
6. FOURIER TRANSFORM - A QUICK INTRODUCTION

We give a short introduction to the basic properties of the Fourier transform6. For f ∈ L1(R) (all our
functions are complex-valued), define its Fourier transform f̂ : R "→ C by f̂ (λ) =

R

R
f (x)e−iλxdx.

(1) f → f̂ is linear. Further,
f̂ (λ) = f̂ (−λ),

f̂τ(λ) = f̂ (λ)e−iλτ if fτ(x) = f (x− τ),

f̂σ(λ) = f̂ (λσ) if fσ(x) =
1
σ

f (x/σ).

All these are easy exercises.

(2) If f ∈ L1 then f̂ is uniformly continuous on R and bounded by ‖ f‖L1 .
Boundedness is obvious. To see continuity, note that

| f̂ (λ)− f̂ (µ)| =
∣∣∣
Z

f (x)[e−iλx− e−iµx]du
∣∣∣

≤
Z

| f (x)|.|ei(λ−µ)x−1|du

≤ 10M|λ−µ|
Z M

−M
| f (u)|+2

Z

|x|>M
| f (x)|dx

since |eit − 1| ≤ 2∧ 10|t| for all t ∈ R (we use the bound 10t for small |t| and the bound 2 for large
|t|). Thus, given ε > 0, first choose M large so that

R
|x|>M | f (x)|dx < ε (possible since f ∈ L1) and

then choose δ = ε
10M‖ f‖L1

. Then for |λ−µ| < δ, the first term above will be bounded by ε too. Thus,

whenever |λ−µ| < δ we have | f̂ (λ)− f̂ (µ)| < 2ε.

(3) Riemann-Lebesgue lemma: If f ∈ L1, then f̂ (λ)→ 0 as |λ|→ ∞.
If f is a step function, f = ∑n

k=1 ck1[ak,bk] for some ck ∈C and a1 < b1 < a2 < b2 < .. . < an < bn, then
by actual integration

f̂ (λ) =
1
iλ

n

∑
k=1

ck(e−iλak − e−iλbk).

Clearly f̂ (λ)→ 0 as |λ| → ∞ (in fact it decays like 1/|λ|). Now if f ∈ L1 is any function, find a step
function g such that ‖ f − g‖L1 < ε. Then, | f̂ (λ)− ĝ(λ)| ≤ ε. Since g is a step function, there exists a
finite M such that |ĝ(λ)| < ε if |λ| > M. Then, for |λ| > M we have | f̂ (λ)|≤ |ĝ(λ)|+ ε < 2ε.

(4) If f ,g ∈ L1, then f ∗ g is also in L1 and ˆ( f ∗g) = f̂ ĝ. Indeed, if we define h : R2 → C by h(x,y) =
f (x− y)g(y)e−iλx, then it is easy to see that ‖h‖L1(R2) = ‖ f‖L1(R)‖g‖L1(R). Hence, by Fubini’s theorem,
we may compute

R

R2
h as an iterated integral in two ways. On the one hand, it is equal to

Z Z
f (x− y)g(y)e−iλxdydx =

Z
( f ∗g)(x)e−iλxdx = ˆ( f ∗g)(λ).

On the other hand it is equal to
Z Z

f (x− y)g(y)e−iλxdxdy =
Z

f̂ (y)g(y)e−iλydy = f̂ (λ)ĝ(λ).

Thus, ˆ( f ∗g) = f̂ ĝ.

6There are many good books. We recommend Katznelson’s An introduction to harmonic analysis, section 1, chapter VII. Feller’s An
introduction to probability theory and its applications, volume-II also has a nice chapter on this subject, except that Fourier transforms are
defined not only for functions but measures.
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(5) Parseval’s relation: If f ,g ∈ L1, then f ĝ and g f̂ are also in L1 and
R

R
f̂ g =

R

R
f ĝ.

Since f ∈ L1 and g is bounded it follows that ĝ f is in L1. Similarly for f̂ g. Next, consider h(x,y) =
f (x)g(y)eixy. This is in L1(R2) (in fact ‖h‖L1(R2) = ‖ f‖L1‖g‖L1 . By Fubini’s theorem, we may get the

double integral by integrating w.r.t. x and then w.r.t y or vice versa. We get
R

f̂ g or
R

f ĝ in the two
cases.

(6) Plancherel’s identity: Suppose f ∈ L1 ∩ L2. Then f̂ ∈ L2 and ‖ f̂‖2
L2 = 2π‖ f‖2

L2 . If we assume a bit
more about f (just assume that f , f̂ are both smooth and decay fast), then the Plancherel identity
follows from Parseval’s relation and Fourier inversion (proved below). The general case follows by
approximation.

