
PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Problem 1. Let F be a σ-algebra of subsets of Ω.

(1) Show that F is closed under countable intersections (
⋂
n
An), under set differences (A \ B),

under symmetric differences (A∆B).

(2) If An is a countable sequence of subsets of Ω, the set lim supnAn (respectively lim infnAn)
is defined as the set of all ω ∈ Ω that belongs to infinitely many (respectively, all but finitely
many) of the sets An.

If An ∈ F for all n, show that lim supAn ∈ F and lim inf An ∈ F . [Hint: First express
lim supAn and lim inf An in terms of Ans and basic set operations].

(3) If A1 ⊆ A2 ⊆ A3 ⊆ . . ., what are lim supAn and lim inf An?

Problem 2. Let (Ω,F) be a set with a σ-algebra.

(1) Suppose P is a probability measure on F . If An ∈ F and An increase to A (respectively,
decrease to A), show that P(An) increases to (respectively, decreases to) P(A).

(2) Suppose P : F → [0, 1] is a function such that (a) P(Ω) = 1, (b) P is finitely additive, (c) if
An, A ∈ F and Ans increase to A, then P(An) ↑ P(A). Then, show that P is a probability
measure on F .

Problem 3. Suppose S is a π-system and is further closed under complements (A ∈ S implies
Ac ∈ S). Show that S is an algebra.

Problem 4. Let P be a p.m. on a σ-algebra F and suppose S ⊆ F be a π-system. If Ak ∈ S for
k ≤ n, write P(A1 ∪A2 ∪ . . . ∪An) in terms of probabilities of sets in S.

Problem 5. Let (Ω,F ,P) be a probability space. Let G = {A ∈ F : P(A) = 0 or 1}. Show that G is
a σ-algebra.

Problem 6. Suppose σ(S) = F and P,Q are two probability measure on F . If P(A) = Q(A) for
all A ∈ S, is it necessarily true that P(A) = Q(A) for all A ∈ F? If yes, prove it. If not, give a
counterexample.
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Problem 7. (1) Let B be the Borel sigma-algebra of R. Show that B contains all closed sets, all
compact sets, all intervals of the form (a, b] and [a, b).

(2) Show that there is a countable family S of subsets of R such that σ(S) = BR.

(3) Let K be the 1/3-Cantor set. Show that µ∗(K) = 0.

Problem 8. Show that each of the following collection of subsets of Rd generate the same sigma-
algebra (which we call the Borel sigma-algebra).

(1) {(a, b] : a < b}.

(2) {[a, b] : a ≤ b and a, b ∈ Q}.

(3) The collection of all open sets.

(4) The collection of all compact sets.

Problem 9. (1) LetX be an arbitrary set. Let S be the collection of all singletons in Ω. Describe
σ(S).

(2) Let S = {(a, b] ∪ [−b,−a) : a < b are real numbers}. Show that σ(S) is strictly smaller than
the Borel σ-algebra of R.

(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set
in S either contains a and b both, or contains neither. Let F = σ(S). Show that any set in F
has the same property (either contains both a and b or contains neither).

Problem 10. Let Ω be an infinite set and let A = {A ⊆ Ω : A is finite or Ac is finite }. Define
µ : A → R+ by µ(A) = 0 if A is finite and µ(A) = 1 if Ac is finite.

(1) Show that A is an algebra and that µ is finitely additive on A.

(2) Under what conditions does µ extend to a probability measure on F = σ(A)?

Problem 11. On N = {1, 2, . . .}, let Ap denote the subset of numbers divisible by p. Describe
σ({Ap : p is prime}) as explicitly as possible.

Problem 12. If G ⊆ F are sigma algebras on Ω and F is countably generated, then is it necessarily
true that G is countably generated?

Problem 13. Let (X,F) and (Y,G) be measure spaces. If T : X → Y is a function, show that

(1) {T−1B : B ∈ G} is a sigma algebra on X and

(2) {B ∈ G : T−1B ∈ F} is sigma-algebra on Y .
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Problem 14. Let A1, A2, . . . be a finite or countable partition of a non-empty set Ω (i.e., Ai are
pairwise disjoint and their union is Ω). What is the σ-algebra generated by the collection of subsets
{An}? What is the algebra generated by the same collection of subsets?

Problem 15. Let X = [0, 1]N be the countable product of copies of [0, 1]. We define two sigma
algebras of subsets of X .

(1) Define a metric on X by d(x, y) =
∑

n |xn − yn|2−n. Let BX be the Borel sigma-algebra of
(X, d). [Note: For those who know topology, it is better to define BX as the Borel sigma
algebra for the product topology on X . The point is that the metric is flexible. We can take
many or other things (but not d(x, y) = supn |xn−yn| !!). What matters is only the topology
on X .]

(2) Let CX be the sigma-algebra generated by the collection of all cylinder sets. Recall that
cylinder sets are sets of the form A = U1 × U2 × . . .× Un × R× R× . . . where Ui are Borel
subsets of [0, 1].

Show that BX = CX .

Problem 16. Let µ be the Lebesgue p.m. on the Cartheodary σ-algebra B̄ and let µ∗ be the corre-
sponding outer Lebesgue measure defined on all subsets of [0, 1]. We say that a subset N ⊆ [0, 1]

is a null set if µ∗(N) = 0. Show that

B̄ = {B ∪N : B ∈ B and N is null}

where B is the Borel σ-algebra of [0, 1].
[Note: The point of this exercise is to show how much larger is the Lebesgue σ-algebra than the

Borel σ-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a
Borel set. However, cardinality-wise, there is a difference. The Lebesgue σ-algebra is in bijection
with 2R while the Borel σ-algebra is in bijection with R.]

Problem 17. Suppose (Ω,F ,P) is a probability space. Say that a subset N ⊆ Ω is P-null if there
exists A ∈ F with P(A) = 0 and such that N ⊆ A. Define G = {A ∪N : A ∈ F and N is null}.

(1) Show that G is a σ-algebra.

(2) For A ∈ G, write A = B ∪N with b ∈ F and a null set N , and define Q(A) = P(B). Show
that Q is well-defined, that Q is a probability measure on G and Q

∣∣∣
F

= P.

[Note: G is called the P-completion of F . It is a cheap way to enlarge the σ-algebra and extend
the measure to the larger σ-algebra. Another description of the extended σ-algebra is G = {A ⊆
Ω : ∃B,C ∈ F such that B ⊆ A ⊆ C and P(B) = P(C)}. Combined with the previous prob-
lem, we see that the Lebesgue σ-algebra is just the completion of the Borel σ-algebra under the
Lebesgue measure. However, note that completion depends on the probability measure (for a dis-
crete probability measure on R, the completion will be the power set σ-algebra!). For this reason,
we prefer to stick to the Borel σ-algebra and not bother to extend it.]
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Problem 18. Follow these steps to obtain Sierpinski’s construction of a non-measurable set. Here
µ∗ is the outer Lebesgue measure on R.

(1) Regard R as a vector space over Q and choose a basis H (why is it possible?).

