

Problem set 2

Due date: **2nd Sep**

Submit the starred exercises only

Exercise 5 (*). A total of $n \geq 365$ people come to a party one after another. As they come in, their birthdays (date and month) are noted. We are interested in the first time that a birthday repeats. For simplicity assume there are 365 possible birthdays (i.e., exclude February 29th as a possible birthday).

- (1) Write the probability space and the corresponding random variable.
- (2) Find the distribution of the random variable under consideration.
- (3) Find the *median* of this random variable. In other words, find the value of k such that $\mathbf{P}(X \geq k) \geq 0.5 \geq \mathbf{P}(X > k)$.

Exercise 6 (*). m decks of cards (having n cards each) are shuffled and kept beside each other. We say that there is a match at level k if the k^{th} cards in all the decks are the same. Consider the event that there are no matches at all.

- (1) Write the probability space, the event of interest and find an expression for the probability of the event.
- (2) Use the first two Bonferroni inequalities to give upper and lower bounds for the above probability. Find the values for $m = 2, 3, 4$ and $n = 25, 50, 100$.

Exercise 7 (*). Toss a possibly biased coin till you get a Head for the second time (not necessarily on two consecutive tosses). Consider the random variable that counts the total number of tosses.

- (1) Write the probability space and the corresponding random variable.
- (2) Find the distribution of the random variable under consideration.

[*Extra, don't need to submit:* Can you generalize this to the number of tosses needed to get k heads, where $k \geq 1$ is a fixed integer? The resulting distribution is called *negative binomial distribution with parameters k, p* and is denoted $\text{NegBin}(k, p)$ (for $k = 1$ we get back the $\text{Geo}(p)$ distribution).]

Exercise 8. Decide for each case whether $\sum_{x \in S} f(x)$ is absolutely summable or not. You do not need to find the value of the sum.

- (1) $S = \mathbb{Z}$, $f : S \rightarrow \mathbb{R}$ is defined by $f(n) = \frac{1}{n^\alpha}$ where α is a positive integer. The answer will depend on α .
- (2) $S = \mathbb{N} \times \mathbb{N} = \{(m, n) : m, n \in \mathbb{N}\}$ and $f(m, n) = \frac{(-1)^{m+n}}{m^2 + n^2}$.
- (3) $S = \mathbb{Q} \cap (0, 1)$ and $f(r) = \frac{1}{q}$ where $r = \frac{p}{q}$ with $p, q \in \mathbb{N}$ and have no common factor. What if $f(r) = \frac{1}{q^3}$?

Exercise 9. Let $f(n)$ be a sequence of real numbers. Let $f_+(n) = f(n) \vee 0$ and $f_-(n) = (-f(n)) \vee 0$. Assume that $f(n) \rightarrow 0$ as $n \rightarrow \infty$. Let $A_+ = \sum_n f_+(n)$ and let $A_- = \sum_n f_-(n)$. In this exercise we guide you to a proof of the equivalence of the two facts stated in class (absolute convergence and the invariance of the sum under reordering).

(1) Assume that A_+ and A_- are finite. Let $\pi : \mathbb{N} \rightarrow \mathbb{N}$ be any bijection. Show that

$$\lim_{N \rightarrow \infty} \sum_{k=1}^N f_+(\pi(k)) = \lim_{N \rightarrow \infty} \sum_{k=1}^N f_+(k) \quad \lim_{N \rightarrow \infty} \sum_{k=1}^N f_-(\pi(k)) = \lim_{N \rightarrow \infty} \sum_{k=1}^N f_-(k).$$

Conclude that $\lim_{N \rightarrow \infty} \sum_{k=1}^N f(\pi(k)) = \lim_{N \rightarrow \infty} \sum_{k=1}^N f(k)$.

[**Hint:** To show the first conclusion, let $L' = \lim_{N \rightarrow \infty} \sum_{k=1}^N f_+(\pi(k))$ and let $L = \lim_{N \rightarrow \infty} \sum_{k=1}^N f_+(k)$.

By definition of bijection, for any $N \geq 1$, there is some $N' \geq 1$ such that $\{1, 2, \dots, N\} \subseteq \{\pi(1), \dots, \pi(N')\}$ and hence $\sum_{k=1}^{N'} f_+(\pi(k)) \geq \sum_{k=1}^N f_+(k)$.]

(2) If only one of A_+ or A_- is finite, show that again $\lim_{N \rightarrow \infty} \sum_{k=1}^N f(\pi(k)) = \lim_{N \rightarrow \infty} \sum_{k=1}^N f(k)$ (while the limit is $\pm\infty$ this time).

(3) Suppose $A_+ = +\infty$ and $A_- = +\infty$. Fix a real number α . Show that there is a bijection $\pi : \mathbb{N} \rightarrow \mathbb{N}$ such that $\lim_{N \rightarrow \infty} \sum_{k=1}^N f(\pi(k)) = \alpha$. [**Hint:** Collect enough and just enough positive numbers from the beginning of the sequence $(f(n))$ to exceed α . Then collect enough negative terms to make the sum less than α . Now take positive terms again to make the sum exceed α . Proceed in this way. Argue that the limit exists and is equal to α .]