PROBLEMS IN PROBABILITY THEORY

MANJUNATH KRISHNAPUR

Problem 1. Let F be a o-algebra of subsets of ().
(1) Show that F is closed under countable intersections ([ 4,,), under set differences (A \ B),
under symmetric differences (AAB). !
(2) If A, is a countable sequence of subsets of €2, the set lim sup,, 4,, (respectively liminf,, A;)
is defined as the set of all w € 2 that belongs to infinitely many (respectively, all but finitely
many) of the sets A,,.

If A, € F for all n, show that limsup 4,, € F and liminf A,, € F. [Hint: First express
limsup A4,, and lim inf A,, in terms of A,,s and basic set operations].

(3) If Ay € Ay C A3 C ..., what are limsup A,, and liminf A,,?

Problem 2. Let (2, F) be a set with a o-algebra.

(1) Suppose P is a probability measure on F. If A, € F and A,, increase to A (respectively,
decrease to A), show that P(A,,) increases to (respectively, decreases to) P(A).

(2) Suppose P : F — [0, 1] is a function such that (a) P(2) = 1, (b) P is finitely additive, (c) if
Ap, A € F and Ags increase to A, then P(4,) T P(A). Then, show that P is a probability
measure on F.

Problem 3. Suppose S is a m-system and is further closed under complements (A € S implies
A¢ € S). Show that S is an algebra.

Problem 4. Let P be a p.m. on a o-algebra F and suppose S C F be a m-system. If A, € S for
k <n,write P(4; U Az U...UA,) in terms of probabilities of sets in S.

Problem 5. Let (2, 7, P) be a probability space. Let G = {A € F : P(A) = 0 or 1}. Show that G is
a o-algebra.

Problem 6. Suppose ¢(S) = F and P, Q are two probability measure on F. If P(A) = Q(A) for
all A € S, is it necessarily true that P(4) = Q(A) for all A € F? If yes, prove it. If not, give a

counterexample.
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Problem 7. (1) Let B be the Borel sigma-algebra of R. Show that B contains all closed sets, all
compact sets, all intervals of the form (a, b] and [a, b).

(2) Show that there is a countable family S of subsets of R such that ¢(S) = Bg.
(3) Let K be the 1/3-Cantor set. Show that y,(K) = 0.

Problem 8. Show that each of the following collection of subsets of R? generate the same sigma-
algebra (which we call the Borel sigma-algebra).

(1) {(a,b] : a < b}.
(2) {[a,b] : a <band a,b € Q}.
(3) The collection of all open sets.

(4) The collection of all compact sets.

Problem 9. (1) Let X be an arbitrary set. Let S be the collection of all singletons in 2. Describe
a(9).

(2) Let S = {(a,b] U[—b,—a) : a < bare real numbers}. Show that ¢(5) is strictly smaller than
the Borel o-algebra of R.

(3) Suppose S is a collection of subsets of X and a, b are two elements of X such that any set
in S either contains a and b both, or contains neither. Let 7 = ¢(.5). Show that any set in F
has the same property (either contains both a and b or contains neither).

Problem 10. Let Q2 be an infinite set and let A = {A C Q: Ais finite or A is finite }. Define
w:A— Ry by u(A) = 0if Ais finite and p(A) = 1 if A°is finite.
(1) Show that A is an algebra and that 1 is finitely additive on A.

(2) Under what conditions does p extend to a probability measure on F = o(A)?

Problem 11. On N = {1,2,...}, let A, denote the subset of numbers divisible by p. Describe
o({Ap : pis prime}) as explicitly as possible.

Problem 12. If G C F are sigma algebras on 2 and F is countably generated, then is it necessarily
true that G is countably generated?

Problem 13. Let (X, F) and (Y, G) be measure spaces. If T : X — Y is a function, show that
(1) {T7'B: B € G} is a sigma algebra on X and

(2) {B€G:T 'B € F}issigma-algebraonY.
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Problem 14. Let Ay, As,... be a finite or countable partition of a non-empty set 2 (i.e., A; are
pairwise disjoint and their union is €2). What is the o-algebra generated by the collection of subsets
{A,,}? What is the algebra generated by the same collection of subsets?

Problem 15. Let X = [0, 1]" be the countable product of copies of [0,1]. We define two sigma
algebras of subsets of X.

(1) Define a metric on X by d(z,y) = >, |xn — yn|27". Let Bx be the Borel sigma-algebra of
(X,d). [Note: For those who know topology, it is better to define Bx as the Borel sigma
algebra for the product topology on X. The point is that the metric is flexible. We can take
many or other things (but not d(z, y) = sup,, |z, —yx| !!). What matters is only the topology
on X.]

(2) Let Cx be the sigma-algebra generated by the collection of all cylinder sets. Recall that
cylinder sets are sets of the form A = Uy x U x ... x U, x R x R x ... where U; are Borel
subsets of [0, 1].

Show that Bx = Cx.

Problem 16. Let 1 be the Lebesgue p.m. on the Cartheodary o-algebra B and let u. be the corre-
sponding outer Lebesgue measure defined on all subsets of [0, 1]. We say that a subset N C [0, 1]
is a null set if p,(N) = 0. Show that

B={BUN :Bé&cBand N isnull}

where B is the Borel o-algebra of [0, 1].

[Note: The point of this exercise is to show how much larger is the Lebesgue o-algebra than the
Borel o-algebra. The answer is, not much. Up to a null set, every Lebesgue measurable set is a
Borel set. However, cardinality-wise, there is a difference. The Lebesgue o-algebra is in bijection
with 2% while the Borel o-algebra is in bijection with R.]

Problem 17. Suppose (2, F, P) is a probability space. Say that a subset N C € is P-null if there
exists A € F with P(A) = 0 and such that N C A. DefineG ={AUN : A € Fand N is null}.

(1) Show that G is a o-algebra.

(2) For A € G, write A = BU N with b € F and a null set V, and define Q(A) = P(B). Show
that Q is well-defined, that Q is a probability measure on G and Q 2= P.

[Note: G is called the P-completion of F. It is a cheap way to enlarge the o-algebra and extend
the measure to the larger o-algebra. Another description of the extended o-algebrais G = {A C
2:3B,C € Fsuchthat B C A C Cand P(B) = P(C)}. Combined with the previous prob-
lem, we see that the Lebesgue o-algebra is just the completion of the Borel o-algebra under the
Lebesgue measure. However, note that completion depends on the probability measure (for a dis-
crete probability measure on R, the completion will be the power set o-algebra!). For this reason,

we prefer to stick to the Borel o-algebra and not bother to extend it.]
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Problem 18. Follow these steps to obtain Sierpinski’s construction of a non-measurable set. Here
{1« is the outer Lebesgue measure on R.

