8. PHRAGMEN-LINDELOF THEOREMS

The maximum modulus principle states that a holomorphic function f on a bounded domain attains
its maximum on the boundary. This is not true for unbounded domains. For example, on the upper half-
plane, e is holomorphic, and on the boundary of the half-plane (i.e., on the real line) it is bounded by 1.

However e~ ™’ = ¢ and thus it grows rapidly on the imaginary axis. In particular, it is not bound by 1 in
the half-plane.

Phragmen-Lindel6f theorems are theorems that prove a maximum modulus theorem on certain un-
bounded domains (eg., sectors) under an extra assumption on the growth of the function inside the domain.

We state one sample”.

Theorem 1 (Phragmen-Lindel6f for the half-plane). Let f be continuous on H and holomorphic in H. Let M(r) =
max{|f(z)| :z € H, |z| = r}. If | f(x)| < 1 for all x € Rand L1ogM(r) — 0 as r — oo, then |f(z)| < 1 for all z € H.

As a corollary, we can get a version of this for any sector in Corollary 2below. It is in that form that the

theorem is stated in Thangavelu’s book® and used to prove Hardy’s theorem. The proof given there is short
and succinct, but we shall take a more long-winded (and leave some loose ends!) but hope that it is more
conceptual and gives some insight into the phenomenon.

Corollary 2. [Phragmen-Lindeldf for a sector] Let o> 1 and let Qo = {z = re® :

C is continuous, holomorphic in Qq. Assume that | f(z)| <1 for z € 0Qq (i.e., argz = £1/20) and that | f(z)| < Ccel®
for some B < ovand C < eo. Then, |f(z)| < 1 forall z € Q.

— 96 <0< 55} Suppose f: Qo —

Proof of the corollary. Let H, = {z: Re(z) > 0} be the right-half plane. Clearly, we can define z + z'/* holo-
morphically on H. It extends continuously to the boundary of H, and maps H.. (or its closure) to Q4 (or

its closure) in a bijective manner. Let g(z) = f(z!/*), so that it is defined on H . Then |g(iy)| < 1 for y € R

and |g(z)| < Ce"* Thus, LlogM,(r) < L(log|C|+ /@) — 0 as r — oo since P < a. This shows that g satisfies
the conditions of the theorem (replace the upper half-plane by the right half-plane) and hence, |g(z)| < 1 for
all ze H,. Thus |f| <1 on Qq. [ |

Instead of jumping directly to the proof of the theorem, we explain the problem in general and take a
short digression. We work with harmonic (and sub-harmonic) functions.

The general problem: Let Q be a bounded region with piecewise smooth boundary. Let A C dQ and let

B =0dQ\ A (assume that A is nice, like an arc on the boundary). Let u € C(Q) be harmonic (or sub-harmonic)
in Q and assume that we have the bounds u(z) <M if z € A and u(z) < M, if z € B. What can we say about
u(z) for z € Q.

Suppose M| < M,. The maximum principle says that u < M, in Q. But if M; is much smaller than M, and
zis close to A (and far from B), we may expect to get a much better bound for u(z) (the bound ought to be
close to M).

Example 3. Let Q =D and let A = {¢ : 6 € [0,a]}. Then, by the Poisson-integral formula

21
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"The presentation here follows Ahfors’ beautiful book Conformal invariants, except that I avoid the use of the word Harmonic measure
which most students had not seen before.
8Sundaram Thangavelu, An introduction to the uncertainty principle, pages 18-22.
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Recall that P(z,0)d6/2m is a probability measure on the unit circle. It is mostly concentrated in the part of
the circle close to z. Thus, if z is close to the interior of the arc A, then the above bound is M, (1 — §) + M, 38 for
a small . This is naturally better than the trivial bound M.

How do we solve the problem for a general region Q when we do not know the Poisson kernel? Here is
the idea.

(1) Suppose we can find a harmonic function &, 5 : Q — R that is harmonic in Q, equal to 0 on A, equal
to 1 on B. We shall also require that /4 g is continuous on Q\ A (in the example above, dA consists
of the two end points of the arc A).