(2) Let A0 = H ∪ (−H) = {x : x ∈ H or − x ∈ H}. For n ≥ 1, define An := An−1 −An−1 (may
also write An = An−1 + An−1 since A0 is symmetric about 0). Show that

⋃
n≥0

⋃
q≥1

1
qAn = R

where 1
qAn is the set {xq : x ∈ An}.

(3) Let N := min{n ≥ 0 : µ∗(An) > 0} (you must show that N is finite!). If AN is measurable,
show that ∪n≥N+1An = R.

(4) Get a contradiction to the fact thatH is a basis and conclude thatAN cannot be measurable.

[Remark: If you start with H which has zero Lebesgue measure, then N ≥ 1 and A := EN−1 is a
Lebesgue measurable set such that A + A is not Lebesgue measurable! That was the motivation
for Sierpinski. To find such a basis H , show that the Cantor set spans R and then choose a basis H
contained inside the Cantor set.]

Problem 19. We saw that for a Borel probability measure µ on R, the pushforward of Lebesgue
measure on [0, 1] under the map F−1µ : [0, 1]→ R (as defined in lectures) is precisely µ. This is also
a practical tool in simulating random variables. We assume that a random number generator gives
us uniform random numbers from [0, 1]. Apply the above idea to simulate random numbers from
the following distributions (in matlab/mathematica or a program of your choice) a large number
of times and compare the histogram to the actual density/mass function.

(1) Uniform distribution on [a, b], (2) Exponential(λ) distribution, (3) Cauchy distribution, (4) Poisson(λ)
distribution. What about the normal distribution?

Problem 20. Let Ω = X = R and let T : Ω → X be defined by T (x) = x. We give a pair of
σ-algebras, F on Ω and G on X by taking F and G to be one of 2R or BR or {∅,R}. Decide for each
of the nine pairs, whether T is measurable or not.

Problem 21. (1) Define T : Ω → Rn by T (ω) = (1A1(ω), . . . ,1An(ω)) where A1, . . . , An are
given subsets of Ω. What is the smallest σ-algebra on Ω for which T becomes a random
variable?

(2) Suppose (Ω,F ,P) is a probability space and assume that Ak ∈ F . Describe the push-
forward measure P ◦ T−1 on Rn.
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Problem 22. For k ≥ 0, define the functions rk : [0, 1) → R by writing [0, 1) =
⊔

0≤j<2k
I
(k)
j where

I
(k)
j is the dyadic interval [j2−k, (j + 1)2−k) and setting

rk(x) =

−1 if x ∈ I(k)j for odd j,

+1 if x ∈ I(k)j for even j.

Fix n ≥ 1 and define Tn : [0, 1)→ {−1, 1}n by Tn(x) = (r0(x), . . . , rn−1(x)). Find the push-forward
of the Lebesgue measure on [0, 1) under Tn

Problem 23. Let G be the countable-cocountable sigma algebra on R. Define the probability mea-
sure µ on G by µ(A) = 0 if A is countable and µ(A) = 1 if Ac is countable. Show that µ is not
the push-forward of Lebesgue measure on [0, 1], i.e., there does not exist a measurable function
T : [0, 1] 7→ Ω (w.r.t. the σ-algebras B and G) such that µ = λ ◦ T−1.

Problem 24. (1) If T : Rn → Rm, show that T is Borel measurable if it is (a) continuous or
(b) right continuous or (c) lower semicontinuous or (d) non-decreasing (take m = n = 1

for the last one).

(2) If Rn and Rm are endowed with the Lebesgue sigma-algebra, show that even if T is con-
tinuous, it need not be measurable! Just do this for n = m = 1.

Problem 25. Show that composition of random variables is a random variable. Show that real-
valued random variables on a given (Ω,F) are closed under linear combinations, under multipli-
cation, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

Problem 26. Let µn = 1
n

n∑
k=1

δk/n and let µ be the uniform p.m. on [0, 1]. Show directly by definition

that d(µn, µ)→ 0 as n→∞.

Problem 27 (Change of variable for densities). (1) Let µ be a p.m. on R with density f by
which we mean that its CDF Fµ(x) =

∫ x
−∞ f(t)dt (you may assume that f is continuous,

non-negative and the Riemann integral
∫
R f = 1). Then, find the (density of the) push

forward measure of µ under (a) T (x) = x + a (b) T (x) = bx (c) T is any increasing and
differentiable function.

(2) If X has N(µ, σ2) distribution, find the distribution of (X − µ)/σ.

Problem 28. (1) Let X = (X1, . . . , Xn). Show that X is an Rd-valued r.v. if and only if
X1, . . . , Xn are (real-valued) random variables. How does σ(X) relate to σ(X1), . . . , σ(Xn)?
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(2) Let X : Ω1 → Ω2 be a random variable. If X(ω) = X(ω′) for some ω, ω′ ∈ Ω1, show that
there is no set A ∈ σ(X) such that ω ∈ A and ω′ 6∈ A or vice versa. [Extra! If Y : Ω1 → Ω2

is another r.v. which is measurable w.r.t. σ(X) on Ω1, then show that Y is a function of X].

Problem 29 (Lévy metric). (1) Show that the Lévy metric on P(Rd) defined in class is actually
a metric.

(2) Show that under the Lévy metric, P(Rd) is a complete and seperable metric space.

Problem 30 (Lévy-Prohorov metric). If (X, d) is a metric space, let P(X) denote the space of Borel
probability measures on X . For µ, ν ∈ P(X), define

D(µ, ν) = inf{r ≥ 0 : µ(Ar) + r ≥ ν(A) and ν(Ar) + r ≥ µ(A) for all closed sets A}.

Here Ar = {y ∈ X : d(x, y) ≤ r for some x ∈ A} is the closed r-neighbourhood of A.

(1) Show that D is a metric on P(X).

(2) When X is Rd, show that this agrees with the definition of Lévy metric given in class (i.e.,
for any µn, µ, we have that µn → µ in both metrics or neither).

Problem 31 (Lévy metric). Let P([−1, 1]) ⊆ P(R) be the set of all Borel probability measures µ
such that µ([−1, 1]) = 1. For ε > 0, find a finite ε-net for P([−1, 1]). [Note: Recall that an ε-net
means a subset such that every element of P([−1, 1]) is within ε distance of some element of the
subset. Since P([−1, 1]) is compact, we know that a finite ε-net exists for all ε > 0.]

Problem 32. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.

(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 33 (Coin tossing space). Continuing with the previous example, consider the mapping
X : [0, 1] → {0, 1}N defined by X(t) = (X1(t), X2(t), . . .). With the Borel σ-algebra on [0, 1] and
the σ-algebra generated by cylinder sets on {0, 1}N, show that X is a random variable and find the
push-foward of the Lebesue measure under X .
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Problem 34 (Equivalent conditions for weak convergence). Show that the following statements

are equivalent to µn
d→ µ (you may work in P(R)).

(1) lim supn→∞ µn(F ) ≤ µ(F ) if F is closed.

(2) lim infn→∞ µn(G) ≥ µ(G) if G is open.

