4. HAAR MEASURE ON COMPACT GROUPS

A topological group is a group G endowed with a Hausdorff topology such that the map g — g~ ! (from G
to G) and the map (g,h) — gh (from G x G to G) are continuous. Examples are (R,+), S!, U(n) (set of n x n
unitary matrices), SL,(R) (the space of n x n matrices with determinant 1), the group of isometries of R”,
any countable group (with discrete topology) etc.

With topology comes the Borel sigma-algebra (Hausdorff condition implies that singletons are measur-
able sets). A fundamental (in fact the starting point) of measure theory is the existence of Lebesgue measure,
i.e., a (unique) translation-invariant regular measure.

Question: If G is a topological group, does there exist a non-trivial regular Borel measure u on G that is
invariant under left-translations. In symbols, we need a measure u on the Borel sigma algebra such that
u(gA) = u(A) for all g € G and all A € Bs. How unique is it? Such a measure will be called (left) Haar
measure.

Answer: If G is locally compact, there is such a measure and it is unique up to multiplication by positive
constants. The left Haar measure may not be a right Haar measure.

Exercise 1. Assuming the answer stated above, show that when G is compact, any left Haar measure is also
a right Haar measure.

Example 2. When G =S 1 the Lebesgue measure is the Haar measure. When G is countable, counting
measure is the Haar measure. If G = R\ {0} under multiplication, then dx/|x| is the Haar measure (check!).

In some specific cases we can construct Haar measures by hand as in the following exercise.

Exercise 3. Let G = GL,(R) be the group of n x n invertible matrices with real entries. It is an open set in R"
and hence it has positive Lebesgue measure (from R"Z). Let dm(g) denote the restriction of the Lebesgue
measure to GL,(R). Define a new measure u by du(g) = |det(g)| "dm(g). Show that u is a Haar measure
(first understand why m(-) is not!).

But proving that Haar measure exists for a general locally compact topological group is not straight
forward. We shall prove it for compact groups.

Theorem 4 (von Neumann). Let G be a compact group. Then a unique Haar measure exists (it is both left and right
invariant).

Henceforth we assume that G is compact.

Some preliminaries: Measure and integral are closely related. Recall

Result 5 (Riesz’s representation theorem). Let X be a compact Hausdorff space and let L : C(G) — C be a
positive linear functional. Then there exists a unique finite Borel measure u on X such that Lf = [ fdu for
all f € C(G).

The converse statement that if u is a finite Borel measure, then f — [ fdu is a positive linear functional
on C(G) is straightforward, but to be noted.

Thus, instead of constructing a measure, we may construct a positive linear functional on C(G). What
does the invariance of Haar measure correspond to in terms of the corresponding linear functional? The
following exercise answers this question. Let 1,(g) = f(h'g).

Exercise 6. Let G be a compact group. Let the positive linear functional L and the Borel measure u corre-
spond to each other as in Riesz’s representation theorem. The following are equivalent (assume that the
group is compact, for simplicity).
(1) wis aleft-Haar measure on G, i.e., u(gA) = u(A) forall g € G, A € Bg.
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(2) Lisinvariant, i.e., L(t,f) = L(f) for all f € C(G) and for all 4 € G.

In summary, to prove Theorem 4, it suffices to construct a positive linear functional L on C(G) such that
L(w.f) = L(f)-

Remark 7. In class, to isolate the main ideas and see them clearly, we first made the extra assumption that
the topology on G is induced by an invariant metric d, i.e., d(x,y) = d(gx,gy) for all g,x,y € G. In that case,
the steps are as follows.

(1) For any finite A C G, define Ly f = |71\ Y uca f(a). This is the positive linear functional corresponding

to the atomic measure ﬁ Y caa-

(2) Fix € > 0 and show that if A and B are two &-nets having minimal cardinality (i.e., UseaB(a,€) = G
and similarly for B etc.), then there is a bijection 7 : A — B such that d(a,n(a)) <2¢ for all a € A.