(1) Regard R as a vector space over Q and choose a basis H (why is it possible?).

(2) LetAy=HU(—-H)={z:x€ Hor —x € H}. Forn > 1, define 4,, :== A,_1 — A,—1 (may

also write A, = A,_1 + A,_1 since Aj is symmetric about 0). Show that |J |J %An =R
n>0q>1

where %An is the set {7 : z € A, }.

(3) Let N :=min{n > 0: u.(A,) > 0} (you must show that N is finite!). If Ay is measurable,
show that U,>n414, = R.

(4) Geta contradiction to the fact that H is a basis and conclude that A cannot be measurable.

[Remark: If you start with H which has zero Lebesgue measure, then N > 1and A := Ex_;isa
Lebesgue measurable set such that A + A is not Lebesgue measurable! That was the motivation
for Sierpinski. To find such a basis H, show that the Cantor set spans R and then choose a basis i
contained inside the Cantor set.]

Problem 19. We saw that for a Borel probability measure ;i on R, the pushforward of Lebesgue
measure on [0, 1] under the map F,; ! : [0,1] — R (as defined in lectures) is precisely y. This is also

a practical tool in simulating random variables. We assume that a random number generator gives

us uniform random numbers from [0, 1]. Apply the above idea to simulate random numbers from

the following distributions (in matlab/mathematica or a program of your choice) a large number

of times and compare the histogram to the actual density/mass function.

(1) Uniform distribution on [a, b], (2) Exponential()) distribution, (3) Cauchy distribution, (4) Poisson(\)|

distribution. What about the normal distribution?

Problem 20. Let @ = X = Randlet T : @ — X be defined by T'(x) = x. We give a pair of
o-algebras, F on Q and G on X by taking F and G to be one of 2% or Bg or {0, R}. Decide for each
of the nine pairs, whether 7" is measurable or not.

Problem 21. (1) Define T' : Q@ — R" by T'(w) = (14,(w),...,14,(w)) where A;,..., A, are
given subsets of (2. What is the smallest o-algebra on 2 for which 7" becomes a random
variable?

(2) Suppose (€2, F,P) is a probability space and assume that A; € F. Describe the push-
forward measure P o T~! on R™.



Problem 22. For k > 0, define the functions 7 : [0,1) — R by writing [0,1) = || I ](k) where
0<j<2k

Ij(k) is the dyadic interval [j27%, (j 4+ 1)27%) and setting

@) ~1 ifze 1M forodd j,
TL\X) =
+1 ifze Ij(k) for even j.

Fixn > 1and define 7}, : [0,1) — {—1,1}" by T},(x) = (ro(z), ..., n—1(x)). Find the push-forward
of the Lebesgue measure on [0, 1) under 7;,

Problem 23. Let G be the countable-cocountable sigma algebra on R. Define the probability mea-
sure i on G by u(A) = 0if A is countable and p(A) = 1 if A°is countable. Show that x is not
the push-forward of Lebesgue measure on [0, 1], i.e., there does not exist a measurable function
T :[0,1] = Q (w.r.t. the o-algebras B and G) such that u = Ao TL.

Problem 24. (1) f T : R* — R™, show that T is Borel measurable if it is (a) continuous or
(b) right continuous or (c) lower semicontinuous or (d) non-decreasing (take m = n =1
for the last one).

(2) If R™ and R™ are endowed with the Lebesgue sigma-algebra, show that even if 7" is con-
tinuous, it need not be measurable! Just do this for n = m = 1.

Problem 25. Show that composition of random variables is a random variable. Show that real-

valued random variables on a given (£, F) are closed under linear combinations, under multipli-

cation, under countable suprema (or infima) and under limsup (or liminf) of countable sequences.

Problem 26. Let y,, = % >_ 01/ and let ;s be the uniform p.m. on [0, 1]. Show directly by definition
k=1

that d(pn, ) — 0as n — oo.

Problem 27 (Change of variable for densities). (1) Let x be a p.m. on R with density f by
which we mean that its CDF F),(z) = ffoo f(t)dt (you may assume that f is continuous,
non-negative and the Riemann integral fR f = 1). Then, find the (density of the) push
forward measure of y under (a) 7'(z) =  +a (b) T(xz) = bz (c) T is any increasing and
differentiable function.

(2) If X has N(u,0?) distribution, find the distribution of (X — u)/o.

Problem 28. (1) Let X = (X31,...,X,). Show that X is an R%valued r.v. if and only if

X1, ..., X, are (real-valued) random variables. How does o(X) relate to o(X1),...,0(X,)?
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(2) Let X : 1 — Qg be a random variable. If X (w) = X (') for some w,w’ € 4, show that
thereisno set A € o(X) such thatw € A and W’ & A or vice versa. [Extra! If Y : Q; — Qo
is another r.v. which is measurable w.r.t. ¢(X) on ;, then show that Y is a function of X].

Problem 29 (Lévy metric). (1) Show that the Lévy metric on P(R?) defined in class is actually
a metric.

(2) Show that under the Lévy metric, P(R%) is a complete and seperable metric space.

Problem 30 (Lévy-Prohorov metric). If (X, d) is a metric space, let P(X') denote the space of Borel
probability measures on X. For p, v € P(X), define

D(p,v) =inf{r > 0: u(A,) +r >v(A)and v(A,) + r > p(A) for all closed sets A}.
Here A, = {y € X : d(z,y) < r for some = € A} is the closed r-neighbourhood of A.
(1) Show that D is a metric on P(X).

(2) When X is R?, show that this agrees with the definition of Lévy metric given in class (i.e.,
for any py,, 1t, we have that p,, — g in both metrics or neither).

Problem 31 (Lévy metric). Let P([—1,1]) C P(R) be the set of all Borel probability measures 1
such that u([—1,1]) = 1. For € > 0, find a finite e-net for P([—1,1]). [Note: Recall that an e-net
means a subset such that every element of P([—1,1]) is within e distance of some element of the
subset. Since P([—1, 1]) is compact, we know that a finite e-net exists for all € > 0.]

Problem 32. On the probabiity space ([0, 1], B, 1), for k > 1, define the functions

ok—1_1

. 27 2j+1
0 ifre U 3%,
Xk(t) = 2/@‘771_1 ) )
1 ifte U [2];1,2];2)01‘15:1.
=0

(1) For any n > 1, what is the distribution of X,,?

(2) For any fixed n > 1, find the joint distribution of (X1, ..., X,).
[Note: Xj(t) is just the ith digit in the binary expansion of ¢. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except at ¢t = 1)].