(3) lim supn→∞ µn(A) = µ(A) if A ∈ F and µ(∂A) = 0.

Problem 35. Fix µ ∈ P(R). For s ∈ R and r > 0, let µr,s ∈ P(R) be defined as µr,s(A) = µ(rA+ s)

where rA+s = {rx+s : x ∈ A}. For whichR ⊆ (0,∞) and S ⊆ R is it true that {µr,s : r ∈ R, s ∈ S}
a tight family? [Remark: If not clear, just take µ to be the Lebesgue measure on [0, 1].]

Problem 36. (1) Show that the family of Normal distributions {N(µ, σ2) : µ ∈ R and σ2 > 0}
is not tight.

(2) For what A ⊆ R and B ⊆ (0,∞) is the restricted family {N(µ, σ2) : µ ∈ A and σ2 ∈ B}
tight?

Problem 37. (1) Show that the family of exponential distributions {Exp(λ) : λ > 0} is not
tight.

(2) For what A ⊆ R is the restricted family {Exp(λ) : λ > 0} tight?

Problem 38. Suppose µn, µ ∈ P(R) and that the distribution function of µ is continuous. If µn
d→ µ,

show that Fµn(t) − Fµ(t) → 0 uniformly over t ∈ R. [Restatement: When Fµ is continuous, con-
vergence to µ in Lévy-Prohorov metric also implies convergence in Kolmogorov-Smirnov metric.
]

Problem 39. Show that the statement in the previous problem cannot be quantified. That is,
Given any εn ↓ 0 (however fast) and δn ↓ 0 (however slow), show that there is some µn, µ with

Fµ continuous, such that dLP (µn, µ) ≤ εn and dKS(µn, µ) ≥ δn.

Problem 40. Consider the family of Normal distributions, {N(µ, σ2) : µ ∈ R, σ2 > 0}. Show that
the map (µ, σ2)→ N(µ, σ2) from R× R+ to P(R) is continuous. (Complicated way of saying that

if (µn, σ
2
n)→ (µ, σ2), then N(µn, σ

2
n)

d→ N(µ, σ2)).
Do the same for other natural families if distributions, (1) Exp(λ), (2) Uniform[a, b], (3) Bin(n, p)

(fix n and show continuity in p), (4) Pois(λ).
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Problem 41. Suppose µn, µ are discrete probability measures supported on Z having probability

mass functions (pn(k))k∈Z and (p(k))k∈Z. Show that µn
d→ µ if and only if pn(k) → p(k) for each

k ∈ Z.

Problem 42. Given a Borel p.m. µ on R, show that it can be written as a convex combination
αµ1 + (1 − α)µ2 with α ∈ [0, 1], where µ1 is a purely atomic Borel p.m and µ2 is a Borel p.m with
no atoms.

Problem 43. Let F be the CDF of a Borel probability measure µ on the line.

(1) Show that F is continuous at x if and only if µ({x}) = 0.

(2) Show that F can have at most countably many discontinuities.

(3) Show that given any countable set {x1, x2, . . .} and any number p1, p2, . . . such that
∑

i pi ≤
1, there is a probability measure whose CDF has a jump of magnitude pi at xi for each i,
and no other discontinuities.

Problem 44. LetX be a random variable with distribution µ andXn are random variables defined
as follows. If µn is the distribution of Xn, in each case, show that µn

d→ µ as n→∞.

(1) (Truncation). Xn = (X ∧ n) ∨ (−n).

(2) (Discretization). Xn = 1
nbnXc.

Problem 45. Consider the spaceX = [0, 1]N := {x = (x(1), x(2), . . .) : 0 ≤ x(i) ≤ 1 for each i ∈ N}.
Define the metric d(x,y) = supi

|x(i)−y(i)|
i .

(1) Show that xn → x in (X, d) if and only if xn(i)→ x(i) for each i, as n→∞.
[Note: What matters is this pointwise convergence criterion, not the specific metric. The

resulting topology is called product topology. The same convergence would hold if we had
defined the metric as d(x,y) =

∑
i 2−i|x(i) − y(i)| or d(x,y) =

∑
i i
−2|x(i) − y(i)| etc.,

But not the metric supi |x(i) − y(i)| as convergence in this metric is equivalent to uniform
convergence over all i ∈ N].

(2) Show that X is compact.

[Note: What is this problem doing here? The purpose is to reiterate a key technique we used in
the proof of Helly’s selection principle!]

Problem 46. Recall the Cantor set C =
⋂
nKn where K0 = [0, 1], K1 = [0, 1/3] ∪ [2/3, 1], etc. In

general, Kn =
⋃

1≤j≤2n [an,j , bn,j ] where bn,j − an,j = 3−n for each j.

(1) Let µn be the uniform probability measure on Kn. Describe its CDF Fn.
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(2) Show that Fn converges uniformly to a CDF F .

(3) Let µ be the probability measure with CDF equal to F . Show that µ(C) = 1.

Problem 47. Let µ ∈ P(R).

(1) For any n ≥ 1, define a new probability measure by µn(A) = µ(n.A) where n.A = {nx : x ∈
A}. Does µn converge as n→∞?

(2) Let µn be defined by its CDF

Fn(t) =


0 if t < −n,

F (t) if − n ≤ t < n,

1 if t ≥ n.

Does µn converge as n→∞?

(3) In each of the cases, describe µn in terms of random variables. That is, ifX has distribution
µ, describe a transformation Tn(X) that has the distribution µn.

Problem 48. (Bernoulli convolutions) For any λ > 1, defineXλ : [0, 1]→ R byX(ω) =
∑∞

k=1 λ
−kXk(ω).

Check that Xλ is measurable, and define µλ = µX−1λ . Show that for any λ > 2, show that µλ is
singular w.r.t. Lebesgue measure.

Problem 49. For p = 1, 2,∞, check that ‖X−Y ‖p is a metric on the space Lp := {[X] : ‖X‖p <∞}
(here [X] denotes the equivalence class of X under the above equivalence relation).

Problem 50. (1) Give an example of a sequence of r.v.sXn such that lim inf E[Xn] < E[lim inf Xn].

(2) Give an example of a sequence of r.v.s Xn such that Xn
a.s.→ X , E[Xn] = 1, but E[X] = 0.

Problem 51. (Alternate construction of Cantor measure) Let K1 = [0, 1/3] ∪ [2/3, 1], K2 =

[0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1], etc., be the decreasing sequence of compact sets whose
intersection is K. Observe that Kn is a union of 2n intervals each of length 3−n. Let µn be the
p.m. which is the “renormalized Lebesgue measure” on Kn. That is, µn(A) := 3n2−nµ(A∩Kn) for

A ∈ BR. Then each µn is a Borel p.m. Show that µn
d→ µ, the Cantor measure (which was defined

differently in class).

