
8. PHRAGMEN-LINDELÖF THEOREMS

The maximum modulus principle states that a holomorphic function f on a bounded domain attains
its maximum on the boundary. This is not true for unbounded domains. For example, on the upper half-

plane, e−z2 is holomorphic, and on the boundary of the half-plane (i.e., on the real line) it is bounded by 1.

However e−(iy)2 = ey2 and thus it grows rapidly on the imaginary axis. In particular, it is not bound by 1 in
the half-plane.

Phragmen-Lindelöf theorems are theorems that prove a maximum modulus theorem on certain un-
bounded domains (eg., sectors) under an extra assumption on the growth of the function inside the domain.
We state one sample7.

Theorem 1 (Phragmen-Lindelöf for the half-plane). Let f be continuous on H and holomorphic in H. Let M(r) =
max{| f (z)| : z ∈H, |z| = r}. If | f (x)|≤ 1 for all x ∈ R and 1

r logM(r)→ 0 as r→ ∞, then | f (z)|≤ 1 for all z ∈H.

As a corollary, we can get a version of this for any sector in Corollary 2below. It is in that form that the
theorem is stated in Thangavelu’s book8 and used to prove Hardy’s theorem. The proof given there is short
and succinct, but we shall take a more long-winded (and leave some loose ends!) but hope that it is more
conceptual and gives some insight into the phenomenon.

Corollary 2. [Phragmen-Lindelöf for a sector] Let α > 1
2 and let Ωα = {z = reiθ : − π

2α < θ < π
2α}. Suppose f : Ωα→

C is continuous, holomorphic in Ωα. Assume that | f (z)|≤ 1 for z ∈ ∂Ωα (i.e., argz =±π/2α) and that | f (z)|≤Ce|z|
β

for some β < α and C < ∞. Then, | f (z)|≤ 1 for all z ∈Ωα.

Proof of the corollary. Let H+ = {z : Re(z) > 0} be the right-half plane. Clearly, we can define z %→ z1/α holo-
morphically on H+. It extends continuously to the boundary of H+, and maps H+ (or its closure) to Ωα (or
its closure) in a bijective manner. Let g(z) = f (z1/α), so that it is defined on H+. Then |g(iy)| ≤ 1 for y ∈ R
and |g(z)|≤Ce|z|

β/α . Thus, 1
r logMg(r)≤ 1

r (log |C|+ rβ/α)→ 0 as r→ ∞ since β < α. This shows that g satisfies
the conditions of the theorem (replace the upper half-plane by the right half-plane) and hence, |g(z)|≤ 1 for
all z ∈H+. Thus | f |≤ 1 on Ωα. !

Instead of jumping directly to the proof of the theorem, we explain the problem in general and take a
short digression. We work with harmonic (and sub-harmonic) functions.

The general problem: Let Ω be a bounded region with piecewise smooth boundary. Let A ⊂ ∂Ω and let
B = ∂Ω\A (assume that A is nice, like an arc on the boundary). Let u ∈C(Ω) be harmonic (or sub-harmonic)
in Ω and assume that we have the bounds u(z)≤M1 if z ∈ A and u(z)≤M2 if z ∈ B. What can we say about
u(z) for z ∈Ω.

Suppose M1 ≤M2. The maximum principle says that u≤M2 in Ω. But if M1 is much smaller than M2 and
z is close to A (and far from B), we may expect to get a much better bound for u(z) (the bound ought to be
close to M1).

Example 3. Let Ω = D and let A = {eiθ : θ ∈ [0,a]}. Then, by the Poisson-integral formula

u(z) =
aZ

0

u(eiθ)P(z,θ)
dθ
2π

+
2πZ

a

u(eiθ)P(z,θ)
dθ
2π

≤M1




aZ

0

P(z,θ)
dθ
2π



+M2




2πZ

a

P(z,θ)
dθ
2π



 .

7The presentation here follows Ahfors’ beautiful book Conformal invariants, except that I avoid the use of the word Harmonic measure
which most students had not seen before.

8Sundaram Thangavelu, An introduction to the uncertainty principle, pages 18–22.
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Recall that P(z,θ)dθ/2π is a probability measure on the unit circle. It is mostly concentrated in the part of
the circle close to z. Thus, if z is close to the interior of the arc A, then the above bound is M1(1−δ)+M2δ for
a small δ. This is naturally better than the trivial bound M2.

How do we solve the problem for a general region Ω when we do not know the Poisson kernel? Here is
the idea.

