X_{1}, \ldots, X_{n}\right)$, that is,

$$
L_{n}:=\max \left\{k: \exists j \leq n-k \text { such that } X_{j+1}=X_{j+2}=\ldots=X_{j+k}=1\right\} .
$$

Prove that $\frac{L_{n}}{\log n} \xrightarrow{P} \frac{1}{\log 2}$.

Problem 1. Show that it is not possible to define uncountably many independent, nonconstant random variables on $([0,1], \mathcal{B}, \lambda)$.

Solution. Let $X_{i}, i \in I$, be independent, non-constant random variables. Let $\mathcal{F}_{I}=$ $\sigma\left\{X_{i}: i \in I\right\}$. Let $H=L^{2}([0,1], \mathcal{B}, \lambda)$ and $H_{I}=L^{2}\left([0,1], \mathcal{F}_{I}, \lambda\right)$. Then, H_{I} is a closed subspace of H and since H is separable, so is H_{I}.

Let $\left\{Z_{1}, Z_{2}, \ldots\right\}$ be a countable dense subset in H_{I}. Then, each Z_{n} is \mathcal{F}_{I} measurable and hence $Z_{n} \in \mathcal{F}_{I_{n}}$ for some countable set $I_{n} \subseteq I$. Therefore, $Z_{n} \in H_{I_{n}}$. If $J=\cup_{n} I_{n}$, then it follows that $H_{I}=H_{J}$.

Now if $i \in I \backslash J$, then $X_{i} \in H_{J}, X_{i}$ is independent of all random variables in H_{J} and X_{i} is not constant.