Problem 52. (A quantitative characterization of absolute continuity) Suppose µ � ν. Then,
show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε. (The converse
statement is obvious but worth noticing). [Hint: Argue by contradiction].
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Problem 53. Suppose f : [a, b] → R is a Borel measurable function. Then, show that g(x) :=∫ x
0 f(u)du is a continuous function on [0, 1]. [Note: It is in fact true that g is differentiable at almost

every x and that g′ = f a.s., but that is a more sophisticated fact, called Lebesgue’s differentiation
theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be
covered in your measure theory class].

Problem 54. (Differentiating under the integral). Let f : [a, b] × R → R, satisfy the following
assumptions.

(1) x→ f(x, θ) is Borel measurable for each θ.

(2) θ → f(x, θ) is continuously differentiable for each x.

(3) f(x, θ) and ∂f
∂θ (x, θ) are uniformly bounded functions of (x, θ).

Then, justify the following “differentiation under integral sign” (including the fact that the inte-
grals here make sense).

d

dθ

∫ b

a
f(x, θ)dx =

∫ b

a

∂f

∂θ
(x, θ) dx

[Hint: Remember that derivative is the limit of difference quotients, h′(t) = limε→0
h(t+ε)−h(t)

ε .

Problem 55. (1) Let X ≥ 0 be a r.v on (Ω,F ,P) with 0 < E[X] < ∞. Then, define Q(A) =

E[X1A]/E[X] for any A ∈ F . Show that Q is a probability measure on F . Further, show
that for any bounded random variable Y , we have EQ[Y ] = E[Y X]

E[X] .

(2) If µ and ν are Borel probability measures on the line with continuous densities f and g

(respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that µ has a
density w.r.t ν? In that case, what is that density?

Problem 56. For p = 1, 2,∞, check that ‖X−Y ‖p is a metric on the space Lp := {[X] : ‖X‖p <∞}
(here [X] denotes the equivalence class of X under the equivalence relation X ∼ Y if P(X = Y ) =

1).

Problem 57. Let X be a non-negative random variable.

(1) Show that E[X] =
∫∞
0 P{X > t}dt (in particular, if X is a non-negative integer valued,

then E[X] =
∑∞

n=1P(X ≥ n)).

(2) Show that E[Xp] =
∫∞
0 ptp−1P{X ≥ t}dt for any p > 0.

Problem 58. Let X be a non-negative random variable. If E[X] is finite, show that
∑∞

n=1P{X ≥
an} is finite for any a > 0. Conversely, if

∑∞
n=1P{X ≥ an} for some a > 0, show that E[X] is

finite.
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Problem 59. Show that the values E[f ◦ X] as f varies over the class of all smooth (infinitely
differentiable), compactly supported functions determine the distribution of X .

Problem 60. (i) Express the mean and variance of of aX + b in terms of the same quantities for X
(a, b are constants).

(ii) Show that Var(X) = E[X2]−E[X]2.

Problem 61. Compute mean, variance and moments (as many as possible!) of the Normal(0,1),
exponential(1), Beta(p,q) distributions.

Problem 62. (1) SupposeXn ≥ 0 andXn → X a.s. If E[Xn]→ E[X], show that E[|Xn−X|]→
0.

(2) If E[|X|] <∞, then E[|X|1|X|>A]→ 0 as A→∞.

Problem 63. (1) Suppose (X,Y ) has a continuous density f(x, y). Find the density of X/Y .
Apply to the case when (X,Y ) has the standard bivariate normal distribution with density
f(x, y) = (2π)−1 exp{−x2+y2

2 }.

(2) Find the distribution of X + Y if (X,Y ) has the standard bivariate normal distribution.

(3) Let U = min{X,Y } and V = max{X,Y }. Find the density of (U, V ).

Problem 64. Let µn, µ ∈ P(Rn). Show that µn
d→ µ if and only if

∫
fdµn →

∫
fdµ for every

f ∈ Cb(R). What if we only assume
∫
fdµn →

∫
fdµ for all f ∈ Cc(Rn) - can we conclude that

µn
d→ µ?

Problem 65. Let µn, µ ∈ P(Rn) having densities fn, f with respect to Lebesgue measure. If fn → f

a.e. (w.r.t. Lebesgue measure), show that µn
d→ µ.

Problem 66 (Moment matrices). Let µ ∈ P(R) and let αk =
∫
xkdµ(x) (assume that all moments

exist). Then, for any n ≥ 1, show that the matrix (αi+j)0≤i,j≤n is non-negative definite. [Sugges-
tion: First solve n = 1].

Problem 67. Let X be a non-negative random variable with all moments (i.e., E[Xp] < ∞ for all
p <∞). Show that logE[Xp] is a convex function of p.

11



Problem 68. (1) Let µn, µ ∈ P(Rd). Assume that µn has density fn and µ has density f w.r.t

Lebesgue measure on Rn. If fn(t)→ f(t) for all t, then show that µn
d→ µ.

(2) Show that N(µn, σ
2
n)

d→ N(µ, σ) if and only if µn → µ and σ2n → σ2.

Problem 69. (1) Let X ∼ Γ(α, 1) and Y ∼ Γ(α′, 1) be independent random variables on a
common probability space. Find the distribution of X

X+Y .

(2) If U, V are independent and have uniform([0,1]) distribution, find the distribution of U+V .

Problem 70. Let Ω = {1, 2, . . . , n}. For a probability measure P on Ω, we define it “entropy”
H(P) := −

∑n
k=1 pk log pk where pk = P{k} and it is understood that x log x = 0 if x = 0. Show

that among all probability measures on Ω, the uniform probability measure (the one with pk = 1
n

for each k) is the unique maximizer of entropy.

Problem 71. (1) If µn � ν for each n and µn
d→ µ, then is it necessarily true that µ � ν? If

µn ⊥ ν for each n and µn
d→ µ, then is it necessarily true that µ ⊥ ν? In either case, justify

or give a counterexample.

(2) Suppose X,Y are independent (real-valued) random variables with distribution µ and ν

respectively. If µ and ν are absolutely continuous w.r.t Lebesgue measure, show that the
distribution of X + Y is also absolutely continuous w.r.t Lebesgue measure.

Problem 72. Suppose {µα : α ∈ I} and {νβ : α ∈ J} are two families of Borel probability measures
on R. If both these families are tight, show that the family {µα ⊗ νβ : α ∈ I, β ∈ J} is also tight.

Problem 73. Let X be a non-negative random variable. If E[X] ≤ 1, then show that E[X−1] ≥ 1.

Problem 74. Suppose X,Y are independent random variables and X + Y has finite expectation.
Then show that X has finite expectation. [Hint: Assume that Y has symmetric distribution to get
a possibly simpler version of the problem]

Problem 75. On the probabiity space ([0, 1],B, µ), for k ≥ 1, define the functions

Xk(t) :=


0 if t ∈

2k−1−1⋃
j=0

[ 2j
2k
, 2j+1

2k
).

1 if t ∈
2k−1−1⋃
j=0

[2j+1
2k

, 2j+2
2k

) or t = 1.
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(1) For any n ≥ 1, what is the distribution of Xn?

(2) For any fixed n ≥ 1, find the joint distribution of (X1, . . . , Xn).

[Note: Xk(t) is just the kth digit in the binary expansion of t. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at t = 1)].

