
1. WEIERSTRASS’ APPROXIMATION THEOREM AND FEJÉR’S THEOREM

Unless we say otherwise, all our functions are allowed to be complex-valued. For eg., C[0,1] means the
set of complex-valued continuous functions on [0,1].

Theorem 1 (Weierstrass). If f ∈C[0,1] and ε > 0 then there exists a polynomial P such that ‖ f −P‖sup < ε. If f is
real-valued, we may choose P to be real-valued.

Proof. Define Bn f (x) := ∑n
k=0 f (k/n)

(n
k
)
xk(1− x)n−k, a polynomial of degree n. Make the following observa-

tions about the coefficients pn,x(k) =
(n

k
)
xk(1− x)n−k.

n

∑
k=0

pn,x(k) = 1,
n

∑
k=0

kpn,x(k) = nx,
n

∑
k=0

(k−nx)2 pn,x(k) = nx(1− x),

all of which can be easily checked using the binomial theorem. In probabilistic language, pn,x is a probability
distribution on 0,1, . . . ,n whose mean is nx and standard deviation is nx(1−x). From these observations we
immediately get

∑
k:| k

n−x|≥δ
pn,x(k)≤

1
δ2n2

n

∑
k=0

(k−nx)2 pn,x(k)≤
x(1− x)

nδ2 .

Thus, denoting ω f (δ) = sup|x−y|≤δ | f (x)− f (y)|, we get

|Bn f (x)− f (x)|≤ ∑
k : | k

n−x|<δ
| f (x)− f (k/n)|pn,x(k)+ ∑

k : | k
n−x|≥δ

| f (x)− f (k/n)|pn,x(k)

≤ ω f (δ) ∑
k : | k

n−x|<δ
pn,x(k)+2‖ f‖sup

x(1− x)
nδ2

≤ ω f (δ)+
1

2nδ2 ‖ f‖sup.

First pick δ > 0 so that ω f (δ) < ε/2 and then pick n >
‖ f‖sup

εδ2 to get ‖Bn f − f‖sup < ε. !

Let S1 denote the unit circle which we may identify with [−π,π). Continuous functions on S1 may be
identified with continuous functions on I = [−π,π] such that f (−π) = f (π). Let ek(t) = eikt for t ∈ [−π,π). A
supremely important fact is that ek are orthonormal in L2(I,dt/2π), i.e.,

R
I ek(t)e!(t) dt

2π = δk,!. The question of
whether this is a complete orthonormal basis is answered to be “yes” by the following theorem.

Theorem 2 (Fejér). Given any f ∈C(S1) and ε > 0, there exists a trigonometric polynomial P(eit) = ∑N
k=−N ckeikt

such that ‖ f −P‖sup < ε.

Proof. Define f̂ (k) =
R

I f (t)e−ikt dt
2π and set

σN f (t) =
N

∑
k=−N

(
1− |k|

N +1

)
f̂ (k)eikt

=
N

∑
k=−N

(
1− |k|

N +1

)
eikt

Z

I
f (s)e−iks ds

2π

=
Z

I
f (s)KN(t− s)ds

where the Fejér kernel KN is defined as

KN(u) =
N

∑
k=−N

(
1− |k|

N +1

)
eiku =

1
N +1

sin2 (N+1
2 u

)

sin2 ( u
2
)
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The key observations about KN (use the two forms of KN whichever is convenient)

KN(u)≥ 0 for all u,
Z

I

KN(u)
du
2π

= 1,
Z

I\[−δ,δ]

KN(u)
du
2π
≤ 1

N +1
1

sin2 (δ/2)
.

In probabilistic language, KN(·) is a probability density on I which puts most of its mass near 0 (for large
N). Therefore,

|σN f (t)− f (t)| ≤
Z δ

−δ
| f (t)− f (s)|KN(t− s)ds+

Z

I\[−δ,δ]
| f (t)− f (s)|KN(t− s)ds

≤ ω f (δ)+2‖ f‖sup
1

N +1
1

sin2 (δ/2)
.

Pick δ so that ω f (δ) < ε/2 and then pick N +1 >
4‖ f‖sup

εsin2(δ/2)
to get ‖σN f − f‖sup < ε. !

Extensions and alternate proofs: In the following exercise, derive Weierstrass’ theorem from Fejér’s theo-
rem!

Exercise 3. Let f ∈CR[0,1].
(1) Construct a function g : [−π,π]→ R such that (a) g is even, (b) g = f on [0,1] and (c) g vanishes

outside [−2,2].

(2) Invoke Fejér’s theorem to get a trigonometric polynomials T such that ‖T −g‖sup < ε.

(3) Use the series ez = ∑∞
k=0

1
k! zk to replace the exponentials that appear in T by polynomials. Be clear

about the uniform convergence issues.

(4) Tie everything together to get a polynomial P with real coefficients such that ‖ f −P‖sup < 2ε.

Natural questions are whether such theorems extend to multivariable setting, for example, are polyno-
mials in two variables dense in C([0,1]× [0,1])? While one can retrace the proofs above, it is most clearly
captured by the very general Stone-Weierstrass theorem.

Theorem 4 (Stone Weierstrass theorem). Let X be a compact Hausdorff space and let A ⊆ CR(X) be (a) a real
vector space, (b) closed under multiplication, (c) contain constant functions and (d) separate points of X . The
last condition means that for any distinct points x,y ∈ X , there is some f ∈A such that f (x) )= f (y). Then, A is dense
in C(X) in sup-norm.