(1) Suppose we can find a harmonic function hA,B : Ω→ R that is harmonic in Ω, equal to 0 on A, equal
to 1 on B. We shall also require that hA,B is continuous on Ω\∂A (in the example above, ∂A consists
of the two end points of the arc A).

(2) Let v(z) = M1 +(M2−M1)hA,B(z). Then, v is harmonic in Ω, continuous on Ω\∂A and v(z)≥ u(z) for
all z ∈ ∂Ω\ ∂A. Appeal to the generalized maximum principle9 and conclude that u(z) ≤ v(z) for all
z ∈Ω.

(3) To put everything together, if only we manage to find the function hA,B, then we get the bound
u(z)≤M1 +(M2−M1)hA,B(z) for all z ∈Ω.

We work out two cases. But before that a remark relating this to holomorphic functions.

Remark 4. If f is holomorphic on Ω, then log | f | is a sub-harmonic function (if f has no zeros in Ω, then it
would be harmonic). It is a fact10 that the generalized maximum principle holds for sub-harmonic function
(caution: the minimum principle is false!). In particular, if u is sub-harmonic and h is harmonic and u ≤ h
on ∂Ω (with a finite number of exceptions), then u≤ h on Ω. In particular, all the above considerations hold
even if u is sub-harmonic, in particular of u = log | f |. Thus, for all z ∈Ω,

log | f (z)| ≤M1 +(M2−M1)hA,B(z).

An annulus: Let Ω = {z : R1 < |z| < R2} and let A = R1S1 (thus B = R2S1). In this case, it is easy to see that
log |z| is a harmonic function in Ω, continuous to the boundary and equal to logR1 (respectively logR2) on
the inner circle (respectively, the outer circle). Thus,

hA,B(z) =
log |z|− logR1

logR2− logR1
.

Suppose |z| = s, and write logs = α logR1 +(1−α) logR2 with α = logR2−logs
logR2−logR1

. Then, the bound we have is

u(z)≤M1 +(M2−M1)
logs− logR1

logR2− logR1

= αM1 +(1−α)M2.

When applied to holomorphic functions, we get

Theorem 5 (Hadamard’s three circle theorem). Let f be holomorphic on an annulus Ω = {z : R1 < |z| < R2} and
let M(r) = max

|z|=r
| f (z)|. Then, logM(r) is a convex function of logr.

Proof. For any s1 < s < s2 with logs = α logs1 +(1−α) logs2, we have the bound

log | f (z)| ≤ α logM(s1)+(1−α)M(s2)

for any z with |z| = s. Take maximum over z to get the conclusion. !

9Suppose Ω is a bounded region and h : Ω→ R is harmonic in Ω and limsupz→ζ h(z)≤ 0 for all ζ ∈ ∂Ω\F where F is a finite subset
of ∂Ω. Then h(z)≤M for all z ∈Ω.

10See Rudin’s Real and complex analysis, for example.
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A semi-disk: Let Ω = {z : |z| < R and Imz > 0} and let A = (−R,R) and B = {Reiθ : 0 < θ < π}. What is hA,B in
this case?

For z in the upper half-plane, consider the angle subtended by [−R,R] at z (i.e., the angle at z in the
triangle with vertices −R,z,R. For z ∈ B, this angle is π/2 while for z ∈ A (think of z approaching A from
above) this angle is π. We may rescale this function to get hA,B(z) = 2

π (arg(z + R)− arg(z−R)+ π) where arg
is a branch of the argument defined on C\ (−∞,0] and taking values in (−π,π). As argument is a harmonic
function (locally it is the imaginary part of logz), we see that hA,B is harmonic.

Thus, if f is holomorphic on Ω and M(r) = max{| f (z)| : |z|= r, Imz≥ 0}, and m = max{| f (x)| : −R≤ x≤ R},
then we have the bound

log | f (z)| ≤ logm+(logM(r)− logm)hA,B(z).

Now we are ready to prove the Phragmen-Lindelöf theorem on the half-plane.

Proof. For any R > 0, from the previous bound (since m = 1), we get

log | f (z)| ≤ hR(z) logM(R)

where we write hR to denote the explicit dependence on R.
Observe that if z is fixed and R→∞, then arg(z±R) = O( 1

R ). Therefore, hR(z) = O(1/R). By the assumption
that 1

r logM(r)→ 0 as r→ ∞, we see that log | f (z)| ≤ 0 or equivalently, | f (z)| ≤ 1 for all z ∈H. !
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