(2) Let v(z) = M + (M — M1)ha p(z). Then, v is harmonic in , continuous on Q \ dA and v(z) > u(z) for
all z € 9Q\ 9A. Appeal to the generalized maximum principle’ and conclude that u(z) < v(z) for all
7€ Q.

(8) To put everything together, if only we manage to find the function 74 g, then we get the bound
u(z) <M+ (My—Mi)hap(z) forallz € Q.

We work out two cases. But before that a remark relating this to holomorphic functions.

Remark 4. If f is holomorphic on Q, then log|f] is a sub-harmonic function (if f has no zeros in Q, then it
would be harmonic). It is a fact'? that the generalized maximum principle holds for sub-harmonic function
(caution: the minimum principle is false!). In particular, if u is sub-harmonic and 4 is harmonic and u < &
on dQ (with a finite number of exceptions), then u < h on Q. In particular, all the above considerations hold
even if u is sub-harmonic, in particular of u = log|f|. Thus, for all z € Q,

log|f(z)| <My + (M2 — M1 )ha p(2).

An annulus: Let Q = {z:R| < |z] <R} and let A = R|S' (thus B = R,S!). In this case, it is easy to see that
log |z| is a harmonic function in @, continuous to the boundary and equal to logR; (respectively logR) on
the inner circle (respectively, the outer circle). Thus,

has(2) = log|z| —logR;
4.8 logR; —logR; "
Suppose |z| = s, and write logs = allogR; + (1 — ) log R, with o = %. Then, the bound we have is

logs —logR
u(z) <M +(M2—Ml)ﬁ

=oM; + (1 — OC)Mz.
When applied to holomorphic functions, we get
Theorem 5 (Hadamard'’s three circle theorem). Let f be holomorphic on an annulus Q = {z: R| < |z| < Ry} and
let M(r) = ‘ |ax |f(2)]. Then, logM(r) is a convex function of logr.
z|l=r
Proof. For any 51 < s < s with logs = alogs; + (1 — o) logs,, we have the bound
log|f(z)| < alogM(s1) + (1 — )M (s2)

for any z with |z] = 5. Take maximum over z to get the conclusion. |

9Suppose Q is a bounded region and % : Q — R is harmonic in Q and lim sup,_¢ h(z) <0 forall { € 0Q\ F where F is a finite subset
of 9Q. Then i(z) <M forallz € Q.

105ee Rudin’s Real and complex analysis, for example.
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A semi-disk: Let Q = {z: |z <R and Imz >0} and let A = (—R,R) and B = {Re® : 0 < 6 < n}. What is i p in
this case?

For z in the upper half-plane, consider the angle subtended by [—R,R]| at z (i.e., the angle at z in the
triangle with vertices —R,z,R. For z € B, this angle is 7/2 while for z € A (think of z approaching A from
above) this angle is 7. We may rescale this function to get /14 5(z) = 2 (arg(z + R) — arg(z — R) + ) where arg
is a branch of the argument defined on C\ (—e»,0] and taking values in (—=,®). As argument is a harmonic
function (locally it is the imaginary part of logz), we see that /14  is harmonic.

Thus, if f is holomorphic on Q and M(r) = max{|f(z)| : |z| = r, Imz > 0}, and m = max{|f(x)| : —R<x <R},
then we have the bound

log|f(z)| <logm+ (logM(r) —logm)ha p(2).

Now we are ready to prove the Phragmen-Lindel6f theorem on the half-plane.
Proof. For any R > 0, from the previous bound (since m = 1), we get
log|f(2)| < hr(z)logM(R)
where we write /i to denote the explicit dependence on R.

Observe that if z is fixed and R — oo, then arg(z+R) = O(%). Therefore, hz(z) = O(1/R). By the assumption
that logM(r) — 0 as r — o, we see that log|f(z)| < 0 or equivalently, |f(z)| < 1 forall z € H. ]
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