SOME PRACTISE PROBLEMS

The problems in magenta could be hard. Don't worry if you cannot solve them.
Problem 1. Show that there is an irrational number α such that $\left\{\overline{\alpha^{n}}: n \geq 1\right\}$ (here \bar{x} denotes $x(\bmod 1))$ is not equidistributed. In fact produce an α such that most of these numbers are close to 0 .

Problem 2. Fix a norm on \mathbb{R}^{d}. Let B is a ball in this norm and A is a Borel set such that $|A|=|B|$ (Lebesgue measures are equal). Then $\left|A_{\epsilon}\right| \geq\left|B_{\epsilon}\right|$, where A_{ϵ} denotes the ϵ-neighbouhood of A in the given norm.

Problem 3. Deduce the Brunn-Minkowski inequality $|A+B|^{1 / d} \geq|A|^{1 / d}+|B|^{1 / d}$, again for all compact A, B from the following statements (they are equivaelnt forms).
(1) $|A+B| \geq \min \{|A|,|B|\}$ for all compact A, B.
(2) If A_{1}, A_{2} are compact sets, B_{1}, B_{2} are balls and $\left|A_{i}\right|=\left|B_{i}\right|$ for $i=1,2$, then $\left|A_{1}+A_{2}\right| \geq$ $\left|B_{1}+B_{2}\right|$.

Problem 4. Use Jensen's formula to deduce that a complex polynomial must have a zero in the complex plane.

Problem 5. Let K be a compact convex set of unit volume in \mathbb{R}^{d}. Then there is a point in K such that for any hyperplane ($n-1$ dimensional affine subspace) passing through x, the two parts $K_{ \pm}$ of K on either side of the hyperplane have volume greater than or equal to $\left(\frac{d}{d+1}\right)^{d}$. [Eg. If K is an equilateral triangle and x is its centroid, then a line through the centroid parallel to one of the sides cuts the triangle into parts having areas $1 / 4$ and $3 / 4$.]

Problem 6. If A and B are compact convex sets in \mathbb{R}^{d} and ℓ is any line, then $\sigma_{\ell}(A+B) \supseteq \sigma_{\ell}(A)+$ $\sigma_{\ell}(B)$.

Problem 7. Let f be an entire function such that $|f(z)| \leq e^{|z|^{p}}$ for $|z|>R$ for some $R<\infty$. Let $\alpha_{1}, \alpha_{2}, \ldots$ be the zeros of f (assume that 0 is not a root of f). Then show that $\sum_{n=1}^{\infty} \frac{1}{\left|\alpha_{n}\right|^{q}}<\infty$ for all $q>p$.

Date: 22/February/2019.

