

MIDTERM 1, TOPICS IN ANALYSIS

DATE: 25/SEP/2014

- (1) **Solve any three problems. If you answer more, only the best three will be considered.**
- (2) **The duration of the test is two hours.**
- (3) **Each problem carries 10 marks.**
- (4) **You may assume the results proved in class. But not the proofs!**

1. Consider the group $G = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a, b \in \mathbb{R}, a \neq 0 \right\}$ with matrix multiplication. Find left and right Haar measures on G . [Hint: Identify G with $\mathbb{R}_+ \times \mathbb{R}$ and find the density of Haar measure with respect to Lebesgue measure on the latter space.]
2. Let G be a compact group. If μ is a left-Haar probability measure and ν is a right-Haar probability measure, show that $\mu = \nu$. Deduce that Haar measure on G is unique (up to multiplication by constants).
3. Let K be a bounded convex set in \mathbb{R}^n . Fix a unit vector $u \in \mathbb{R}^n$ and for $t \in \mathbb{R}$, define $K_t = \{x \in K : \langle x, u \rangle = t\}$. Let $I = \{t : |K_t| > 0\}$ and let $f : I \rightarrow \mathbb{R}$ be defined by $f(t) = |K_t|^{\frac{1}{n-1}}$. Show that I is an interval and that f is concave.
4. Suppose $(a_n)_n$ is a sequence of real numbers such that as $n \rightarrow \infty$,

$$\frac{1}{n} \sum_{k=1}^n e^{2\pi i \ell a_k} \rightarrow 0$$

for all even numbers $\ell \geq 2$. Show that $a_n \pmod{1}$ is equidistributed in $[0, 1]$. [Remark: Assume the theorems presented in class. Don't try to prove everything from scratch!]