Problem set 4

Due date: 6th Oct

Submit the starred exercises only

Exercise 16. In each of the following situations, describe the joint distribution of X_1 and X_2 .

- (1) Toss a (not necessarily fair) coin 3 times. Let X_1 be the outcome of the first toss and let X_2 be the outcome of the second toss.
- (2) In the same setting as above, let X_1 be the number of heads in the first two tosses and let X_2 be the number of heads in the second and third tosses.
- (3) X_1 and X_2 are the first and second card (respectively) in a shuffled deck of cards.

Exercise 17 (*). Let X_1, X_2 be independent random variables with $X_1 \sim \text{Gamma}(v_1, \lambda)$ and $X_2 \sim \text{Gamma}(v_2, \lambda)$ (not that the scale parameter is the same for both).

- (1) Show that $X_1 + X_2 \sim \text{Gamma}(v_1 + v_2, \lambda)$.
- (2) Show that $\frac{X_1}{X_1+X_2} \sim \text{Beta}(v_1, v_2)$.
- (3) Show that $X_1 + X_2$ is independent of $\frac{X_1}{X_1 + X_2}$.

[Hint: Try to solve all three parts in one shot].

- **Exercise 18** (*). (1) Let X_1, X_2 be independent and have Bin(n,p) and Bin(m,p) distributions, respectively (observe that *p* is the same for both). Then, show that $X_1 + X_2 \sim Bin(m+n,p)$. In particular, deduce that if $\xi_1, \xi_2, \ldots, \xi_n$ are i.i.d Ber(*p*) random variables, then $\xi_1 + \ldots + \xi_n \sim Bin(n,p)$.
 - (2) Let X_1, X_2 be independent and have $\text{Pois}(\lambda)$ and $\text{Pois}(\mu)$ distributions, respectively. Then, show that $X_1 + X_2 \sim \text{Pois}(\lambda + \mu)$.

[**Remark:** Some of these properties are intuitively obvious when we think of the appropriate random experiment. For example, toss a coin m + n times. If X_1 is the number of heads in the first m tosses and if X_2 is the number of heads in the next n tosses, then clearly X_1, X_2 are independent with Bin(n,p) and Bin(m,p) distributions, respectively and $X_1 + X_2$ has Bin(m+n,p) distribution. This is not accepted as a proof and you must solve it by manipulating the p.m.f of X_1 and X_2].

Exercise 19. If $U \sim \text{Unif}([0,1])$ find the distribution (enough to find the density if it exists) of

(1) Y = aU + b where a > 0 and $b \in \mathbb{R}$.

- (2) 1 U.
- $(3) \log U.$
- (4) U^m where $m \ge 1$ is an integer.

Exercise 20. Let *X* and *Y* be independent random variables with densities f_1 and f_2 . In class we showed that $X_1 + X_2$ has density $g(u) = \int_{\mathbb{R}} f_1(t) f_2(u-t) dt$. Follow the techniques there to show that $X_1 X_2$ has density $h(u) = \int_{\mathbb{R}} f_1(t) f_2(u/t) \frac{1}{t} dt$.

[**Remark:** Intuitively, for $X_1 X_2$ to take the value u, X_1 can take any value t and X_2 take the value u/t. That is why the term $f_1(t)f_2(u/t)$ inside the integral is understandable. The factor of 1/t comes from the Jacobian determinant and is less obvious at first sight].