Problem set 4

Due date: 6th Oct

Submit the starred exercises only

Exercise 16. In each of the following situations, describe the joint distribution of X_{1} and X_{2}.
(1) Toss a (not necessarily fair) coin 3 times. Let X_{1} be the outcome of the first toss and let X_{2} be the outcome of the second toss.
(2) In the same setting as above, let X_{1} be the number of heads in the first two tosses and let X_{2} be the number of heads in the second and third tosses.
(3) X_{1} and X_{2} are the first and second card (respectively) in a shuffled deck of cards.

Exercise $17\left(^{*}\right)$. Let X_{1}, X_{2} be independent random variables with $X_{1} \sim \operatorname{Gamma}\left(v_{1}, \lambda\right)$ and $X_{2} \sim$ $\operatorname{Gamma}\left(v_{2}, \lambda\right)$ (not that the scale parameter is the same for both).
(1) Show that $X_{1}+X_{2} \sim \operatorname{Gamma}\left(v_{1}+v_{2}, \lambda\right)$.
(2) Show that $\frac{X_{1}}{X_{1}+X_{2}} \sim \operatorname{Beta}\left(v_{1}, v_{2}\right)$.
(3) Show that $X_{1}+X_{2}$ is independent of $\frac{X_{1}}{X_{1}+X_{2}}$.
[Hint: Try to solve all three parts in one shot].
Exercise 18 (*). (1) Let X_{1}, X_{2} be independent and have $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$ and $\operatorname{Bin}(\mathrm{m}, \mathrm{p})$ distributions, respectively (observe that p is the same for both). Then, show that $X_{1}+X_{2} \sim \operatorname{Bin}(m+n, p)$. In particular, deduce that if $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are i.i.d $\operatorname{Ber}(p)$ random variables, then $\xi_{1}+\ldots+\xi_{n} \sim \operatorname{Bin}(n, p)$.
(2) Let X_{1}, X_{2} be independent and have $\operatorname{Pois}(\lambda)$ and $\operatorname{Pois}(\mu)$ distributions, respectively. Then, show that $X_{1}+X_{2} \sim \operatorname{Pois}(\lambda+\mu)$.
[Remark: Some of these properties are intuitively obvious when we think of the appropriate random experiment. For example, toss a coin $m+n$ times. If X_{1} is the number of heads in the first m tosses and if X_{2} is the number of heads in the next n tosses, then clearly X_{1}, X_{2} are independent with $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$ and $\operatorname{Bin}(\mathrm{m}, \mathrm{p})$ distributions, respectively and $X_{1}+X_{2}$ has $\operatorname{Bin}(\mathrm{m}+\mathrm{n}, \mathrm{p})$ distribution. This is not accepted as a proof and you must solve it by manipulating the p.m.f of X_{1} and X_{2}].

Exercise 19. If $U \sim \operatorname{Unif}([0,1])$ find the distribution (enough to find the density if it exists) of
(1) $Y=a U+b$ where $a>0$ and $b \in \mathbb{R}$.
(2) $1-U$.
(3) $-\log U$.
(4) U^{m} where $m \geq 1$ is an integer.

Exercise 20. Let X and Y be independent random variables with densities f_{1} and f_{2}. In class we showed that $X_{1}+X_{2}$ has density $g(u)=\int_{\mathbb{R}} f_{1}(t) f_{2}(u-t) d t$. Follow the techniques there to show that $X_{1} X_{2}$ has density $h(u)=\int_{\mathbb{R}} f_{1}(t) f_{2}(u / t) \frac{1}{t} d t$.
[Remark: Intuitively, for $\left.X_{1}\right] X_{2}$ to take the value u, X_{1} can take any value t and X_{2} take the value u / t. That is why the term $f_{1}(t) f_{2}(u / t)$ inside the integral is understandable. The factor of $1 / t$ comes from the Jacobian determinant and is less obvious at first sight].