(3) Deduce that if A (respectively B) is a minimal cardinality e-net (respectively, 6-net), then |Lsf —
Lpf| < () + @7 () where 0 (e) = sup{|f(x) = f(y)| : d(x,y) < &}.

(4) Deduce that for any choice of minimal cardinality e-nets A, the limit lime_.g L4, f exists and is inde-
pendent of the choice of the e-nets.

(5) Define the limit above as Lf. Show that L is a positive linear functional on C(G) and has the invari-
ance property (left and right). The corresponding measure is a Haar measure.
The key step in the whole proof is the second step where Hall’s marriage theorem is invoked to show the
existence of a bijection with desired properties. In these notes, with this brief outline, we jump directly to
the case of general compact groups (that may not be metrizable). The steps are analogous to the above,
except that e-nets do not make sense, and instead we work with all neighbourhoods of the identity.

4.1. Some preliminaries before the proof of Theorem 4. If V is an open neighbourhood of the identity
e, then let Hy := {gVh:g,h € G}, a collection of open subsets in G. Two elements a,b € G are said to be
adjacent in Hy if there is some X € Hy that contains both a and b and then we write a ~y b. A set A C
G is called a V-blocking set* if AN gVh # 0 for all g,k € G. Given f € C(G), define w;(V) := sup{|f(g) —
f(g")]: g & are adjacent Hy }

Exercise 8. Use compactness of G and continuity of f to show that for any € > 0, there exists V (a neigh-
bourhood of ¢) such that w;(W) <eforany W C V.

For any finite multi-set A = {a,...,a,} (multi-set means that a; may be repeated), define the positive
linear functional Ly : C(G) — Rby Laf := 1Y | f(a;) (this corresponds to the measure 1 Y| §,,).
The key idea is in the following lemma.

Lemma 9. Fix V and let A and B be two blocking sets of Hy having the minimum possible cardinality (among all
blocking sets). Then |Laf — Lgf| < 0¢(V) for all f € C(G).

Proof. We can write A ={ay,...,a,} and B = {by,...,b,}. We claim that there is a bijection ® : A — B such
that a ~ n(a) for each a € A. Once we get such a nt, we easily deduce that
ILaf = Lof| < Y |f(@) = f(r(a))] < of(V).
acA

To produce the permutation &, we invoke Hall’s marriage theorem! Its statement and proof are given in the
next section for completeness.

4General terminology: A hypergraph is a pair (V,E) where V is a set and E is a collection of non-empty subsets of V. Elements of
V are called vertices and elements of E are called hyper-edges.
When each element of E has cardinality 2, the hypergraph is simply called a graph. A blocking set is a subset of V that intersects

every hyper-edge.
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Define a bipartite graph with vertex sets A and B (even if some element is common to both, they are
regarded as distinct in this bipartite graph) by setting a; ~ b; if a; and b; are adjacent in Hy. For a subset
A’ C A, let Ny be the set of all vertices in B adjacent to some vertex in A’. We claim that C := (A\ A") UNy is
a blocking set for Hy .

Indeed, consider any hyper-edge S = gVh. As A and B are blocking sets, there existsa € ANSand b € BNS.
If a € A\ A’, then a € C and hence CNS # 0. Otherwise, a € A’ and b is anyway adjacent to a (since S contains
both a and b). Consequently b € Ny which again shows that CNS # 0. Thus, C is blocking. ]

Proof of Theorem 4. Consider W C V, neighbourhoods of e. Choose any blocking sets A and B for Hy and Hy,
respectively. Then, we claim that |Ls(f) — Lg(f)| < 207(V).

To see this, let C = {ab:a € A,b € B} and observe that C = sup,.4 aB = sup,cz Ab. Clearly, Ab (respectively
aB) is a blocking set (of minimal cardinality) for Hy (respectively Hy) for any b (respectively a). Hence, by
Lemma 9 we deduce that

1

ILaf —Lef] < = Y |Laf — Lanf] < 0p(W),
|B| beB

Laf ~Lefl < o Y Lsf — Lasf] < 0p(V).
|A| acA

Thus, |Laf —Lgf| < @f(W)+07(V) < 2m4(V) as claimed.