Problem 33 (Coin tossing space). Continuing with the previous example, consider the mapping
X :[0,1] — {0,1}" defined by X (t) = (X1(t), X2(t),...). With the Borel o-algebra on [0, 1] and
the o-algebra generated by cylinder sets on {0, 1}, show that X is a random variable and find the

push-foward of the Lebesue measure under X.
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Problem 34 (Equivalent conditions for weak convergence). Show that the following statements
are equivalent to s, 4 p (you may work in P(R)).
(1) limsup,,_,o pn(F) < u(F) if F is closed.

(2) liminf, oo pn(G) > u(G) if G is open.
(3) limsup,,_,o in(A) = u(A) if A € Fand pu(0A) = 0.

Problem 35. Fix i € P(R). For s € Rand r > 0, let p1, s € P(R) be defined as p, (A) = pu(rA + s)
where rA+s = {rz+s : x € A}. Forwhich R C (0,00) and S C Risittruethat {y, s : 7 € R, s € S}
a tight family? [Remark: If not clear, just take . to be the Lebesgue measure on [0, 1].]

Problem 36. (1) Show that the family of Normal distributions {N(u,0?) : 4 € Rand o2 > 0}
is not tight.

(2) For what A C R and B C (0,00) is the restricted family {N(u,0?): u € Aand 0? € B}
tight?

Problem 37. (1) Show that the family of exponential distributions {Exp(\) : A > 0} is not
tight.

(2) For what A C R is the restricted family {Exp(}\) : A > 0} tight?

Problem 38. Suppose py, it € P(R) and that the distribution function of 1 is continuous. If i, LA 78
show that F), (t) — F,,(t) — 0 uniformly over ¢ € R. [Restatement: When F}, is continuous, con-
vergence to p in Lévy-Prohorov metric also implies convergence in Kolmogorov-Smirnov metric.

]

Problem 39. Show that the statement in the previous problem cannot be quantified. That is,
Given any ¢, | 0 (however fast) and §,, | 0 (however slow), show that there is some ., 1 with
F}, continuous, such that dr,p(pn, 1) < €, and dgs(fin, 1) > Op.

Problem 40. Consider the family of Normal distributions, {N(i1,02) : u € R, 02 > 0}. Show that
the map (u,0%) — N(u,0?) from R x Ry to P(R) is continuous. (Complicated way of saying that
if (4, 02) = (11, 0%), then N (jun, 02) 5 N(p, 0?)).

Do the same for other natural families if distributions, (1) Exp()), (2) Uniform|a, b], (3) Bin(n, p)
(fix n and show continuity in p), (4) Pois(\).



Problem 41. Suppose (i, 1t are discrete probability measures supported on Z having probability
mass functions (p,(k))rez and (p(k))kez. Show that u, 4 p if and only if p, (k) — p(k) for each
ke Z.

Problem 42. Given a Borel p.m. p on R, show that it can be written as a convex combination
ap + (1 — a)ug with a € [0, 1], where p is a purely atomic Borel p.m and p» is a Borel p.m with
no atoms.

Problem 43. Let F' be the CDF of a Borel probability measure x on the line.
(1) Show that F is continuous at z if and only if p({z}) = 0.

(2) Show that F' can have at most countably many discontinuities.

(3) Show that given any countable set {x1, 2, ...} and any number pq,ps, ... such that ), p; <
1, there is a probability measure whose CDF has a jump of magnitude p; at x; for each i,
and no other discontinuities.

Problem 44. Let X be a random variable with distribution ;« and X, are random variables defined
as follows. If u, is the distribution of X, in each case, show that p,, LA [ asn — oo.

(1) (Truncation). X,, = (X An)V (—n).
(2) (Discretization). X,, = %LnX |

Problem 45. Consider the space X = [0, 1] := {x = (2(1),2(2),...) : 0 < 2(i) < 1 for each i € N}.
lz@)—y(@)]

7

Define the metric d(x,y) = sup;,
(1) Show that x,, — x in (X, d) if and only if z,, (i) — x(i) for each i, as n — oo.

[Note: What matters is this pointwise convergence criterion, not the specific metric. The
resulting topology is called product topology. The same convergence would hold if we had
defined the metric as d(x,y) = >, 27 %z(i) — y(i)| or d(x,y) = >_;i 2|z(i) — y(i)| etc.,
But not the metric sup; |z(i) — y(7)| as convergence in this metric is equivalent to uniform
convergence over all 7 € NJ.

(2) Show that X is compact.

[Note: What is this problem doing here? The purpose is to reiterate a key technique we used in
the proof of Helly’s selection principle!]

Problem 46. Recall the Cantor set C' = (), K, where Ky = [0,1], K1 = [0,1/3] U [2/3,1], etc. In
general, Ky, = (J;<;<onlanj, bn ;| where b, ; — a, ; = 37" for each j.

(1) Let py, be the uniform probability measure on K,,. Describe its CDF F;,.
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(2) Show that F,, converges uniformly to a CDF F.
(3) Let 11 be the probability measure with CDF equal to F. Show that x(C) = 1.

Problem 47. Let i € P(R).

(1) Forany n > 1, define a new probability measure by i,,(A) = pu(n.A) wheren.A = {nz : z €
A}. Does fi,, converge as n — 00?

(2) Let p, be defined by its CDF

0 ift < —n,
Fo(t) = F(t)if —n<t<n,
1 ift >n.

Does i, converge as n — 00?

(3) In each of the cases, describe p,, in terms of random variables. That is, if X has distribution
u, describe a transformation 77,(X) that has the distribution s,.

Problem 48. (Bernoulli convolutions) For any A > 1, define X : [0,1] — Rby X (w) = Y22, A ¥ Xy (w) ]
Check that X is measurable, and define uy = uX;l. Show that for any A > 2, show that p, is
singular w.r.t. Lebesgue measure.

Problem 49. For p = 1,2, 0o, check that || X — Y|, is a metric on the space L? := {[X] : || X||, < oo}
(here [X] denotes the equivalence class of X under the above equivalence relation).

Problem 50. (1) Give anexample of a sequence of r.v.s X, such thatliminf E[X,] < E[liminf X,,].Jj
(2) Give an example of a sequence of r.v.s X,, such that X, X, E[X,] =1, but E[X] = 0.

Problem 51. (Alternate construction of Cantor measure) Let K; = [0,1/3] U [2/3,1], Ky =
[0,1/9] U [2/9,3/9] U [6/9,7/9] U [8/9,1], etc., be the decreasing sequence of compact sets whose
intersection is K. Observe that K, is a union of 2" intervals each of length 37". Let p,, be the
p-m. which is the “renormalized Lebesgue measure” on K,,. That s, y1,(A) := 3"27"u(AN K,,) for
A € Bg. Then each 1, is a Borel p.m. Show that p, L\ 1, the Cantor measure (which was defined
differently in class).

