
11. THE PRINCIPAL CHARACTERS IN NEVANLINNA THEORY

Let f be a meromorphic function on the whole plane. We define several quantities associated to it.

Counting function: Let n f (r) be the number of poles of f in rD. Set Nf (r) = n f (0) logr+
R r

0
n f (t)−n f (0)

t dt. If 0 is

not a pole of f , then we can simply write Nf (r) =
R r

0
n f (t)

t dt. In either case, it is a quantity we have seen before.
Suppose b1, . . . ,bn are the poles of f in rD, repeated with multiplicities. Check that Nf (r) = ∑n

j=1 log r
|b j | , the

quantity that appeared in Jensen’s formula.

Proximity function: Let m f (r) =
2πR

0
log+ | f (reiθ)| dθ

2π . Here log+ t = log(t ∨ 1) = (log t)∨ 0. In some sense, m f

measures how big f is (i.e, how close to ∞) on the circle rT, on average. The positive part of log ensures that
we suppress cancellation coming from positive and negative parts of the logarithm.

Nevanlinna characteristic function: Let Tf (r) = m f (r)+Nf (r). Note that both terms are non-negative, and
so it Tf .

For other values: Nf counts the poles of f and m f measures how close f is to infinity on rT (on average).
Now we want to define similar quantities for any a ∈ C, instead of a = ∞. To this end, define

n f (r,a) = n 1
f−a

(r), Nf (r,a) = N 1
f−a

(r), m f (r,a) = m 1
f−a

(r) and Tf (r,a) = T 1
f−a

(r).

For example, n f (r,a) is the number of zeros of f − a in rD, thus counting how many times the value a is

attained. And m f (r,a) =
2πR

0
log+

1
| f (reiθ)−a|

dθ
2π which measures proximity to a (on average on rT).

Example 1. f (z) = anzn + . . . + a0, a polynomial of degree n. Then, for large enough r we have n f (r) = n.
Therefore, Nf (r) ∼ n logr as r → ∞. Further, f (z) ∼ anzn, as z→ ∞. Hence, m f (r) ∼ n logr, for r → ∞. Then of
course, Tf (r)∼ 2n logr.

Example 2. f (z) = ez. Then, n f (r) = 0 for all r (hence Nf (r) = 0 too), while m f (r) =
2πR

0
(r cosθ)+ dθ

2π = r
π . Thus,

Tf (r) = r
π , with all the contribution coming from m f (r).

Now let a ∈ C. If a = 0, we again get Tf (r,0) = m f (r) = r
π and Nf (r,0) = 0. If a &= 0, the situation changes

completely. The solutions to ez = a are all of the form z0 + 2πin, n ∈ Z, for a specific z0. Therefore, in rD,
there are approximately r

π solutions (for large r). Thus n f (r,a) ∼ r
π and then Nf (r,a) ∼ r

π . But m f (r,a) =
R 2π

0 log− | f (reiθ)−a| dθ
2π . We claim that m f (r,a) = O(1) as r→∞. Thus, Tf (r,a)∼ r

π for a &= 0,∞ also, except that
the entire contribution comes from Nf (r,a) and almost nothing from m f (r)!

Exercise 3. Do the same analysis for f (x) = zez.

Overview of what is to come in Nevanlinna theory: Let us keep as our goal Picard’s theorem, which asserts
that an entire function can miss at most one value in the complex plane. More generally, a meromorphic
function misses at most two points in C∪{∞}.

In Nevanlinna theory, a more elaborate study is made, not just whether a value is taken, but also how
often (the counting function Nf measures this). For example, z (→ ez misses exactly two values, 0 and ∞. Two
points may be noted about Nevanlinna’s characteristic, counting and proximity functions.

(1) Tf (r,a) is about the same, for all a (when r is large).

