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CHAPTER 1

Questions of approximation

1. WEIERSTRASS’ APPROXIMATION THEOREM

Unless we say otherwise, all our functions are allowed to be complex-valued. For e.g., C[0, 1]

means the set of complex-valued continuous functions on [0, 1]. When equipped with the sup-
norm ‖f‖sup := max{|f(x)| : x ∈ [0, 1]}, it becomes a Banach space. Weierstrass showed that
polynomials are dense in C[0, 1].

Theorem 1 (Weierstrass). If f ∈ C[0, 1] and ε > 0 then there exists a polynomial P such that ‖f −
P‖sup < ε. If f is real-valued, we may choose P to be real-valued.

Bernstein’s proof. Define Bf
n(x) :=

∑n
k=0 f(k/n)

(
n
k

)
xk(1 − x)n−k, called the Bernstein polynomial

of degree n for the function f . Make the following observations about the coefficients pn,x(k) =(
n
k

)
xk(1− x)n−k.

n∑
k=0

pn,x(k) = 1,
n∑
k=0

kpn,x(k) = nx,
n∑
k=0

(k − nx)2pn,x(k) = nx(1− x),

all of which can be easily checked using the binomial theorem. In probabilistic language, pn,x is a
probability distribution on 0, 1, . . . , nwhose mean is nx and standard deviation is nx(1−x). From
these observations we immediately get∑

k:| k
n
−x|≥δ

pn,x(k) ≤ 1

δ2n2

n∑
k=0

(k − nx)2pn,x(k) =
x(1− x)

nδ2
.

Thus, denoting ωf (δ) = sup
|x−y|≤δ

|f(x)− f(y)|, we get

|Bf
n(x)− f(x)| ≤

∑
k : | k

n
−x|<δ

|f(x)− f(k/n)|pn,x(k) +
∑

k : | k
n
−x|≥δ

|f(x)− f(k/n)|pn,x(k)

≤ ωf (δ)
∑

k : | k
n
−x|<δ

pn,x(k) + 2‖f‖sup
x(1− x)

nδ2

≤ ωf (δ) +
1

2nδ2
‖f‖sup.

First pick δ > 0 so that ωf (δ) < ε/2 and then pick n > ‖f‖sup
εδ2

to get ‖Bf
n − f‖sup < ε. �

Here is another proof of Weierstrass’ theorem, probably closer to the original proof. The idea is
that real analytic functions (on an open neighbourhood of [0, 1]) are obviously uniformly approx-
imable by polynomials (by truncating their power series around 1/2 to finitely many terms), hence
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it suffices to show that any continuous function can be approximated uniformly by a real-analytic
function. The key idea is of convolution.

Definition 2. For f, g : R 7→ R, define (f ∗ g)(x) :=
∫
R f(x− t)g(t)dt, whenever the integral exists.

When f, g are positive integrable functions, (f ∗ g) : R → R+ ∪ {+∞} is well-defined, and
Fubini’s theorem shows that∫

(f ∗ g)(x)dx =

(∫
f(u)du

)(∫
g(t)dt

)
which is finite. In particular this means that (f ∗g)(x) is finite for almost every x, and the resulting
function in L1. One can assume less about one of the functions and more about the other, to ensure
that f ∗ g is well-defined. In fact, the key thing to remember about convolution is that it has the
combined niceness of the two functions. The following exercise gives a few important special
conditions.

Exercise 3. (1) If f is bounded and measurable and g is (absolutely) integrable, then f ∗ g and
g ∗ f are well-defined and equal. Further, f ∗ g is bounded and integrable.

(2) If f is bounded and measurable and g is smooth, then f ∗ g is smooth.

(3) If f is bounded and measurable and g is real-analytic and integrable, then f ∗ g is real-
analytic.

An effective way to approximate a function by a nicer function is to convolve it with a sequence
of probability densities that concentrate their mass closer and closer to zero. In the following
exercise below, execute this plan to give another proof of Weierstrass’ theorem.

Exercise 4. Take all functions to be real-valued and defined on whole of the real line.

(1) A real-analytic function can be uniformly approximated on compact sets by polynomials.

(2) If ϕ is a real-analytic probability density, then so is ϕσ(x) := 1
σϕ(x/σ).

(3) If f is a compactly supported continuous function, then f ∗ ϕσ is real analytic.

(4) As σ → 0, we have f ∗ ϕσ → f uniformly on compact sets.

(5) Deduce Weierstrass’ theorem.

There are many examples of real-analytic probability densities. For example, (1) ϕ(x) = 1
π(1+x2)

(Cauchy density) and (2) ϕ(x) = 1√
2π
e−x

2/2 (normal density).

Remark 5. If the above densities are used, then the approximating functions f ∗ ϕσ used in the
above exercise has a more special meaning.

(1) The Cauchy density ϕ(x) = 1
π(1+x2)

. In this case, (f ∗ ϕy)(x) = u(x, y) where u : H → R
is the unique function that solves the Dirichlet problem1 on the upper-half plane H :=

1The Dirichlet problem asks for a continuous function on the closure of the domain (here upper half plane) that is

harmonic in the interior and equal to a given continuous function on the boundary (here real line or more precisely

R ∪ {∞}).
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{(x, y) : y > 0} with boundary condition f . What this means is that (a) u is continuous on
H̄, (b) u(·, 0) = f(·), (c) ∆u = 0 on H.

The point is that (f ∗ ϕy) is just u restricted to the line with y-co-ordinate equal to y and
approaches f (at least pointwise) when y → 0.