Problem 52. (A quantitative characterization of absolute continuity) Suppose ¢ < v. Then,
show that given any € > 0, there exists ¢ > 0 such that v(A) < ¢ implies p(A) < e. (The converse

statement is obvious but worth noticing). [Hint: Argue by contradiction].
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Problem 53. Suppose f : [a,b] — R is a Borel measurable function. Then, show that g(z) :=
Jo f(u)du is a continuous function on [0, 1]. [Note: It is in fact true that g is differentiable at almost
every x and that ¢’ = f a.s., but that is a more sophisticated fact, called Lebesgue’s differentiation
theorem. In this course, we only need Lebesgue integration, not differentiation. The latter may be
covered in your measure theory class].

Problem 54. (Differentiating under the integral). Let f : [a,b] x R — R, satisfy the following
assumptions.

(1) x — f(z,0) is Borel measurable for each 6.
(2) 0 — f(z,0) is continuously differentiable for each x.

(3) f(z,0) and g—g(x, 0) are uniformly bounded functions of (z, 6).

Then, justify the following “differentiation under integral sign” (including the fact that the inte-

d [ o
d@/a f(x,@)d:v:/a a—g(:v,e)dx

[Hint: Remember that derivative is the limit of difference quotients, '(¢) = lim,_,o

grals here make sense).

h(t+e)=h(t)

Problem 55. (1) Let X > 0be arvon (92, F,P) with 0 < E[X] < oco. Then, define Q(A4) =

E[X14]/E[X] for any A € F. Show that Q is a probability measure on F. Further, show

that for any bounded random variable Y, we have Eq[Y] = Eg{)?]( L,

(2) If 1 and v are Borel probability measures on the line with continuous densities f and g
(respectively) w.r.t. Lebesgue measure. Under what conditions can you assert that ;. has a
density w.r.t ©? In that case, what is that density?

Problem 56. For p = 1,2, 0o, check that || X —Y||, is a metric on the space L” := {[X] : || X||, < oo}
(here [X] denotes the equivalence class of X under the equivalence relation X ~ Y if P(X =Y) =
1).

Problem 57. Let X be a non-negative random variable.
(1) Show that E[X] = [;°P{X > t}dt (in particular, if X is a non-negative integer valued,
then E[X] =57 P(X > n)).

(2) Show that E[X?] = [* ptP~'P{X > t}dt for any p > 0.

Problem 58. Let X be a non-negative random variable. If E[X] is finite, show that Y 7, P{X >
an} is finite for any a > 0. Conversely, if > 2 P{X > an} for some a > 0, show that E[X] is
finite.
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Problem 59. Show that the values E[f o X] as f varies over the class of all smooth (infinitely
differentiable), compactly supported functions determine the distribution of X.

Problem 60. (i) Express the mean and variance of of a.X + b in terms of the same quantities for X

(a, b are constants).
(ii) Show that Var(X) = E[X?] — E[X]?.

Problem 61. Compute mean, variance and moments (as many as possible!) of the Normal(0,1),
exponential(1), Beta(p,q) distributions.

Problem 62. (1) Suppose X,, > 0and X,, - X a.s. f E[X,,] — E[X], show that E[| X, — X|] —
0.

(2) If E[|X]] < oo, then E[|X[1|x|5 4] — 0as A — oco.

Problem 63. (1) Suppose (X,Y) has a continuous density f(x,y). Find the density of X/Y.
Apply to the case when (X,Y") has the standard bivariate normal distribution with density

$2 2
flz,y) = (2m) Lexp{— 4%}
(2) Find the distribution of X + Y if (X, Y) has the standard bivariate normal distribution.
(3) Let U = min{X, Y} and V = max{X, Y}. Find the density of (U, V).

Problem 64. Let u,,u € P(R"™). Show that yu, A p if and only if [ fdu, — [ fdu for every
[ € Cy(R). What if we only assume [ fdu, — [ fdu for all f € C.(R") - can we conclude that

d
P — p?

Problem 65. Let ji,,, u € P(R™) having densities f,,, f with respect to Lebesgue measure. If f,, — f
d
a.e. (w.r.t. Lebesgue measure), show that p,, — p.

Problem 66 (Moment matrices). Let u € P(R) and let a; = [ 2*du(x) (assume that all moments
exist). Then, for any n > 1, show that the matrix (o ;),; i<n is non-negative definite. [Sugges-

tion: First solve n = 1].

Problem 67. Let X be a non-negative random variable with all moments (i.e., E[X?] < oo for all
p < 00). Show that log E[X?] is a convex function of p.
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Problem 68. (1) Let pin, u € P(RY). Assume that y,, has density f, and ; has density f w.r.t
Lebesgue measure on R™. If f,,(t) — f(¢) for all ¢, then show that s, LN L.

(2) Show that N (i, 02) % N(u,0)ifand only if y1,, — pand o2 — o2

Problem 69. (1) Let X ~ I'(a,1) and Y ~ T'(¢/, 1) be independent random variables on a

X

common probability space. Find the distribution of 7.

(2) If U, V are independent and have uniform([0,1]) distribution, find the distribution of U+ V.

Problem 70. Let Q@ = {1,2,...,n}. For a probability measure P on (2, we define it “entropy”
H(P) := — %", plog pp where p;, = P{k} and it is understood that zlogz = 0 if z = 0. Show

1

that among all probability measures on 2, the uniform probability measure (the one with p;, = -

for each k) is the unique maximizer of entropy.

Problem 71. (1) If p, < v for each n and p, LA i, then is it necessarily true that p < v? If
iy L v for each n and puy, LA 1, then is it necessarily true that 4 L v? In either case, justify
or give a counterexample.

(2) Suppose X, Y are independent (real-valued) random variables with distribution ; and v
respectively. If © and v are absolutely continuous w.r.t Lebesgue measure, show that the
distribution of X + Y is also absolutely continuous w.r.t Lebesgue measure.

Problem 72. Suppose {1 : @ € I'} and {vg : o € J} are two families of Borel probability measures
on R. If both these families are tight, show that the family {y, ® v : a € I, § € J} is also tight.

Problem 73. Let X be a non-negative random variable. If E[X] < 1, then show that E[X 1] > 1.

Problem 74. Suppose X,Y are independent random variables and X + Y has finite expectation.
Then show that X has finite expectation. [Hint: Assume that Y has symmetric distribution to get
a possibly simpler version of the problem]

Problem 75. On the probabiity space ([0, 1], B, u1), for k > 1, define the functions

2k—1_1 ) ]
0 ifte U [3, 2.
— J=0
Al = 2 aih1 240
1 ifte U [25, 2P ort=1.