Problem 76. If A ∈ B(R2) has positive Lebesgue measure, show that for some x ∈ R the set
Ax := {y ∈ R : (x, y) ∈ A} has positive Lebesgue measure in R.

Problem 77 (A quantitative characterization of absolute continuity). Suppose µ � ν. Then,
show that given any ε > 0, there exists δ > 0 such that ν(A) < δ implies µ(A) < ε. (The converse
statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 78. Let Z1, . . . , Zn be i.i.d N(0, 1) and write Z for the vector with components Z1, . . . , Zn.
Let A be an m × n matrix and let µ be a vector in Rm. Then the m-dimensional random vector
X = µ + AZ is said to have distribution Nm(µ,Σ) where Σ = AAt (‘Normal distribution with
mean vector µ and covariance matrix Σ’).

(1) Ifm ≤ n andA has rankm, show that X has density (2π)−
m
2 exp{−1

2x
tA−1x}w.r.t Lebesgue

measure on Rm. In particular, note that the distribution depends only on µ andAAt. ( Note:
If m > n or if rank(A) < m, then satisfy yourself that X has no density w.r.t Lebesgue mea-
sure on Rm - you do not need to submit this).

(2) Check that E[Xi] = µi and Cov(Xi, Xj) = Σi,j .

(3) What is the distribution of (i) (X1, . . . , Xk), for k ≤ n? (ii) BX, where B is a p×m matrix?
(iii) X1 + . . .+Xm?

Problem 79. (1) If X,Y are independent random variables, show that Cov(X,Y ) = 0.

(2) Give a counterexample to the converse by giving an infinite sequence of random variables
X1, X2, . . . such that Cov(Xi, Xj) = 0 for any i 6= j but such that Xi are not independent.

(3) Suppose (X1, . . . , Xm) has (joint) normal distribution (see the first question). If Cov(Xi, Xj) =

0 for all i ≤ k and for all j ≥ k + 1, then show that (X1, . . . , Xk) is independent of
(Xk+1, . . . , Xm).

Problem 80. Decide whether the following are true or false and explain why.

(1) If X is independent of itself, X is constant a.s.

(2) If X is independent X2 then X is a constant a.s.

(3) If X,Y,X + Y are independent, then X and Y are constants a.s.
13



(4) If X and Y are independent and also X + Y and X − Y are independent, then X and Y

must be constants a.s.

Problem 81. (1) Suppose 2 ≤ k < n. Give an example of random variables X1, . . . , Xn such
that any subset of k of these random variables are independent but no subset of k + 1 of
them is independent.

(2) Suppose (X1, . . . , Xn) has a multivariate Normal distribution. Show that ifXi are pairwise
independent, then they are independent.

Problem 82. Show that it is not possible to define uncountably many independent Ber(1/2) ran-
dom variables on the probability space ([0, 1],B, λ).

Problem 83. Let Xi, i ≥ 1 be random variables on a common probability space. Let f : RN → R
be a measurable function (with product sigma algebra on RN and Borel sigma algebra on R) and
let Y = f(X1, X2, . . .). Show that the distribution of Y depends only on the joint distribution
of (X1, X2, . . .) and not on the original probability space. [Hint: We used this to say that if Xi

are independent Bernoulli random variables, then
∑

i≥1Xi2
−i has uniform distribution on [0, 1],

irrespective of the underlying probability space.]

Problem 84. Suppose (X1, . . . , Xn) has density f (w.r.t Lebesgue measure on Rn).

(1) If f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some one-variable functions gk, k ≤ n.

Then show that X1, . . . , Xn are independent. (Don’t assume that gk is a density!)

(2) If X1, . . . , Xn are independent, then f(x1, . . . , xn) can be written as
∏n
k=1 gk(xk) for some

one-variable densities g1, . . . , gn.

Problem 85. (1) Let S be the set of all x ∈ [0, 1] whose base b-expansion contains all the digits
0, 1, . . . , b − 1, for every b ∈ {2, 3, 4 . . .}. Show that λ(S) = 1, where λ is the Lebesgue
measure on [0, 1].

(2) Let S be the set of all points in R2 that can be written as a convex combination of two
rational points (a rational point is one whose co-ordinates are all rational numbers). Show
that S has zero Lebesgue measure.

Problem 86. Among all n! permutations of [n], pick one at random with uniform probability. Show
that the probability that this random permutation has no fixed points is at most 1

2 for any n.
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Problem 87. Suppose each of r = λn balls are put into n boxes at random (more than one ball can
go into a box). If Nn denotes the number of empty boxes, show that for any δ > 0, as n→∞,

P

(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 88. Let Xn be i.i.d random variables such that E[|X1|] < ∞. Define the random power
series f(z) =

∑∞
k=0Xnz

n. Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series

∑
cnz

n is given
by (lim sup |cn|

1
n )−1].

Problem 89. (1) LetX be a real values random variable with finite variance. Show that f(a) :=

E[(X − a)2] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X − a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 90 (Existence of Markov chains). Let S be a countable set (with the power set sigma
algebra). Two ingredients are given: A transition matrix, that is, a function p : S × S → [0, 1]

be a function such that p(x, ·) is a probability mass function on S for each x ∈ S. (1) An initial
distribution, that is a probability mass function µ0 on S.

For n ≥ 0 define the probability measure νn on Sn+1 (with the product sigma algebra) by

νn(A0 ×A1 × . . .×An) =
∑

(x0,...,xn)∈A0×...×An

µ0(x0)

n−1∏
j=0

p(xj , xj+1).

Show that νn form a consistent family of probability distributions and conclude that a Markov
chain with initial distribution µ0 and transition matrix p exists.

Problem 91. Show that it is not possible to define uncountably many independent Ber(1/2) ran-
dom variables on the probability space ([0, 1],B, λ).

Problem 92. Let (Ωi,Fi,Pi), i ∈ I , be probability spaces and let Ω = ×iΩi with F = ⊗iFi and
P = ⊗iPi. If A ∈ F , show that for any ε > 0, there is a cylinder set B such that P(A∆B) < ε.

Problem 93. Let ξ, ξn be i.i.d. random variables with E[log+ ξ] <∞ and P(ξ = 0) < 1.

(1) Show that lim sup
n→∞

|ξn|
1
n = 1 a.s.
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(2) Let cn be (non-random) complex numbers. Show that the radius of convergence of the
random power series

∑∞
n=0 cnξnz

n is almost surely equal to the radius of convergence of
the non-random power series

∑∞
n=0 cnz

n.

Problem 94. (Ergodicity of product measure). This problem guides you to a proof of a different
zero-one law.

(1) Consider the product measure space (RZ,B(RZ),⊗Zµ) where µ ∈ P(R). Define τ : RZ →
RZ by (τω)n = ωn+1. Let I = {A ∈ B(RZ) : τ(A) = A}. Then, show that I is a sigma-
algebra (called the invariant sigma algebra) and that every event in I has probability equal
to 0 or 1.