Exercise 1. If f ,g ∈ L1, use Parseval’s relation to show that ( f ∗ ĝ)(x) =
R

R
ˆf (λ)g(−λ)eiλxdλ (why is ( f ∗ ĝ)(x)

well-defined?) .

Example 2. If f (x) = 1
2a 1[−a,a](x), then check that f̂ (λ) = sin(λa)

λa .

Example 3. If f (x) = 1
σ
√

2π e−x2/2σ2 , then check that f̂ (λ) = e−σ2λ2/2. [Hint: Use contour integration]

Example 4. If f (x) = e−|x|, then by direct integration, check that f̂ (λ) = 2
1+λ2 .

Example 5. If f (x) = 1
1+x2 , then f̂ (λ) = πe−|λ|. [Hint: Use contour integration]

Fourier inversion: We now show that the Fourier transform is injective. In other words, if f ,g ∈ l1 and
f̂ = ĝ, then f = g. We don’t simply say this abstractly, but give a recipe to recover f from f̂ . Fix f ∈ L1.

Step 1: Let ϕ(x) = 1√
2π e−x2/2 be the standard Gaussian density. Set ϕσ(x) = 1

σ ϕ(x/σ) (also a probability
density). As σ → 0, the probability density concentrates more and more near the origin in the sense that
R

|x|>δ ϕσ(x)dx→ 0 as σ→ 0, for any fixed δ > 0. We claim that f ∗ϕσ
L1
−→ f , as σ→ 0 and leave it as a guided

exercise.

Exercise 6. Show that f ∗ϕσ
L1
−→ f , as σ→ 0 by following these steps.

(1) Let fτ(x) = f (x− τ). Show that fτ
L1
−→ f , as τ→ 0.

(2) Write ( f ∗ϕσ)(x)− f (x) =
R
[ f (x− y)− f (y)]ϕσ(y)dy. Break the integral into |y| ≤ δ and |y| > δ. Use

the first part to control the first integral and the concentration of ϕσ around the origin to control the
second integral. Deduce the claim.

Step 2: Observe that ϕσ = ψ̂σ where ψσ(x) = 1
2π e−σ2x2/2. Use Exercise 1 to write

( f ∗ϕσ)(x) = ( f ∗ ψ̂σ)(x)

=
Z

R

f̂ (λ)ψσ(−λ)eiλxdλ

=
1

2π

Z

R

f̂ (λ)eiλxe−σ2λ2/2dλ.

Conclusion: If we define gσ(x) = 1
2π

R
R f̂ (λ)eiλxe−σ2λ2/2dλ, then by the above steps, gσ

L1
−→ f . On the other

hand, gσ is determined entirely by f̂ . Therefore, we can recover f from f̂ . The Fourier transform is injective.
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Remark 7. Observe that we could also have used a different probability density ϕ to start with and define
ϕσ by scaling. The first step goes through without change. For the second step to go through, we need ϕ to
be the Fourier transform of some function. There are many choices that do this. For example, if ϕ(x) = 1

2 e−|x|

then ψσ(t) = 1
1+σ2t2 .

Under extra assumption, we can write f in terms of f̂ more explicitly.

Corollary 8. Let f ∈ L1 and suppose f̂ ∈ L1. Then f (x) = 1
2π

R

R
f̂ (λ)eiλxdλ for a.e.x.

We wrote for a.e. x, but the point is that the integral
R

R
f̂ (λ)eiλxdλ makes sense for every x and is a contin-

uous function of x. In other words, the assumption that f̂ is integrable ensures that f is almost every equal
to a continuous function which is given by the integral.

Proof. Let F(x) =
R

R
f̂ (λ)eiλxdλ. As we saw, gσ → f in L1 as σ→ 0. But for any x, we claim that gσ(x)→F(x). To

prove the claim, recall that gσ(x) = 1
2π

R
R f̂ (λ)eiλxe−σ2λ2/2dλ. As σ→ 0, the integrand converges to f̂ (λ)eiλx for

each λ. Further, the integrand (as a function of λ) is dominated by | f̂ (λ)| which is assumed to be integrable.
By DCT, it follows that gσ(x)→ F(x) for each x.

Thus gσ converges in L1 to f and pointwise to F . Argue that f = F , a.e. !

We give exaples to show how the Fourier transform can be helpful in some computations.