=0
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(1) For any n > 1, what is the distribution of X,,?

(2) For any fixed n > 1, find the joint distribution of (X1, ..., X,).

[Note: Xj(t) is just the kth digit in the binary expansion of ¢. Dyadic rationals have two binary
expansions, and we have chosen the finite expansion (except att = 1)].

Problem 76. If A € B(R?) has positive Lebesgue measure, show that for some = € R the set
A, ={y € R: (z,y) € A} has positive Lebesgue measure in R.

Problem 77 (A quantitative characterization of absolute continuity). Suppose ;1 < v. Then,
show that given any € > 0, there exists § > 0 such that v(A) < § implies u(A) < e. (The converse
statement is obvious but worth noticing). [Hint: Argue by contradiction].

Problem 78. Let Zi, ..., Z, beiid N(0, 1) and write Z for the vector with components Z1, ..., Z,.
Let A be an m x n matrix and let i be a vector in R™. Then the m-dimensional random vector
X = u + AZ is said to have distribution N,,(u, ) where ¥ = AA? (‘Normal distribution with
mean vector p and covariance matrix ).
(1) If m < nand A hasrank m, show that X has density (2)
measure on R™. In particular, note that the distribution depends only on 2 and AA*. (Note:

_m
2

exp{—3x'A~'x} w.r.t Lebesguel]

If m > n orif rank(A) < m, then satisfy yourself that X has no density w.r.t Lebesgue mea-
sure on R™ - you do not need to submit this).

(2) Check that E[Xz] = and COV(XZ', Xj) = Zi,j-

(3) What is the distribution of (i) (X7, ..., Xy), for k < n? (ii) BX, where B is a p X m matrix?
(i) X1+ ...+ Xn?

Problem 79. (1) If X, Y are independent random variables, show that Cov(X,Y’) = 0.

(2) Give a counterexample to the converse by giving an infinite sequence of random variables
X1, X3, ...such that Cov(X;, X;) = 0 for any ¢ # j but such that X; are not independent.

(3) Suppose (X1, ..., Xy,) has (joint) normal distribution (see the first question). If Cov(X;, X;) =|]
0 for all # < k and for all j > k + 1, then show that (Xi,..., X)) is independent of
(Xka1s-- s Xom)-

Problem 80. Decide whether the following are true or false and explain why.

(1) If X is independent of itself, X is constant a.s.
(2) If X is independent X? then X is a constant a.s.

(@) If X, Y, X +Y are independent, then X and Y are constants a.s.
13



(4) If X and Y are independent and also X + Y and X — Y are independent, then X and Y
must be constants a.s.

Problem 81. (1) Suppose 2 < k < n. Give an example of random variables X1, ..., X,, such
that any subset of k of these random variables are independent but no subset of k + 1 of
them is independent.

(2) Suppose (X1,...,X,) has a multivariate Normal distribution. Show that if X; are pairwise
independent, then they are independent.

Problem 82. Show that it is not possible to define uncountably many independent Ber(1/2) ran-
dom variables on the probability space ([0, 1], B, \).

Problem 83. Let X;, i > 1 be random variables on a common probability space. Let f : RN — R
be a measurable function (with product sigma algebra on RY and Borel sigma algebra on R) and
let Y = f(Xi,Xo,...). Show that the distribution of ¥ depends only on the joint distribution
of (X1,Xs,...) and not on the original probability space. [Hint: We used this to say that if X;
are independent Bernoulli random variables, then .., X;27" has uniform distribution on [0, 1],
irrespective of the underlying probability space.] B

Problem 84. Suppose (X1, ..., X,) has density f (w.r.t Lebesgue measure on R").
(1) If f(z1,...,xy,) can be written as [[;_; gx(zx) for some one-variable functions gi, k < n.

Then show that X1, ..., X,, are independent. (Don’t assume that g, is a density!)

(2) If X,..., X, are independent, then f(z1,...,z,) can be written as [[}._, gx(xx) for some
one-variable densities g1, . . . , gn.

Problem 85. (1) Let S be the set of all z € [0, 1] whose base b-expansion contains all the digits
0,1,...,b— 1, for every b € {2,3,4...}. Show that A\(S) = 1, where X is the Lebesgue
measure on [0, 1].

(2) Let S be the set of all points in R? that can be written as a convex combination of two
rational points (a rational point is one whose co-ordinates are all rational numbers). Show
that S has zero Lebesgue measure.

Problem 86. Among all n! permutations of [n], pick one at random with uniform probability. Show
that the probability that this random permutation has no fixed points is at most 3 for any n.

14



Problem 87. Suppose each of r = An balls are put into n boxes at random (more than one ball can
go into a box). If N,, denotes the number of empty boxes, show that for any § > 0, as n — oo,

P(‘]Z”—eA‘>5>—>O

Problem 88. Let X, be i.i.d random variables such that E[|.X|] < co. Define the random power
series f(z) = Y poy Xnz". Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series ) _ ¢, 2" is given
by (lim sup |e,|7)~1].

Problem 89. (1) Let X be a real values random variable with finite variance. Show that f(a) :=
E[(X — a)?] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X — a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 90 (Existence of Markov chains). Let S be a countable set (with the power set sigma
algebra). Two ingredients are given: A transition matrix, that is, a function p : S x S — [0,1]
be a function such that p(z, -) is a probability mass function on S for each x € S. (1) An initial
distribution, that is a probability mass function p on S.

For n > 0 define the probability measure v, on S"™! (with the product sigma algebra) by

n—1
vn(Ag x A1 X ... X Ap) = Z to(zo) Hp(xj,a:j+1).
(204w yTn ) EAQX ... X Ap, 7=0

Show that v, form a consistent family of probability distributions and conclude that a Markov
chain with initial distribution py and transition matrix p exists.

Problem 91. Show that it is not possible to define uncountably many independent Ber(1/2) ran-
dom variables on the probability space ([0, 1], B, \).

Problem 92. Let (Q;, i, P;), i € I, be probability spaces and let 2 = x;Q; with F = ®;F; and
P = ®;P;. If A € F, show that for any € > 0, there is a cylinder set B such that P(AAB) < e.

Problem 93. Let £, &, beii.d. random variables with E[log, {] < coand P({ = 0) < 1.
(1) Show that limsup |£,|» = 1 a.s.
n—oo
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(2) Let ¢, be (non-random) complex numbers. Show that the radius of convergence of the
random power series y >~ c,&,2" is almost surely equal to the radius of convergence of

the non-random power series > >~ ¢, 2".

