Problem set 1
Due date: 16th Aug

Submit the starred exercises only

Exercise 1 (*). For each of the “random experiments” described below, describe the sample space and the probabilities. Also compute the probability of the event \(A \) specified. If no event is specified, just give the probability space.

1. A fair die is thrown until a 6 or a 1 shows up. Let \(A \) be the event that the number of throws is at least \(n \).
2. A coin is tossed and a die is thrown. \(A \) is the event that either the coin turns up head or the die shows up an even number.
3. Place \(k \) unlabeled balls in \(n \) labelled urns. Let \(A \) be the event that the first urn is empty. [Note: See the next part before you think you have solved this.]
4. Place \(k \) unlabeled balls in \(n \) labelled urns so that all distinguishable configurations are equally likely. Let \(A \) be the event that the first urn is empty.

Exercise 2 (*). Let \(A_1, \ldots, A_n \) be events in a probability space \((\Omega, p)\) and let \(m \leq n \). Let \(B_m \) be the event that at least \(m \) of the events \(A_1, \ldots, A_n \) occur. That is

\[
B_m = \bigcup_{1 \leq i_1 < i_2 < \ldots < i_m \leq n} (A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_m}).
\]

In class we showed by the inclusion exclusion formula that

\[
P(B_1) = S_1 - S_2 + \ldots + (-1)^{n-1} S_n
\]

where

\[
S_k = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}).
\]

Show that

\[
P(B_m) = S_m - \binom{m}{m-1} S_{m+1} + \binom{m+1}{m-1} S_{m+2} - \ldots + (-1)^{n-m} \binom{n-1}{m-1} S_n.
\]

[Note: Also see Problem 4 and the remark at the end of it.]

Exercise 3. For each of the “random experiments” described below, describe the sample space and the probabilities. Also compute the probability of the event \(A \) specified. If no event is specified, just give the probability space.

1. A die is thrown until the first time a head is immediately followed by a tail (e.g., if the tosses are \(TTHHT \) then we needed 5 tosses). Find the probability that at least \(n \) throws are needed.
2. Place \(k \) labeled balls in \(n \) unlabeled urns. Let \(A \) be the event that the first ball and the second ball are in distinct urns. Do it for both cases - (a) Each distinguishable distribution is equally likely and (b) All distributions are equally likely (even if not distinguishable).
3. Place \(k \) unlabeled balls in \(n \) unlabeled urns.
(4) 13 cards are dealt from a shuffled deck off 52 cards. Let \(A \) be the event that the cards dealt contains a series.\(^1\) Let \(B \) be the event that the cards dealt contains a set.\(^2\)

(5) A drunkard returns home with a bunch of \(n \) keys in his pocket. He randomly tries them one after another till the lock opens. Let \(A \) be the event that the fifth key opens the lock. Assume that he does not try the same key twice.

Exercise 4. Let \(A_1, \ldots, A_n \) be events in a probability space \((\Omega, \mathcal{P}) \) and let \(m \leq n \). Let \(C_m \) be the event that exactly \(m \) out of the \(n \) events \(A_1, \ldots, A_n \) occur. That is

\[
C_m = \bigcup_{1 \leq i_1 < i_2 < \ldots < i_m \leq n} \left\{ \left(\bigcap_{j=1}^{m} A_{i_j} \right) \bigcap \left(\bigcap_{k \notin \{i_1, \ldots, i_m\}} A_k^c \right) \right\}.
\]

\[
\mathbf{P}(C_m) = S_m - \binom{m+1}{m} S_{m+1} + \binom{m+2}{m} S_{m+2} - \ldots + (-1)^{n-m} \binom{n}{m} S_n.
\]

[Note: If you solve one of Problem 2 or Problem 4, you can solve the other using the relationship \(C_m = B_m \setminus B_{m+1} \) or \(B_m = C_m \sqcup C_{m+1} \sqcup \ldots \sqcup C_n \).]

\(^1\)A series means three cards of the same suit in succession, eg., 9,10,J of spades. Here ace is interpreted as 1 and hence A,2,3 is a series but not QKA or KA2.

\(^2\)A set means three cards of distinct suits but having the same value, eg., the queen of spades, diamonds and hearts or the 7 of spades, hearts and clubs.