

11. THE PRINCIPAL CHARACTERS IN NEVANLINNA THEORY

Let f be a meromorphic function on the whole plane. We define several quantities associated to it.

Counting function: Let $n_f(r)$ be the number of poles of f in $r\bar{\mathbb{D}}$. Set $N_f(r) = n_f(0) \log r + \int_0^r \frac{n_f(t) - n_f(0)}{t} dt$. If 0 is not a pole of f , then we can simply write $N_f(r) = \int_0^r \frac{n_f(t)}{t} dt$. In either case, it is a quantity we have seen before. Suppose b_1, \dots, b_n are the poles of f in $r\bar{\mathbb{D}}$, repeated with multiplicities. Check that $N_f(r) = \sum_{j=1}^n \log \frac{r}{|b_j|}$, the quantity that appeared in Jensen's formula.

Proximity function: Let $m_f(r) = \int_0^{2\pi} \log_+ |f(re^{i\theta})| \frac{d\theta}{2\pi}$. Here $\log_+ t = \log(t \vee 1) = (\log t) \vee 0$. In some sense, m_f measures how big f is (i.e, how close to ∞) on the circle $r\mathbb{T}$, on average. The positive part of log ensures that we suppress cancellation coming from positive and negative parts of the logarithm.

Nevanlinna characteristic function: Let $T_f(r) = m_f(r) + N_f(r)$. Note that both terms are non-negative, and so is T_f .

For other values: N_f counts the poles of f and m_f measures how close f is to infinity on $r\mathbb{T}$ (on average). Now we want to define similar quantities for any $a \in \mathbb{C}$, instead of $a = \infty$. To this end, define

$$n_f(r, a) = n_{\frac{1}{f-a}}(r), \quad N_f(r, a) = N_{\frac{1}{f-a}}(r), \quad m_f(r, a) = m_{\frac{1}{f-a}}(r) \quad \text{and} \quad T_f(r, a) = T_{\frac{1}{f-a}}(r).$$

For example, $n_f(r, a)$ is the number of zeros of $f - a$ in $r\bar{\mathbb{D}}$, thus counting how many times the value a is attained. And $m_f(r, a) = \int_0^{2\pi} \log_+ \frac{1}{|f(re^{i\theta}) - a|} \frac{d\theta}{2\pi}$ which measures proximity to a (on average on $r\mathbb{T}$).

Example 1. $f(z) = a_n z^n + \dots + a_0$, a polynomial of degree n . Then, for large enough r we have $n_f(r) = n$. Therefore, $N_f(r) \sim n \log r$ as $r \rightarrow \infty$. Further, $f(z) \sim a_n z^n$, as $z \rightarrow \infty$. Hence, $m_f(r) \sim n \log r$, for $r \rightarrow \infty$. Then of course, $T_f(r) \sim 2n \log r$.

Example 2. $f(z) = e^z$. Then, $n_f(r) = 0$ for all r (hence $N_f(r) = 0$ too), while $m_f(r) = \int_0^{2\pi} (r \cos \theta)_+ \frac{d\theta}{2\pi} = \frac{r}{\pi}$. Thus, $T_f(r) = \frac{r}{\pi}$, with all the contribution coming from $m_f(r)$.

Now let $a \in \mathbb{C}$. If $a = 0$, we again get $T_f(r, 0) = m_f(r) = \frac{r}{\pi}$ and $N_f(r, 0) = 0$. If $a \neq 0$, the situation changes completely. The solutions to $e^z = a$ are all of the form $z_0 + 2\pi i n$, $n \in \mathbb{Z}$, for a specific z_0 . Therefore, in $r\bar{\mathbb{D}}$, there are approximately $\frac{r}{\pi}$ solutions (for large r). Thus $n_f(r, a) \sim \frac{r}{\pi}$ and then $N_f(r, a) \sim \frac{r}{\pi}$. But $m_f(r, a) = \int_0^{2\pi} \log_- |f(re^{i\theta}) - a| \frac{d\theta}{2\pi}$. We claim that $m_f(r, a) = O(1)$ as $r \rightarrow \infty$. Thus, $T_f(r, a) \sim \frac{r}{\pi}$ for $a \neq 0, \infty$ also, except that the entire contribution comes from $N_f(r, a)$ and almost nothing from $m_f(r)$!

Exercise 3. Do the same analysis for $f(x) = ze^x$.

Overview of what is to come in Nevanlinna theory: Let us keep as our goal Picard's theorem, which asserts that an entire function can miss at most one value in the complex plane. More generally, a meromorphic function misses at most two points in $\mathbb{C} \cup \{\infty\}$.

In Nevanlinna theory, a more elaborate study is made, not just whether a value is taken, but also how often (the counting function N_f measures this). For example, $z \mapsto e^z$ misses exactly two values, 0 and ∞ . Two points may be noted about Nevanlinna's characteristic, counting and proximity functions.