By an earlier exercise, give € > 0, there is some V with wy(V) < e. Hence, any pair of numbers in the set
{Laf : Ais ablocking set for Hy for some W C V} are within 2¢ of each other.

The collection of open neighbourhoods of e form a net’. The above considerations show that for any
choice of blocking sets Ay of Hy, the limit Lf :=limy L, f exists and is independent of the choice of blocking
sets. As a limit of positive linear functionals, L is also positive and linear. If Ay is a choice of blocking sets,
so are By := gAyh (fix any g,h € G). But L, f = La, f’ where f'(x) = f(gxh). Thus, Lf = Lf’ showing the
invariance of the functional L. Hence, the corresponding measure is left and right invariant. u

5. MATCHING THEOREM
Theorem 10 (Hall’s marriage theorem). Let G = (V,E) be a finite bipartite graph with parts V; and V, (so V =
ViUWa). For ACV, let N(A) be the set of all vertices adjacent to some vertex of A. Then, the following are equivalent.
(1) IN(A)| > |A| forall A C V).
(2) There exists an injective mapping f : Vi — V; such that f(x) ~ x for all x € V.
In the case when |V|| = |V»|, clearly f must be a bijection (a complete matching).
We shall derive it from the following more general theorem on partially ordered sets (posets). Recall

that a chain is a totally ordered subset of a poset and an anti-chain is a subset of which no two elements are
comparable to each other.

Theorem 11 (Dilworth). Let (P, <) be a finite partially ordered set. Then the following numbers are equal.
(1) The minimal number of chains into which P can be decomposed (i.e., written as a union of).

(2) The maximal size of an anti-chain in P.

You may look up the proof in many books, for example the excellent book A Course in Combinatorics by
van Lint and Wilson.

Exercise 12. Derive Hall’s theorem from Dilworth’s theorem.

5For two neighbourhoods V,W of ¢, say that V < W if V O W (note the reversing). Being a net means that this order is reflexive and
transitive and that given V;,V», there is an upper bound, namely V; NV, (also a neighbourhood of ¢). For a function on the net, for
example, V — h(V), we say that lim/(V) = a if given any € > 0 there is a V such that for all W >V we have |i(W) —a| < €. In the above
proof, we show a Cauchy-like criterion and deduce that a limit exists.
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Proof. 1t is clear that the second number is bounded by the first. We only need to prove the other way
inequality.

The inequality is obvious if |P| = 1. Assume that the theorem it true if || < n.

Now suppose ? = n and the maximal size of an anti-chain in ©? is m. Let C be a maximal (under inclusion)
anti-chain of 2 and let P, = P\ C so that |P| < |P|.If the maximal size of an anti-chain of #, is m;, then by
the inductive hypothesis P can be decomposed into 1 chains. Together with C, this gives a decomposition
of P into m; + 1 chains.

Thus, if m; < m— 1, then we are done. Otherwise, P, has an anti-chain {xj,...,x,}. Let B ={x € P:x >
x; for some i}. Since C is maximal and x; ¢ C for all j, it follows that C  #. In particular, |?| < n and the
size of a maximal anti-chain in ?, is m (as {xi,...,x,} is an anti-chain in %). By induction, write ?, as
a union of m chains Cj,...,C,, such that x; is the maximal element of C]. In exactly the same way, taking
P; = {x € P : x <x; for some i}, we decompose it into m chains C{,...,C,, such that x; is the minimal element
of C/'.

It is clear that C/ UC/ is a chain for each i and their union is > U P3 = . This completes the proof. |
Proof of Hall’s marriage theorem. Let P =V, UV, with the partial order a < b if a € V}, b € V, and b is adjacent
to a. This makes P a poset.

Consider any anti-chain of ¢ and write it in the form A; UA; where A; C V; and A, C V5. By the anti-chain
condition, Ay NN(A;) = 0 and by the given conditions in the theorem, |[N(A{)| > |A:| and hence |4,| < ]
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