(2) LetXn, n ≥ 1 be i.i.d. random variables on a common probability space. Suppose f : RN →
R is a measurable function such that f(x1, x2, . . .) = f(x2, x3, . . .) for any (x1, x2, . . .) ∈ RN.
Then deduce from the first part that the random variable f(X1, X2, . . .) is a constant, a.s.

[Hint: Approximate A by cylinder sets. Use translation by τm to show that P(A) = P(A)2.]

Problem 95. Consider the invariant sigma algebra and the tail sigma algebra. Show that neither
is contained in the other.

Problem 96. (Chung-Erdös inequality).

(1) Let Ai be events in a probability space. Show that

P

{
n⋃
k=1

Ak

}
≥

(
∑n

k=1P(Ak))
2∑n

k,`=1P(Ak ∩A`)

(2) Place rm balls in m bins at random and count the number of empty bins Zm. Fix δ > 0. If
rm > (1 + δ)m logm, show that P(Zm > 0) → 0 while if rm < (1 − δ)m logm, show that
P(Zm > 0)→ 1.

Problem 97. Give example of an infinite sequence of pairwise independent random variables for
which Kolmogorov’s zero-one law fails.

Problem 98. Let Xi, i ∈ I be random variables on a probability space. Suppose that for some
p > 0 and M < ∞ we have E[|Xi|p] ≤ M for all i ∈ I . Show that the family {Xi : i ∈ I} is tight
(by which we mean that {µXi : i ∈ I} is tight, where µXi is the distribution of Xi).
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Problem 99. Let Xi be i.i.d. random variables with zero mean and finite variance. Let Sn =

X1 + . . . + Xn. Show that the collection { 1√
n
Sn : n ≥ 1} is tight. [Note: Tightness is essential for

convergence in distribution. In the case at hand, convergence in distribution to N(0, 1) is what is
called central limit theorem. We shall see it later.]

Problem 100. Suppose each of r = λn balls are put into n boxes at random (more than one ball
can go into a box). If Nn denotes the number of empty boxes, show that for any δ > 0, as n→∞,

P

(∣∣∣ Nn

n
− e−λ

∣∣∣ > δ

)
→ 0

Problem 101. Let Xn be i.i.d random variables such that E[|X1|] < ∞. Define the random power
series f(z) =

∑∞
k=0Xnz

n. Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series

∑
cnz

n is given
by (lim sup |cn|

1
n )−1].

Problem 102. (1) Let X be a real values random variable with finite variance. Show that
f(a) := E[(X − a)2] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X − a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 103. Let Xi be i.i.d. Cauchy random variables with density 1
π(1+t2)

. Show that 1
nSnfils

the weak law of large numbers by completing the following steps.

(1) Show that tP{|X1| > t} → c for some constant c.

(2) Show that if δ > 0 is small enough, then P{| 1
n−1Sn−1| ≥ δ} + P{| 1

n−1Sn−1| ≥ δ} does not
go to 0 as n→∞ [Hint: Consider the possibility that |Xn| > 2δn].

(3) Conclude that 1
nSn

P→ 0. [Extra: With a little more effort, you can try showing that there

does not exist deterministic numbers an such that 1
nSn − an

P→ 0].

Problem 104. Let Xn, X be random variables on a common probability space.

(1) If Xn
P→ X , show that some subsequence Xnk

a.s.→ X .

(2) If every subsequence of Xn has a further subsequence that converges almost surely to X ,

show that Xn
P→ X .
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Problem 105. For Rd-valued random vectors Xn, X , the notions of convergence almost surely, in
probability and in distribution are well-defined. If Xn = (Xn,1, . . . , Xn,d) and X = (X1, . . . , Xd),
which of the following is true? Justify or give counterexamples.

(1) Xn
a.s.→ X if and only if Xn,k

a.s.→ Xk for 1 ≤ k ≤ d.

(2) Xn
P→ X if and only if Xn,k

P→ Xk for 1 ≤ k ≤ d.

(3) Xn
d→ X if and only if Xn,k

d→ Xk for 1 ≤ k ≤ d.

Problem 106. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn + bYn
P→

aX+ bY and XnYn
P→ XY . [Hint: You could try showing more generally that f(Xn, Yn)→

f(X,Y ) for any continuous f : R2 → R.]

(2) If Xn
P→ X and Yn

d→ Y (all on the same probability space), then show that XnYn
d→ XY .

Problem 107. Let Xn, Yn, X, Y be random variables on a common probability space.

(1) Suppose that Xn is independent of Yn for each n (no assumptions about independence

across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U d

= X , V d
= Y and U, V

are independent. Further, aXn + bYn
d→ aU + bV .

(2) Give counterexample to show that the previous statement is false if the assumption of
independence of Xn and Yn is dropped.

Problem 108. If Xn are independent random variables and Xn converge in distribution. Show
that the limit is degenerate.

Problem 109. IfXn, Yn are independent for each n andXn+Yn
P→ 0. Show that there are numbers

yn such that Xn + yn
P→ 0.

Problem 110. For Rd-valued random vectorsXn, X , we say thatXn
P→ X if P(‖Xn−X‖ > δ)→ 0

for any δ > 0 (here you may take ‖ · ‖ to denote the usual norm, but any norm on Rd gives the
same definition).

(1) If Xn
P→ X and Yn

P→ Y , show that (Xn, Yn)
P→ (X,Y ).

(2) If Xn
P→ X and Yn

P→ Y , show that Xn + Yn
P→ X + Y and 〈Xn, Yn〉

P→ XY . [Hint:
Show more generally that f(Xn, Yn)

P→ f(X,Y ) for any continuous function f by using the
previous problem for random vectors].
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Problem 111. (1) If Xn, Yn are independent random variables on the same probability space

and Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U d

= X , V d
= Y and U, V are

independent.

(2) If Xn
d→ X and Yn −Xn

P→ 0, then show that Yn
d→ X .

Problem 112. Show that the sequence {Xn} is tight if and only if cnXn
P→ 0 whenever cn → 0.

Problem 113. Suppose Xn are i.i.d with E[|X1|4] < ∞. Show that there is some constant C (de-
pending on the distribution of X1) such that P

(
|n−1Sn −E[X1]| > δ

)
≤ Cn−2. (What is your

guess if we assume E[|X1|6] <∞? You don’t need to show this in the homework).

Problem 114. (1) (Skorokhod’s representation theorem) IfXn
d→ X , then show that there is a

probability space with random variables Yn, Y such that Yn
d
= Xn and Y d

= X and Yn
a.s.→ Y .

[Hint: Try to construct Yn, Y on the canonical probability space ([0, 1],B, µ)]

(2) If Xn
d→ X , and f : R → R is continuous, show that f(Xn)

d→ f(X). [Hint: Use the first
part]

Problem 115. SupposeXi are i.i.d with the Cauchy distribution (density π−1(1+x2)−1 on R). Note
that X1 is not integrable. Then, show that Sn

n does not converge in probability to any constant.
[Hint: Try to find the probability P(X1 > t), and then use it].

Problem 116. Let {Xi}i∈I be a family of r.v on (Ω,F ,P).