We skip the proof of Stone-Weierstrass theorem here (see references later). As a corollary deduce the
answer to the questions raised earlier about extensions to multivariable setting.

Exercise 5. (1) If K ⊆ Rk is compact, then show that polynomials in k variables are dense in the space
C(K). This works for both real and complex valued functions.

(2) Show that the previous statement fails in C. More precisely, show that there exists a continuous
function f (z) on D := {z : |z| ≤ 1} that cannot be uniformly approximated by polynomials of the
form ∑n

k=0 ckzk.

(3) State the analogue of Fejér’s theorem in multi-variable setting and derive it from Stone-Weierstrass
theorem.

Here is an alternate proof of Weierstrass’ theorem that was suggested by Subhroshekhar Ghosh. It is in
some way more natural and removes the magical Bernstein polynomials from the picture.

Exercise 6. Formulate precisely and prove the following steps. For definiteness work with real-valued
function on R.
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(1) A real-analytic function can be uniformly approximated on compact sets by polynomials.

(2) Convolution1 of a real-analytic function with a compactly-supported continuous function is also a
real-analytic function.

(3) If ϕ is a probability density that is real-analytic, then ϕσ(x) := 1
σ ϕ(x/σ) is also a real-analytic proba-

bility density.

(4) If f is a compactly supported continuous function, then it can be uniformly approximated by real-
analytic functions.

(5) Deduce Weierstrass’ theorem.

There are many examples of real-analytic probability densities. We mention two (if the facts we say
below are not familiar to you, just take them as facts till you see proofs in some other course).

(1) The Cauchy density ϕ(x) = 1
π(1+x2) . In this case, ( f ∗ϕy)(x) = u(x,y) where u : H→ R is the unique

function that solves the Dirichlet problem on the upper-half plane H := {(x,y) : y > 0} with boundary
condition f . What this means is that
(a) u is continuous on H,

(b) u(·,0) = f (·),
(c) ∆u = 0 on H.

The point is that ( f ∗ϕy) is just u restricted to the line with y-co-ordinate equal to y and approaches
f (at least pointwise) when y→ 0.

(2) The normal density ϕ(x) = 1√
2π e−x2/2. In this case ( f ∗ϕt)(x) = u(x, t) where u solves the heat equation

with initial condition f . What this means is that
(a) u is continuous on R×R+,

(b) u(·,0) = f (·),

(c) ∂
∂t u(x, t) = 1

2
∂2

∂x2 u(x, t) on R×R+.
Again, ( f ∗ϕ√t) = u(·, t) is the function (“temperature”) at time t, and approaches the initial condition
f (at least pointwise) as t approaches 0.

Brief history of Fejér’s theorem: This is a cut-and-dried history, possibly inaccurate, but only meant to put
things in perspective!

(1) The vibrating string problem is an important PDE that arose in mathematical physics, and asks for

a function u : [a,b]×R+ → R satisfying ∂2

∂t2 u(x, t) = ∂2

∂x2 u(x, t) for (x, t) ∈ (a,b)×R+ and satisfying the

initial conditions u(x,0) = f (x) and ∂
∂t u(x, t) |t=0 = g(x), where f and g are specified initial conditions.

(2) Taking [a,b] = [−π,π] (without loss of generality), it was observed that if f (x) = eikx and g(x) = ei!x,
then u(x, t) = cos(kt)eikx + 1

! sin(!t)ei!x solves the problem.

(3) Linearity of the system meant that if f and g are trigonometric polynomials, then by taking linear
combinations of the above solution, one could obtain the solution to the vibrating string problem.

(4) Thus, the question arises, whether given f and g we can approximate them by trigonometric poly-
nomials (and hopefully the corresponding solutions will be approximate solutions).

1Convolution of f and g is defined by ( f ∗g)(x) :=
R

f (u)g(x−u)du =
R

f (x−u)g(u). It is well-defined when f is bounded and g is
integrable (absolutely). One can give many other conditions on f and g, but this will suffice for us.

5



(5) Fourier made the fundamental observation that ek(·) are orthonormal on [−π,π] and deduced that
if the notion of approximation is in mean-square sense (i.e., L2 distance

√R
| f −g|2, then the best

degree-n trigonometric polynomial approximation to f is Sn f (x)∑n
k=−n f̂ (k)eikx.

(6) But it was an open question whether ‖Sn f − f‖L2 → 0 as n→∞. In other words, is {ek}k∈Z a complete
orthonormal set for L2([−π,π])?

(7) Since continuous functions are dense is L2[−π,π], it suffices to show that continuous functions can
be uniformly approximated by trigonometric polynomials.

(8) It is no longer the case that Sn f is the best approximation. Fejér’s innovative idea was to consider
averages of Sn f , i.e., Tn f := 1

2n+1 ∑2n
k=0 Sk f (the same trigonometric polynomials that appeared in the

proof!) and show that they do converge to f uniformly.

References and further reading:
(1) B.Sury, Weierstrass’ theorem - leaving no stone unturned, a nice expository article on Weierstrass’ theo-

rem available at http://www.isibang.ac.in/˜sury/hyderstone.pdf.

(2) Rudin, Principles of mathematical analysis or Simmon’s Topology and modern analysis for a proof of
Stone-Weierstrass’ theorem.

(3) Katznelson, Harmonic analysis or many other book on Fourier series for basics of Dirichlet and Fejeér
kernels.
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