- (1) $T_f(r, a)$ is about the same, for all a (when r is large).
- (2) Except for $a = 0, \infty$, in all other cases, the dominant contribution to $T_f(r, a)$ comes from $N_f(r, a)$.

This is illustrative of the general situation. Nevanlinna showed the following theorems (caution: the statements are given inaccurately now!) for a general non-constant meromorphic function.

- (1) *First fundamental theorem of Nevanlinna theory:* For any $a \in \mathbb{C}$, we have that $T_f(r, a) - T_f(r) = O(1)$ as $r \rightarrow \infty$. Further $T_f(r) \rightarrow \infty$ as $r \rightarrow \infty$.
- (2) *Second fundamental theorem of Nevanlinna theory:* For any distinct a_1, \dots, a_q , we have

$$m_f(r) + \sum_{j=1}^q m_f(r, a_j) \leq 2T_f(r) + \text{lower order terms.}$$

The second theorem implies that there are atmost two values of a for which $m_f(r, a) = T_f(r, a)$. Picard's theorem follows!

Some exercises: We shall actually make use of the following exercises.

First, about the function \log_+ which will appear often. The following estimates which will come in handy.

Exercise 4. For any $t, s > 0$, show that $\log_+(ts) \leq \log_+ t + \log_+ s$ and $\log_+(t+s) \leq \log_+ t + \log_+ s + \log 2$.

Secondly, about Nevanlinna's characteristic function.

Exercise 5. Let f be a non-constant meromorphic function.

- (1) If $f = \frac{P}{Q}$ where P, Q are polynomials without common zeros and $d = \max\{\deg(P), \deg(Q)\}$, then $T_f(r) \sim d \log r$.
- (2) If f is not a rational function, then $\frac{T_f(r)}{\log r} \rightarrow \infty$ as $r \rightarrow \infty$.

12. FIRST FUNDAMENTAL THEOREM

Theorem 6 (First fundamental theorem of Nevanlinna theory). *Let f be a non-constant meromorphic function on \mathbb{C} . Then, for any $a \in \mathbb{C}$, we have $T_f(r, a) = T_f(r) + O(1)$ as $r \rightarrow \infty$.*

The implied constants in $O(1)$ depend on f and a .

Proof. The idea is to simply rewrite Jensen's formula in terms of the functions introduced in the previous section. Thus, (assuming $f(0) \neq 0, \infty$),

$$\begin{aligned} \log|f(0)| &= \int_0^{2\pi} \log_+ |f(re^{i\theta})| \frac{d\theta}{2\pi} + \sum_{j=1}^n \log \frac{r}{|b_j|} - \int_0^{2\pi} \log_+ \frac{1}{|f(re^{i\theta})|} \frac{d\theta}{2\pi} - \sum_{i=1}^m \log \frac{r}{|a_i|} \\ &= m_f(r) + N_f(r) - m_{1/f}(r) - N_{1/f}(r) \\ &= T_f(r) - T_{1/f}(r) \\ &= T_f(r) - T_f(r, 0). \end{aligned}$$

Thus we see that $T_f(r, 0) = T_f(r) + O(1)$ as $r \rightarrow \infty$. We leave it to you to check that the last conclusion remains valid even if $f(0) = 0$ or $f(0) = \infty$ (see Exercise 7).

If $g(z) = f(z) - a$, then g has the same poles as f , while the zeros of g correspond to the poles of $1/(f - a)$. Therefore, $N_f(r) = N_g(r)$ and $N_f(r, a) = N_g(r, 0)$. Further, $|\log_+ |f(z)| - \log_+ |g(z)|| \leq \log 2 + \log_+ |a|$. Thus, $|m_f(r) - m_g(r)| \leq \log 2 + \log_+ |a|$ while $m_f(r, a) = m_g(r, 0)$. Thus, $|T_f(r) - T_g(r)| = O(1)$ as $r \rightarrow \infty$.

From the already proved case, $T_g(r, 0) - T_g(r) = O(1)$ as $r \rightarrow \infty$. But clearly, $T_g(r) = T_f(r, a)$. Putting everything together, we see that $T_f(r, a) - T_f(r) = O(1)$ as $r \rightarrow \infty$. ■

At this point I stopped typing as I have nothing to add to the excellent references easily available.

- (1) Hayman's book *Meromorphic functions* (chapters 1 and 2), has everything I said in class (and more).

- (2) Notes on the subject by Langley may be found at <https://www.maths.nottingham.ac.uk/personal/jkl/pg1.pdf>. This gives the same proof as we did in class (due to Nevanlinna himself), via the lemma on the logarithmic derivative.
- (3) Notes on the subject by Eremenko are available at <http://www.math.psu.edu/~eremenko/dvi/weizmann.pdf>. He gives a different proof due to Ahlfors, but also a short sketch of Nevanlinna's proof.