

HOMEWORK 2

Only submit the coloured problems.

Problem 1. Let F be the CDF of a Borel probability measure μ on the line.

- (1) Show that F is continuous at x if and only if $\mu(\{x\}) = 0$.
- (2) Show that F can have at most countably many discontinuities.
- (3) Show that given any countable set $\{x_1, x_2, \dots\}$ and any number p_1, p_2, \dots such that $\sum_i p_i \leq 1$, there is a probability measure whose CDF has a jump of magnitude p_i at x_i for each i , and no other discontinuities.

Problem 2. Decide whether the following are true or false and explain why.

- (1) If X is independent of itself, X is constant a.s.
- (2) If X is independent X^2 then X is a constant a.s.
- (3) If $X, Y, X + Y$ are independent, then X and Y are constants a.s.
- (4) If X and Y are independent and also $X + Y$ and $X - Y$ are independent, then X and Y must be constants a.s.

Problem 3. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space.

- (1) If X is a d -dimensional random vector and $g : \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable, show that $g \circ X$ is a random variable.
- (2) If X, Y are random variables, show that $X + Y$, XY and X^p are all random variables.

Problem 4. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Define

$$\mathcal{G} = \{A \subseteq \Omega : \text{there exist } B, C \in \mathcal{F} \text{ such that } B \subseteq A \subseteq C \text{ and } \mathbf{P}(B) = \mathbf{P}(C)\}.$$

Define $\mathbf{Q} : \mathcal{G} \rightarrow [0, 1]$ by setting $\mathbf{Q}(A) = \mathbf{Q}(B)$ for such A . Show that \mathcal{G} is a sigma-algebra that contains \mathcal{F} and \mathbf{Q} is a probability measure on \mathcal{G} that extends \mathbf{P} .

Problem 5. Given a random number generator that can give random numbers from the uniform distribution on $[0, 1]$, explain how you would generate random numbers from the following distributions: $\text{Bin}(n, p)$, $\text{Pois}(\lambda)$, $\text{Geo}(p)$, $\text{Exp}(\lambda)$, $N(0, 1)$.

Problem 6. Give an example to show that if two probability measures on a sigma-algebra are equal on a generating collection, they do not necessarily have to be equal on the sigma-algebra. But if the generating collection is a π -system, then they are equal.

Problem 7. Let X_1, \dots, X_n be random variables on a common probability space. Let F be the joint CDF (i.e., $F(x_1, \dots, x_n) = \mathbf{P}\{X_1 \leq x_1, \dots, X_n \leq x_n\}$) and let F_j be the CDF of X_j . Show that X_i s are independent if and only if $F(x_1, \dots, x_n) = F_1(x_1) \dots F_n(x_n)$ for all $x_1, \dots, x_n \in \mathbb{R}$.