(1) If {Xi}i∈I is uniformly integrable, then show that supiE|Xi| <∞. Give a counterexample
to the converse statement.

(2) Suppose h : R+ → R+ is a non-decreasing function that goes to infinity and supiE[|Xi|h(|Xi|)] <
∞. Show that {Xi}i∈I is uniformly integrable. In particular, if supiE[|Xi|p] < ∞ for some
p > 1, then {Xi} is uniformly integrable.

Problem 117. Let Xn be i.i.d with P(X1 = +1) = P(X1 = −1) = 1
2 . Show that for any γ > 1

2 ,

Sn
nγ

a.s.→ 0.

[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you write the
proof correctly, it should go for any random variable which has moments of all orders. You do not
need to show this for the homework].
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Problem 118. Let Xn be independent real-valued random variables.

(1) Show by example that the event {
∑
Xn converges to a number in [1,3]} can have proba-

bility strictly between 0 and 1.

(2) Show that the event {
∑
Xn converges to a finite number} has probability zero or one.

Problem 119. Let Xn be i.i.d exponential(1) random variables.

(1) If bn is a sequence of numbers that converge to 0, show that lim sup bnXn is a constant (a.s.).
Find a sequence bn so that lim sup bnXn = 1 a.s.

(2) LetMn be the maximum ofX1, . . . , Xn. If an →∞, show that lim sup Mn
an

is a constant (a.s.).
Find an so that lim sup Mn

an
= 1 (a.s.).

[Remark: Can you do the same if Xn are i.i.d N(0,1)? Need not show this for the homework,
but note that the main ingredient is to find a simple expression for P(X1 > t) asymptotically as
t→∞].

Problem 120. Let Xn be i.i.d real valued random variables with common distribution µ. For each
n, define the random probabilty measure µn as µn := 1

n

∑n
k=1 δXk . Let Fn be the CDF of µn. Show

that
sup
x∈R
|Fn(x)− F (x)| a.s.→ 0 a.s.

Problem 121. Let Xn be independent and P(Xn = na) = 1
2 = P(Xn = −na) where a > 0 is fixed.

For what values of a does the series
∑
Xn converge a.s.? For which values of a does the series

converge absolutely, a.s.?

Problem 122. (Random series) Let Xn be i.i.d N(0, 1) for n ≥ 1.

(1) Show that the random series
∑
Xn

sin(nπt)
n converges a.s., for any t ∈ R.

(2) Show that the random series
∑
Xn

tn√
n!

converges for all t ∈ R, a.s.

[Note: The location of the phrase “a.s” is all important here. Let At and Bt denote the event that
the series converges for the fixed t in the first or second parts of the question, respectively. Then,
the first part is asking you to show that P(At) = 1 for each t ∈ R, while the second part is asking
you to show that P(∩t∈RBt) = 1. It is also true (and very important!) that P(∩t∈RAt) = 1 but
showing that is not easy.]

Problem 123. Suppose Xn are i.i.d random variables with finite mean. Which of the following
assumptions guarantee that

∑
Xn converges a.s.?
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(1) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ 1] <∞.

(2) (i) E[Xn] = 0 for all n and (ii)
∑

E[X2
n ∧ |Xn|] <∞.

Problem 124. (Large deviation for Bernoullis). Let Xn be i.i.d Ber(1/2). Fix p > 1
2 .

(1) Show that P(Sn > np) ≤ e−npλ
(
eλ+1
2

)n
for any λ > 0.

(2) Optimize over λ to get P(Sn > np) ≤ e−nI(p) where I(p) = −p log p − (1 − p) log(1 − p).
(Observe that this is the entropy of the Ber(p) measure introduced in the first class test).

(3) Recall that Sn ∼ Binom(n, 1/2), to write P(Sn = dnpe) and use Stirling’s approximation to
show that

P(Sn ≥ np) ≥
1√

2πnp(1− p)
e−nI(p).

(4) Deduce that P(Sn ≥ np) ≈ e−nI(p) for p > 1
2 and P(Sn < np) ≈ e−nI(p) for p < 1

2 where the
notation an ≈ bn means log an

log bn
→ 1 as n → ∞ (i.e., asymptotic equality on the logarithmic

scale).

Problem 125. Carry out the same program for i.i.d exponential(1) random variables and deduce
that P(Sn > nt) ≈ e−nI(t) for t > 1 and P(Sn < nt) ≈ e−nI(t) for t < 1 where I(t) := t− 1− log t.

Problem 126. Let Y1, . . . , Yn be independent random variables. A random variable τ taking values
in {1, 2, . . . , n} is called a stopping time if the event {τ ≤ k} ∈ σ (Y1, . . . , Yk) for all k (equivalently
{τ = k} ∈ σ (Y1, . . . , Yk) for all k).

(1) Which of the following are stopping times? τ1 := min{k ≤ n : Sk ∈ A} (for some fixed
A ⊆ R). τ2 := max{k ≤ n : Sk ∈ A}. τ3 := min{k ≤ n : Sk = max

j≤n
Sj}. In the first two cases

set τ = n if the desired event does not occur.

(2) Assuming eachXk has zero mean, show that E[Sτ ] = 0 for any stopping time τ . Assuming
that each Xk has zero mean and finite variance, show that E[S2

1 ] ≤ E[S2
τ ] ≤ E[S2

n] for any
stopping time τ .

(3) Give examples of random τ that are not stopping times and for which the results in the
second part of the question fail.

Problem 127. Let Xk be independent random variables with zero mean and unit variance. As-
sume that E[|Xk|2+δ] ≤M for some δ < 0 and M <∞. Show that Sn is asymptotically normal.

Problem 128. Let Xk be i.i.d. random variables with zero mean and unit variance. Let 0 < a1 <

a2 < . . . be given numbers. Find sufficient conditions on (ai)i such that Sn is asymptotically
normal.
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Problem 129. Fix α > 0.

(1) If X,Y are i.i.d. random variables such that X+Y

2
1
α

d
= X , then show that X must have

characteristic function ϕX(λ) = e−c|λ|
α

for some constant c.

(2) Show that for α = 2 we get N(0, σ2) and for α = 1 we get symmetric Cauchy.

[Note: Only for 0 < α ≤ 2 is e−c|λ|
α

a characteristic function. Hence a distribution with the desired
property exists only for this range of α].

Problem 130. Let Xk be independent Ber(pk) random variables. If Var(Sn) stays bounded, show
that Sn cannot be asymptotically normal.

Problem 131 (Weak law using characteristic functions). Let Xk be i.i.d. random variables having
characteristic function ϕ.

(1) If ϕ′(0) = iµ, show that the characteristic function of Sn/n converges to the characteristic
function of δµ. Conclude that weak law holds for Sn/n.

(2) If 1
nSn

P→ µ for some µ, then show that ϕ is differentiable at 0 and ϕ′(0) = iµ.

Problem 132. Find the characteristic functions of the distributions with the given densities.
(1) e−|x| for x ∈ R, (2) 1

2

(
1− |x|2

)
+

.