Problem 94. (Ergodicity of product measure). This problem guides you to a proof of a different
zero-one law.
(1) Consider the product measure space (RZ, B(R%), ®zu) where 1 € P(R). Define 7 : RZ —
RZ by (Tw)n = wnt1. Let T = {A € B(R?):7(A) = A}. Then, show that 7 is a sigma-
algebra (called the invariant sigma algebra) and that every event in Z has probability equal
toOorl.

(2) Let X,,,n > 1bei.i.d. random variables on a common probability space. Suppose f : RY —
R is a measurable function such that f(z1,z2,...) = f(x2,x3,...) for any (21, 29,...) € RN
Then deduce from the first part that the random variable f(X;, X5, ...) is a constant, a.s.

[Hint: Approximate A by cylinder sets. Use translation by 7™ to show that P(A4) = P(4)2.]

Problem 95. Consider the invariant sigma algebra and the tail sigma algebra. Show that neither
is contained in the other.

Problem 96. (Chung-Erdos inequality).
(1) Let A; be events in a probability space. Show that

" (Sp_y P(Ap))?
’ {H Ak} = S P(Apn Ay)

(2) Place r,, balls in m bins at random and count the number of empty bins Z,,. Fix § > 0. If
Tm > (1 + 0)mlogm, show that P(Z,, > 0) — 0 while if r,, < (1 — §)mlogm, show that
P(Z, >0)— 1

Problem 97. Give example of an infinite sequence of pairwise independent random variables for
which Kolmogorov’s zero-one law fails.

Problem 98. Let X;, ¢ € I be random variables on a probability space. Suppose that for some
p > 0and M < oo we have E[|X;|P] < M for all i € I. Show that the family {X; : i € I} is tight
(by which we mean that {ux, : i € I} is tight, where px;, is the distribution of X;).

16



Problem 99. Let X; be i.i.d. random variables with zero mean and finite variance. Let S, =
X1 + ...+ X,,. Show that the collection {ﬁSn :n > 1} is tight. [Note: Tightness is essential for
convergence in distribution. In the case at hand, convergence in distribution to N (0, 1) is what is
called central limit theorem. We shall see it later.]

Problem 100. Suppose each of r = An balls are put into n boxes at random (more than one ball
can go into a box). If N,, denotes the number of empty boxes, show that for any § > 0, as n — oo,

N,
P(‘e"\‘>5>ﬁ0
n

Problem 101. Let X,, be i.i.d random variables such that E[| X;|] < co. Define the random power
series f(z) = > ;- y Xn2". Show that almost surely, the radius of convergence of f is equal to 1.
[Note: Recall from Analysis class that the radius of convergence of a power series ) _ ¢, 2" is given
by (lim sup \cn|%)_1].

Problem 102. (1) Let X be a real values random variable with finite variance. Show that
f(a) := E[(X — a)?] is minimized at a = E[X].

(2) What is the quantity that minimizes g(a) = E[|X — a|]? [Hint: First consider X that takes
finitely many values with equal probability each].

Problem 103. Let X; be i.i.d. Cauchy random variables with density Show that 1, fils

1
m(14+t2) "
the weak law of large numbers by completing the following steps.

(1) Show that tP{|X;| > t} — ¢ for some constant c.

(2) Show that if § > 0 is small enough, then P{|-2- S, 1| > 6} + P{|-1:5,_1| > 6} does not
go to 0 as n — oo [Hint: Consider the possibility that | X,,| > 20n].

(3) Conclude that %Sn 2o, [Extra: With a little more effort, you can try showing that there

does not exist deterministic numbers a,, such that %Sn — an Lt 0].

Problem 104. Let X,,, X be random variables on a common probability space.
1) If X, B x , show that some subsequence X, 3 X.

(2) If every subsequence of X,, has a further subsequence that converges almost surely to X,
P
show that X,, — X.
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Problem 105. For R%-valued random vectors X,,, X, the notions of convergence almost surely, in
probability and in distribution are well-defined. If X,, = (X, 1,..., X, q) and X = (X1,..., Xy),
which of the following is true? Justify or give counterexamples.

(1) X, 3 X ifand only if X, “3 X}, for 1 <k < d.
) X, 5 X ifand only if X,,, - X for 1 < k < d.

(3) X, % X ifand only if X,,, % X for 1 < k < d.

Problem 106. Let X,,,Y,,, X,Y be random variables on a common probability space.

1) If X, L X and Y, By (all r.v.s on the same probability space), show that a.X,, + bY, Lt
aX +bY and X,)Y,, 5 xy. [Hint: You could try showing more generally that f(X,,,Y;) —
f(X,Y) for any continuous f : R? — R.]

2) If X, £ X and Y, Ly (all on the same probability space), then show that X,,Y, 4 xy.

Problem 107. Let X,,,Y,,, X, Y be random variables on a common probability space.
(1) Suppose that X,, is independent of Y,, for each n (no assumptions about independence
across n). If X,, 5 X and Y, % Y, then (X,,,Y,) % (U, V) where U £ X,V £ Y and U,V
are independent. Further, a.X,, + bY, AU + bV.

(2) Give counterexample to show that the previous statement is false if the assumption of
independence of X,, and Y, is dropped.

Problem 108. If X, are independent random variables and X,, converge in distribution. Show
that the limit is degenerate.

Problem 109. If X,,,Y,, are independent for each n and X,, +Y,, g 0. Show that there are numbers
P
Yn such that X,, + y, — 0.

Problem 110. For R?-valued random vectors X,,, X, we say that X, 5 Xif P(|X,—X| >¢) =0
for any § > 0 (here you may take | - || to denote the usual norm, but any norm on R? gives the
same definition).

(1) If X, & X and ¥, 5 Y, show that (X,,,Y;,) 5 (X,Y).

@ If X, 5 XandV, 5 Y, show that X,, + VY, 5 X +Y and (X,,Y,) & XY. [Hint:
Show more generally that f(X,,,Y},) Ly (X, Y) for any continuous function f by using the
previous problem for random vectors].
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Problem 111. (1) If X,,,Y,, are independent random variables on the same probability space
and X, % X and ¥, % Y, then (X,.,Y,) % (U, V) where U £ X, V £ YV and U,V are
independent.

Q) If X, 4 X and Y, — X, LS 0, then show that Y, 4 x.
Problem 112. Show that the sequence { X, } is tight if and only if ¢, X, £ 0 whenever ¢, — 0.

Problem 113. Suppose X, are i.i.d with E[|X1]4] < co. Show that there is some constant C' (de-
pending on the distribution of X;) such that P (|n'S, — E[X;]| > §) < Cn~2 (What is your
guess if we assume E[|X1/%] < co? You don’t need to show this in the homework).

