SOME PRACTISE PROBLEMS

The problems in magenta could be hard. Don't worry if you cannot solve them.

Problem 1. Show that there is an irrational number α such that $\{\overline{\alpha^n} : n \geq 1\}$ (here \overline{x} denotes $x \pmod{1}$) is not equidistributed. In fact produce an α such that most of these numbers are close to 0.

Problem 2. Fix a norm on \mathbb{R}^d . Let B is a ball in this norm and A is a Borel set such that |A| = |B| (Lebesgue measures are equal). Then $|A_{\epsilon}| \geq |B_{\epsilon}|$, where A_{ϵ} denotes the ϵ -neighbouhood of A in the given norm.

Problem 3. Deduce the Brunn-Minkowski inequality $|A + B|^{1/d} \ge |A|^{1/d} + |B|^{1/d}$, again for all compact A, B from the following statements (they are equivaelnt forms).

- (1) $|A + B| \ge \min\{|A|, |B|\}$ for all compact A, B.
- (2) If A_1, A_2 are compact sets, B_1, B_2 are balls and $|A_i| = |B_i|$ for i = 1, 2, then $|A_1 + A_2| \ge |B_1 + B_2|$.

Problem 4. Use Jensen's formula to deduce that a complex polynomial must have a zero in the complex plane.

Problem 5. Let K be a compact convex set of unit volume in \mathbb{R}^d . Then there is a point in K such that for any hyperplane (n-1) dimensional affine subspace) passing through x, the two parts K_{\pm} of K on either side of the hyperplane have volume greater than or equal to $\left(\frac{d}{d+1}\right)^d$. [Eg. If K is an equilateral triangle and X is its centroid, then a line through the centroid parallel to one of the sides cuts the triangle into parts having areas 1/4 and 3/4.]

Problem 6. If A and B are compact convex sets in \mathbb{R}^d and ℓ is any line, then $\sigma_{\ell}(A+B) \supseteq \sigma_{\ell}(A) + \sigma_{\ell}(B)$.

Problem 7. Let f be an entire function such that $|f(z)| \le e^{|z|^p}$ for |z| > R for some $R < \infty$. Let $\alpha_1, \alpha_2, \ldots$ be the zeros of f (assume that 0 is not a root of f). Then show that $\sum_{n=1}^{\infty} \frac{1}{|\alpha_n|^q} < \infty$ for all q > p.

Date: 22/February/2019.