(2) Except for a = 0,∞, in all other cases, the dominant contribution to Tf (r,a) comes from Nf (r,a).
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This is illustrative of the general situation. Nevanlinna showed the following theorems (caution: the state-
ments are given inaccurately now!) for a general non-constant meromorphic function.

(1) First fundamental theorem of Nevanlinna theory: For any a ∈ C, we have that Tf (r,a)−Tf (r) = O(1) as
r→ ∞. Further Tf (r)→ ∞ as r→ ∞.

(2) Second fundamental theorem of Nevanlinna theory: For any distinct a1, . . . ,aq, we have

m f (r)+
q

∑
j=1

m f (r,a j)≤ 2Tf (r)+ lower order terms.

The second theorem implies that there are atmost two values of a for which m f (r,a) = Tf (r,a). Picard’s
theorem follows!

Some exercises: We shall actually make use of the following exercises.
First, about the function log+ which will appear often. The following estimates which will come in handy.

Exercise 4. For any t,s > 0, show that log+(ts)≤ log+ t + log+ s and log+(t + s)≤ log+ t + log+ s+ log2.

Secondly, about Nevanlinna’s characteristic function.

Exercise 5. Let f be a non-constant meromorphic function.

(1) If f = P
Q where P,Q are polynomials without common zeros and d = max{degree(P),degree(Q)},

then Tf (r)∼ d logr.

(2) If f is not a rational function, then Tf (r)
logr → ∞ as r→ ∞.

12. FIRST FUNDAMENTAL THEOREM

Theorem 6 (First fundamental theorem of Nevanlinna theory). Let f be a non-constant meromorphic function
on C. Then, for any a ∈ C, we have Tf (r,a) = Tf (r)+O(1) as r→ ∞.

The implied constants in O(1) depend on f and a.

Proof. The idea is to simply rewrite Jensen’s formula in terms of the functions introduced in the previous
section. Thus, (assuming f (0) &= 0,∞),

log | f (0)| =
Z 2π

0
log+ | f (reiθ)|dθ

2π
+

n

∑
j=1

log
r

|b j|
−

Z 2π

0
log+

1
| f (reiθ)|

dθ
2π
−

m

∑
i=1

log
r

|ai|

= m f (r)+Nf (r)−m1/ f (r)−N1/ f (r)

= Tf (r)−T1/ f (r)

= Tf (r)−Tf (r,0).

Thus we see that Tf (r,0) = Tf (r)+O(1) as r→∞. We leave it to you to check that the last conclusion remains
valid even if f (0) = 0 or f (0) = ∞ (see Exercise 7).

If g(z) = f (z)−a, then g has the same poles as f , while the zeros of g correspond to the poles of 1/( f −a).
Therefore, Nf (r) = Ng(r) and Nf (r,a) = Ng(r,0). Further, | log+ | f (z)| − log+ |g(z)|| ≤ log2 + log+ |a|. Thus,
|m f (r)−mg(r)| ≤ log2+ log+ |a| while m f (r,a) = mg(r,0). Thus, |Tf (r)−Tg(r)| = O(1) as r→ ∞.

From the already proved case, Tg(r,0)−Tg(r) = O(1) as r→ ∞. But clearly, Tg(r) = Tf (r,a). Putting every-
thing together, we see that Tf (r,a)−Tf (r) = O(1) as r→ ∞. !

At this point I stopped typing as I have nothing to add to the excellent references easily available.

(1) Hayman’s book Meromorphic functions (chapters 1 and 2), has everything I said in class (and more).
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(2) Notes on the subject by Langley may be found at https://www.maths.nottingham.ac.uk/personal/
jkl/pg1.pdf. This gives the same proof as we did in class (due to Nevanlinna himself), via the
lemma on the logarithmic derivative.

(3) Notes on the subject by Eremenko are available at http://www.math.purdue.edu/˜eremenko/dvi/
weizmann.pdf. He gives a different proof due to Ahlfors, but also a short sketch of Nevanlinna’s
proof.
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