Problem 114. (1) (Skorokhod’s representation theorem) If X, 4 x , then show that there is a
probability space with random variables Y,,, Y such that Y, 4 XpandY 2 X and Y, S y.
[Hint: Try to construct Y;,, Y on the canonical probability space ([0, 1], B, )]

2) It X, 4 x ,and f : R — R is continuous, show that f(X,,) A f(X). [Hint: Use the first
part]

Problem 115. Suppose X; are i.i.d with the Cauchy distribution (density 7~!(1422) ! on R). Note
that X, is not integrable. Then, show that %" does not converge in probability to any constant.
[Hint: Try to find the probability P(X; > t), and then use it].

Problem 116. Let {X;};c; be a family of r.v on (2, F, P).

(1) If {X,}icr is uniformly integrable, then show that sup, E|X;| < co. Give a counterexample
to the converse statement.

(2) Suppose h : Ry — R, is a non-decreasing function that goes to infinity and sup; E[|.X;|h(]X;])] <[}
oo. Show that { X, };cs is uniformly integrable. In particular, if sup, E[|.X;[’] < oo for some
p > 1, then {X;} is uniformly integrable.

Problem 117. Let X,, be i.i.d with P(X; = +1) = P(X; = —1) = 1. Show that for any v > 3,

S e,

n”y
[Remark: Try to imitate the proof of SLLN under fourth moment assumption. If you write the
proof correctly, it should go for any random variable which has moments of all orders. You do not

need to show this for the homework].
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Problem 118. Let X,, be independent real-valued random variables.

(1) Show by example that the event {) X,, converges to a number in [1,3]} can have proba-
bility strictly between 0 and 1.

(2) Show that the event {}_ X,, converges to a finite number} has probability zero or one.

Problem 119. Let X, be i.i.d exponential(1) random variables.

(1) If b, is a sequence of numbers that converge to 0, show that lim sup b, X, is a constant (a.s.).
Find a sequence b,, so that limsup b, X, =1 a.s.

(2) Let M,, be the maximum of X1, ..., X,,. If a, — oo, show that lim sup Jy—: is a constant (a.s.).
Find a,, so that lim sup ]gf—: =1(as.).
[Remark: Can you do the same if X,, are i.i.d N(0,1)? Need not show this for the homework,
but note that the main ingredient is to find a simple expression for P(X; > t) asymptotically as
t — o0].

Problem 120. Let X, be i.i.d real valued random variables with common distribution u. For each
n, define the random probabilty measure y,, as i, := % > 41 0x,. Let F, be the CDF of fi,,. Show
that

sup | Fy(z) — F(z)] 3 0 a.s.
z€R

Problem 121. Let X, be independent and P(X,, = n%) = % = P(X,, = —n®) where a > 0 is fixed.
For what values of a does the series ) X,, converge a.s.? For which values of a does the series

converge absolutely, a.s.?

Problem 122. (Random series) Let X,, beii.d N(0,1) forn > 1.

(1) Show that the random series » an converges a.s., for any t € R.

(2) Show that the random series > | Xn\j—:? converges for allt € R, a.s.

[Note: The location of the phrase “a.s” is all important here. Let A; and B; denote the event that
the series converges for the fixed ¢ in the first or second parts of the question, respectively. Then,
the first part is asking you to show that P(A;) = 1 for each ¢t € R, while the second part is asking
you to show that P("M;crB;) = 1. It is also true (and very important!) that P(N;crA4;) = 1 but
showing that is not easy.]

Problem 123. Suppose X,, are i.i.d random variables with finite mean. Which of the following

assumptions guarantee that > | X,, converges a.s.?
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(1) () E[X,] = 0forall nand (ii) > E[X2 A 1] < cc.
(2) (i) E[X,] = 0forall nand (ii) Y. E[X2 A | X,|] < oo.

Problem 124. (Large deviation for Bernoullis). Let X, be i.i.d Ber(1/2). Fix p > %
(1) Show that P(S,, > np) < e~ (eXT‘Hyl for any A > 0.

(2) Optimize over \ to get P(S,, > np) < e () where I(p) = —plogp — (1 — p)log(1 — p).
(Observe that this is the entropy of the Ber(p) measure introduced in the first class test).

(3) Recall that S,, ~ Binom(n, 1/2), to write P(S,, = [np]) and use Stirling’s approximation to
show that )
P(S, > np) > ————e @),

= (= p)

(4) Deduce that P(S,, > np) ~ e ™ ®) for p > L and P(S,, < np) ~ e P for p <  where the
log an,

notation a,, =~ b, means Tog b

— 1 as n — oo (i.e., asymptotic equality on the logarithmic
scale).

Problem 125. Carry out the same program for i.i.d exponential(1) random variables and deduce
that P(S,, > nt) ~ e ™ ® fort > 1 and P(S,, < nt) ~ e ™" fort < 1 where I(t) :=t — 1 — logt.

Problem 126. Let Y7, ..., Y, be independent random variables. A random variable 7 taking values
in {1,2,...,n} is called a stopping time if the event {T < k} € o (Y1,...,Y}) for all k (equivalently
{r=k}eo(¥1,...,Y) forall k).
(1) Which of the following are stopping times? 71 := min{k < n:S; € A} (for some fixed
ACR). p:=max{k <n:S,€ A}. r3:=min{k <n:S;= max S;}. In the first two cases
set 7 = n if the desired event does not occur. ”

(2) Assuming each X}, has zero mean, show that E[S;] = 0 for any stopping time 7. Assuming
that each X}, has zero mean and finite variance, show that E[S?] < E[S2] < E[S2] for any
stopping time 7.

(3) Give examples of random 7 that are not stopping times and for which the results in the
second part of the question fail.

Problem 127. Let X}, be independent random variables with zero mean and unit variance. As-
sume that E[|X},|?"%] < M for some § < 0 and M < co. Show that S,, is asymptotically normal.

Problem 128. Let X;. be i.i.d. random variables with zero mean and unit variance. Let 0 < a1 <
az < ... be given numbers. Find sufficient conditions on (a;); such that S, is asymptotically

normal.
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Problem 129. Fix a > 0.
(1) If X,Y are ii.d. random variables such that % 4 x , then show that X must have

—c|Al”

characteristic function g x (A) = e for some constant c.

(2) Show that for a = 2 we get N(0,0?) and for o = 1 we get symmetric Cauchy.

[Note: Only for 0 < a < 2is e~ a characteristic function. Hence a distribution with the desired
property exists only for this range of o].

Problem 130. Let X}, be independent Ber(p;) random variables. If Var(S,,) stays bounded, show
that S,, cannot be asymptotically normal.

Problem 131 (Weak law using characteristic functions). Let X}, be ii.d. random variables having
characteristic function ¢.