Example 9. Suppose we want to compute
R ∞
−∞

sin2(x)
x2 dx (the integral clearly exists). We observe that if

f (x) = 1
2 1[−1,1](x), then f̂ (λ) = sinλ

λ . Hence sin2 λ
λ2 is the Fourier transform of ( f ∗ f )(x) = 1

4 (2− |x|)+ (do the
computation!). By the Fourier inversion formula,

1
2π

Z ∞

−∞

sin2(λ)
λ2 eiλxdλ =

1
4
(2−|x|)+.

Put x = 0 to get
R ∞
−∞

sin2(λ)
λ2 dλ = π.

Smoothness and decay:

Proposition 10. Let f ∈ L1.

(1) Assume that f ′ exists and is in L1. Then, f̂ ′(λ) = iλ f̂ (λ). In particular, f̂ (λ) = o(1/|λ|) as λ→±∞.

(2) Assume that g(x) := x f (x) is in L1. Then, f̂ has a continuous derivative and f̂ ′(λ) =−iĝ(λ).

Repeatedly applying the above, we easily get the following corollary. The point is that smoothness of
a function implies fast decay of its Fourier transform. And fast decay of the function implies smoothness
of the Fourier transform. By the Fourier inversion, two other statements are also valid - smoothness of the
Fourier transform implies decay of the function and decay of the Fourier transform implies smoothness of
the function.

Corollary 11. Let f ∈ L1 and let k ≥ 1 be an integer.

(1) If f is k times differentiable and f (k) ∈ L1, then ˆf (k)(λ) = (iλ)k f̂ (λ). In particular, f̂ (λ) = o(|λ|−k) as λ→±∞.

(2) If g(x) := xk f (x) is integrable, then f̂ ∈Ck(R) and f̂ (k)(λ) = ikĝ(λ).

We end our introduction here. One very nice thing that we omitted for lack of time is the Poisson summa-
tion formula, you may read about it in Katznelson’s book.
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7. UNCERTAINTY PRINCIPLES

We have see that if gσ(x) = 1
σ g

( x
σ
)
, then ĝσ(λ) = ĝ(λσ) for any g ∈ L1(R) and σ > 0. In other words, if g is

more concentrated (by making σ small), then ĝ becomes more spread out.
Uncertainty principles are statements to the effect that a function and its Fourier transform cannot both

be concentrated (i.e., put most of its mass in a small interval). These statements are about all functions,
instead of staying within a class of dilates as in the previous paragraph. We just emntion two.

Heisenberg’s uncertainty principle: Suppose f ∈ L1 ∩L2. Then we know that f̂ ∈ L2 too and that ‖ f̂‖2
L2 =

2π‖ f‖2
L2 .

If ‖ f‖L2 = 1, then | f |2 is a probability density on the line. Its mean and variance are given by

M f =
Z

R

x| f (x)|2dx,

Vf =
Z

R
(x−M f )2| f (x)|2dx.

By the Plancherel identity, | 1√
2π f̂ |2 is also a probability density. Let M f̂ and Vf̂ denote its mean and variance

(slight abuse of notation, we should write M f̂ /
√

2π and Vf̂ /
√

2π but that is painful to write and read).

Theorem 12. Let f ∈ L1∩L2. Then, VfVf̂ ≥ 1.

We presented the proof in class but I don’t want to type it here. See the link http://www.ias.ac.in/
resonance/Volumes/04/02/0020-0023.pdf for a short exposition of the subject by Alladi Sitaram.

Hardy’s theorem: Even before Heisenberg’s uncertainty principle, Hardy had proved the following theo-
rem.

Theorem 13. Let f : R→ C be such that | f (x)| ≤Ce−ax2/2 for a.e. x for some constants C,a. Then f̂ is well-defined
and assume that | f̂ (λ)| ≤Ce−bλ2/2 for λ ∈ R.

(1) If ab > 1, then f = 0 a.s.

(2) If ab = 1, then f (x) = ceax2/2 for some constant c (the exponent a is the same as above).

We sketched the proof in class. See Sundaram Thangavelu’s book, An introduction to the uncertainty
principle, page 18, for a full proof of the theorem. It depends on the Phragmen-Lindelöf theorem, a version of
the maximum modulus principle for holomorphic functions on some unbounded domains. We shall speak
about this class of theorems in the next section. To the best of my knowledge, there is no proof of Hardy’s
theorem that avoids complex analysis. A purely real analysis proof of a somewhat weaker statement was
given by Terence Tao in http://terrytao.wordpress.com/2009/02/18/hardys-uncertainty-principle/.
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