Problem 133. If xn ∈ R and eitxn → 1 for all t ∈ R, then show that xn → 0.

Problem 134. Suppose µn, µ are probability measures on R with characteristic functions ϕn, ϕ. If
ϕn(t)→ ϕ(t) for all t ∈ Q, is it true that µn → µ weakly?

Problem 135 (Multidimensional central limit theorem). Let Xn be i.i.d. Rd-valued random vectors
with zero mean and covariance matrix Σ. Let Sn = X1 + . . . + Xn. Show that 1√

n
Sn

d→ Nd(0,Σ)

using the replacement principle. Assume (for convenience) that third moments are finite (i.e.,
E[‖X1‖3] <∞).

Problem 136. Let Xn be i.i.d. random variables with a non-degenerate distribution. If Sn =

X1 + . . .+Xn, show that P{|Sn| ≤M} → 0 for any M <∞.
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Problem 137. For a real valued random variable X , its concentration function is defined as QX(t) =

sup{P{X ∈ [a, a+ t] : a ∈ R}, for t ≥ 0 (so QX(0) is the largest atom size in the distribution of X).
If X,Y are independent and Z = X + Y , show that QX+Y (t) ≤ QX(t) for all t ≥ 0.

Problem 138. [3 marks each] For each of the following statements, state whether they are true or
false, and justify or give counterexample accordingly.

(1) If µ, ν are Borel probability measures on R and µ� ν, then either ν ⊥ µ or ν � µ.

(2) If
∑
n
Xn converges a.s. and P(Yn = Xn) = 1− 1

n2 . Then
∑
n
Yn converges a.s.

(3) If {Xn} is an L2 bounded sequence of random variables, and E[Xn] = 1 for all n, then Xn

cannot converge to zero in probability.

(4) If Xn
d→ X , then X2

n
d→ X2.

(5) Suppose Xn are independent with E[Xn] = 0 and
∑

Var(Xn) = ∞. Then, almost surely∑
Xn does not converge.

(6) Suppose Xn, Yn are random variables such that |Xn| ≤ |Yn| for all n. If
∑
Yn converges

almost surely, then
∑
Xn converges almost surely.

Problem 139. [2 marks+4 marks + 4 marks] Let X,Y be random variables on a common proba-
bility space. Assume that both X and Y have finite variance.

(1) Show that E[(X − a)2] is minimized uniquely at a = E [X].

(2) Find values of a, b that minimize f(a, b) = E
[
(Y − a− bX)2

]
. Are they unique?

(3) Suppose P(X = k) = 1
10 for k = 1, 2 . . . , 10. At what value(s) of a is E [|X − a|] minimized?

Is the minimizer unique?

Problem 140. [10 marks] LetG1, G2, . . . be i.i.d Geometric(p) random variables (this means P(G1 =

k) = p(1 − p)k−1 for k ≥ 1). Let X1, X2, . . . be i.i.d random variables with E [|X1|] < ∞. Define
Nk := G1 +G2 + . . .+Gk. Show that as k →∞,

X1 +X2 + . . .+XNk

k

P→ 1

p
E [X1]

Problem 141. [5 marks+5 marks] Let Uk, Vk be i.i.d Uniform([0,1]) random variable.

(1) Show that
∑
k

U
1
k
k − V

1
k
k converges a.s.

(2) Let Sn = U1 +U2
2 + . . .+Unn . Show that Sn satisfies a CLT. In other words, find an, bn such

that Sn−anbn

d→ N(0, 1).
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Problem 142. [5 marks+5 marks] Let Z(n) = (Z
(n)
1 , . . . , Z

(n)
n ) be a point sampled uniformly from

the sphere Sn−1 (this means that P(Z(n) ∈ A) = area(A)/area(Sn−1) for any Borel set A ⊆ Sn−1).

(1) Find the density of Z(n)
1 .

(2) Using (1) or otherwise, show that
√
nZ

(n)
1

d→ N(0, 1) as n→∞.

[Hint: One way to generate Z(n) is to sampleX1, . . . , Xn i.i.d N(0,1) and to set Z(n) = 1
‖X‖(X1, . . . , Xn)

where ‖X‖ =
√
X2

1 +X2
2 + . . .+X2

n. You may assume this fact without having to justify it].

Problem 143. [5 marks+5 marks]

(1) Let µ be a probability measure on R with characteristic function µ̂(t). Then, show that
for any t1, t2, . . . , tn ∈ R, the n × n matrix A with entries ai,j = µ̂(ti − tj) is non-negative
definite.

(2) Suppose |µ̂(t0)| = 1 for some t0 6= 0. Then, µ is supported on a lattice, that is, µ(aZ+ b) = 1

for some a, b ∈ R. [Hint: Use part (1) with n = 2 and appropriate t1, t2].

Problem 144. [10 marks] Let X1, X2, . . . be i.i.d Bernoulli
(
1
2

)
random variables. For each n ≥ 1,

define Ln to be the longest run of ones in (X1, . . . , Xn), that is,

Ln := max{k : ∃j ≤ n− k such that Xj+1 = Xj+2 = . . . = Xj+k = 1}.

Prove that Ln
logn

P→ 1
log 2 .
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NEW PROBLEMS ADDED IN 2019

Problem 1. Let (Ω,F , µ) be a probability space.

(1) Let S ⊆ F be a finite collection of sets. Then show that σ(S) is also a finite collection.

(2) LetA be an algebra that generatesF . For anyA ∈ F and any ε > 0, show that there is some
B ∈ A such that µ(A∆B) < ε (here A∆B = (A \B) ∪ (B \A) is the symmetric difference).

Problem 2. (1) Let S be the set of all x ∈ [0, 1] whose base b-expansion contains all the digits
0, 1, . . . , b − 1, for every b ∈ {2, 3, 4 . . .}. Show that λ(S) = 1, where λ is the Lebesgue
measure on [0, 1].

(2) Let S be the set of all points in R2 that can be written as a convex combination of two
rational points (a rational point is one whose co-ordinates are all rational numbers). Show
that S has zero Lebesgue measure.

Problem 3. Let A,B be Borel subsets of [0, 1] and let C ⊆ R2 be the union of all line segments
connecting a point in A × {0} to a point in {0} × B. Is C measurable? If λ(A) = λ(B) = 0, it it
necessarily true that λ2(C) = 0? If λ(A) > 0 and λ(B) > 0, is it necessarily true that λ2(C) > 0?

Problem 4. Let X ≥ 0 be a random variable on (Ω,F ,P). Assume that E[Xp] <∞ and E[X−p] <

∞ for some p > 0. Then show that logX is integrable and that
1

q
E[Xq − 1]→ E[logX] as q ↓ 0.

Problem 5. A random interval is one whose end points are picked independently and uniformly
from [0, 1]. If I1, . . . In are n i.i.d. random intervals, what is the probability that they have a point
of intersection?

Problem 6. A random interval is one whose end points are picked independently and uniformly
from [0, 1]. If I1, . . . In are n i.i.d. random intervals, what is the probability that one of them
intersects all the others?
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