(1) If ©'(0) = iu, show that the characteristic function of S,,/n converges to the characteristic
function of §,,. Conclude that weak law holds for .S,, /n.

(2) If %Sn K w for some p, then show that ¢ is differentiable at 0 and ¢’(0) = ipu.

Problem 132. Find the characteristic functions of the distributions with the given densities.
(1) e~lol forz € R, (2) 1 (1 — @)
+

Problem 133. If z,, € R and €**» — 1 for all t € R, then show that z,, — 0.

Problem 134. Suppose /i, it are probability measures on R with characteristic functions ,,, ¢. If
on(t) = p(t) for all t € Q, is it true that p,, — p weakly?

Problem 135 (Multidimensional central limit theorem). Let X,, be ii.d. R%valued random vectors
with zero mean and covariance matrix . Let S,, = X7 + ... + X,,. Show that ﬁSn i Ny(0,%)
using the replacement principle. Assume (for convenience) that third moments are finite (i.e.,

E[[|X:1]%] < 00).

Problem 136. Let X,, be i.i.d. random variables with a non-degenerate distribution. If S, =
X1+ ...+ X, show that P{|S,,| < M} — 0 for any M < co.
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Problem 137. For a real valued random variable X, its concentration function is defined as Q x () =
sup{P{X € [a,a+1] : a € R}, fort > 0 (so @x(0) is the largest atom size in the distribution of X).
If X,Y are independent and Z = X + Y, show that Q x4y (t) < Qx(t) forallt > 0.

Problem 138. [3 marks each] For each of the following statements, state whether they are true or
false, and justify or give counterexample accordingly.

(1) If p, v are Borel probability measures on R and ;¢ < v, then either v L p1or v < pu.

(2) If > X, converges a.s. and P(Y,, = X,,) =1 — # Then ) Y;, converges a.s.

(3) If {X,,} is an L? bounded sequence of random variables, and E[X,,] = 1 for all n, then X,
cannot converge to zero in probability.

@) If X, % X, then X2 % x2.

(5) Suppose X, are independent with E[X,,] = 0 and > Var(X,,) = co. Then, almost surely
>~ X, does not converge.

(6) Suppose X,,,Y,, are random variables such that | X,,| < |Y,| for all n. If > Y, converges
almost surely, then ) ° X, converges almost surely.

Problem 139. [2 marks+4 marks + 4 marks] Let X, Y be random variables on a common proba-
bility space. Assume that both X and Y have finite variance.

(1) Show that E[(X — a)?] is minimized uniquely at a = E [X].
(2) Find values of a, b that minimize f(a,b) = E [(Y — a — bX)?]. Are they unique?

(3) Suppose P(X = k) = & fork =1,2...,10. At what value(s) of a is E [| X — a|] minimized?
Is the minimizer unique?

Problem 140. [10 marks] Let G1, G, . . . be i.i.d Geometric(p) random variables (this means P(G; =
k) = p(1 — p)*~! for k > 1). Let X1, Xo,... be i.i.d random variables with E [|X;]] < cc. Define
N :=G1+ Gy + ...+ G). Show that as k — oo,

Xi+Xo+...+ XN, P 1

-E|X
- —>p[1]

Problem 141. [5 marks+5 marks] Let Uy, V}, be i.i.d Uniform([0,1]) random variable.
1 1
(1) Show that ) U}* — V}* converges a.s.
k

(2) Let S, = Uy + U3 + ...+ U Show that S, satisfies a CLT. In other words, find a,,, b, such

that S2-% % N(0,1).
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Problem 142. [5 marks+5 marks] Let Z™ = (2™ .. z{") be a point sampled uniformly from
the sphere S"~! (this means that P(Z(™ € A) = area(A)/area(S™ ') for any Borel set A C S"~1).

(1) Find the density of an).

(2) Using (1) or otherwise, show that \/ﬁan) AN (0,1) as n — oo.
[Hint: One way to generate 7™M is to sample X1, ..., X, 1i.d N(0,1) and to set Z() = HTIH (X1,..., X")I
where | X|| = \/X? + X7 + ... + X2. You may assume this fact without having to justify it].

Problem 143. [5 marks+5 marks]

(1) Let p be a probability measure on R with characteristic function /i(¢). Then, show that
for any t1,12,...,t, € R, the n x n matrix A with entries a; ; = [i(t; — t;) is non-negative
definite.

(2) Suppose |/i(to)| = 1 for some ty # 0. Then, y is supported on a lattice, thatis, u(aZ+b) = 1
for some a, b € R. [Hint: Use part (1) with n = 2 and appropriate ¢1, t2].

Problem 144. [10 marks] Let X1, X,,... be i.i.d Bernoulli(3) random variables. For each n > 1,
define L, to be the longest run of ones in (X1,...,X},), that s,

Ly :=max{k:3j <n—ksuchthat X;;1 = X;10=... = X, = 1}.

L, P 1
Prove that e — Togd
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NEW PROBLEMS ADDED IN 2019

Problem 1. Let (2, F, 1) be a probability space.

(1) Let S C F be a finite collection of sets. Then show that ¢(5) is also a finite collection.

(2) Let Abe an algebra that generates 7. For any A € F and any € > 0, show that there is some
B € Asuch that u(AAB) < € (here AAB = (A\ B) U (B \ A) is the symmetric difference).

Problem 2. (1) Let S be the set of all = € [0, 1] whose base b-expansion contains all the digits
0,1,...,b—1, for every b € {2,3,4...}. Show that A\(S) = 1, where X is the Lebesgue
measure on [0, 1].

(2) Let S be the set of all points in R? that can be written as a convex combination of two
rational points (a rational point is one whose co-ordinates are all rational numbers). Show
that S has zero Lebesgue measure.

Problem 3. Let A, B be Borel subsets of [0,1] and let C' C R? be the union of all line segments
connecting a point in A x {0} to a point in {0} x B. Is C measurable? If A\(A) = A\(B) = 0, itit
necessarily true that A2(C) = 0? If A\(A) > 0 and A\(B) > 0, is it necessarily true that A\2(C) > 0?

Problem 4. Let X > 0 be a random variable on (2, 7, P). Assume that E[X?] < co and E[X 7P| <
oo for some p > 0. Then show that log X is integrable and that
1

“E[X9—1] - E[log X] asq|0.
q

Problem 5. A random interval is one whose end points are picked independently and uniformly
from [0,1]. If Iy, ... I, are n ii.d. random intervals, what is the probability that they have a point

of intersection?

Problem 6. A random interval is one whose end points are picked independently and uniformly
from [0,1]. If I;,... I, are n iid. random intervals, what is the probability that one of them
intersects all the others?
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