(2) The normal density ϕ(x) = 1√
2π
e−x

2/2. In this case (f ∗ ϕt)(x) = u(x, t) where u solves the
heat equation with initial condition f . What this means is that (a) u is continuous on R× R̄+,
(b) u(·, 0) = f(·), (c) ∂

∂tu(x, t) = 1
2
∂2

∂x2
u(x, t) on R× R+.

Again, (f ∗ ϕ√t) = u(·, t) is the function (“temperature”) at time t, and approaches the
initial condition f (at least pointwise) as t approaches 0.

Some questions to think about. What about polynomials in m variables? Are they dense in the
space C(K) for K ⊆ Rm? What about polynomials in one complex variable? Are they dense in
the space C(D̄) where D̄ is the closed unit disk in the complex plane?

A somewhat challenging exercise on approximation of functions on the whole line.

Exercise 6. If f : [0,∞) 7→ R is continuous and f(x) → 0 as x → +∞, then show that for any
ε > 0, there is polynomial p such that |f(x)− p(x)e−x| < ε for all x ≥ 0.

2. FEJÉR’S THEOREM

Let S1 denote the unit circle which we may identify with [−π, π) using the map θ 7→ eiθ. Con-
tinuous functions on S1 may be identified with continuous functions on I = [−π, π] such that
f(−π) = f(π) or equivalently, with 2π-periodic continuous functions on R.

Let ek(t) = eikt for t ∈ [−π, π) (these are 2π-periodic as k is an integer). A supremely important
fact is that ek are orthonormal in L2(I, dt/2π), i.e.,

∫
I ek(t)ē`(t)

dt
2π = δk,`. The question of whether

this is a complete orthonormal basis is answered to be “yes” by the following theorem. Note that
the L2 norm is dominated by the sup-norm, hence a dense subset of C(S1) is also dense in L2(S1).

Theorem 1 (Fejér). Given any f ∈ C(S1) and ε > 0, there exists a trigonometric polynomial P (eit) =∑N
k=−N cke

ikt such that ‖f − P‖sup < ε.

Proof. Define f̂(k) =
∫
I f(t)e−ikt dt2π and set

σNf(t) =

N∑
k=−N

(
1− |k|

N + 1

)
f̂(k)eikt

=

N∑
k=−N

(
1− |k|

N + 1

)
eikt

∫
I
f(s)e−iks

ds

2π

=

∫
I
f(s)KN (t− s)ds
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where the Fejér kernel KN is defined as

KN (u) =

N∑
k=−N

(
1− |k|

N + 1

)
eiku =

1

N + 1

sin2
(
N+1

2 u
)

sin2
(
u
2

)
The key observations about KN (use the two forms of KN whichever is convenient)

KN (u) ≥ 0 for all u,
∫
I

KN (u)
du

2π
= 1,

∫
I\[−δ,δ]

KN (u)
du

2π
≤ 1

N + 1

1

sin2 (δ/2)
.

In probabilistic language, KN (·) is a probability density on I which puts most of its mass near 0

(for large N ). Therefore,

|σNf(t)− f(t)| ≤
∫ δ

−δ
|f(t)− f(s)|KN (t− s)ds+

∫
I\[−δ,δ]

|f(t)− f(s)|KN (t− s)ds

≤ ωf (δ) + 2‖f‖sup
1

N + 1

1

sin2 (δ/2)
.

Pick δ so that ωf (δ) < ε/2 and then pick N + 1 >
4‖f‖sup
ε sin2(δ/2)

to get ‖σNf − f‖sup < ε. �

Some applications: In the following exercise, derive Weierstrass’ theorem from Fejér’s theorem.

Exercise 2. Let f ∈ CR[0, 1].

(1) Construct a function g : [−π, π] → R such that (a) g is even, (b) g = f on [0, 1] and (c) g
vanishes outside [−2, 2].

(2) Invoke Fejér’s theorem to get a trigonometric polynomials T such that ‖T − g‖sup < ε.

(3) Use the series ez =
∑∞

k=0
1
k!z

k to replace the exponentials that appear in T by polynomials.
Be clear about the uniform convergence issues.

(4) Conclude that there exists a polynomial P with real coefficients such that ‖f −P‖sup < 2ε..

A more interesting application is the theorem of Weyl that the set {nx (mod 1)} is equidis-
tributed in [0, 1] whenever x is irrational. You are guided to prove this statement in the following
exercise.

Exercise 3. Let x ∈ [0, 1]. Let xn = e2πinx and S = {x1, x2, . . .}.

(1) Show that S is dense in S1 if and only if x is irrational.

(2) If f ∈ C(S1), show that 1
n

∑n
k=1 f(xk) →

∫ 1
0 f(eit) dt2π . [Hint: First do it for f(eit) = e2πipt

for some p ∈ Z]

(3) For any arc I = {eit : a < t < b}, show that as n→∞,

1

n
#{k ≤ n : xk ∈ I} →

b− a
2π

.
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The point is that the points x1, x2, ... spend the same amount of “time” in any arc of a given
length. This is what we mean by equidistribution.

From Fejér’s theorem, it follows that {en : n ∈ Z} is an orthonormal basis for L2(S1), hence
Sfn → f in L2 for every f ∈ L2 and∫ 2π

0
|f(t)|2 dt

2π
=
∑
n∈Z
|f̂(n)|2 (Plancherel identity).

But for f ∈ C[0, 1], the convergence need not be uniform (or even pointwise). But with extra
smoothness assumption on f , one can achieve uniform convergence.

Exercise 4. Let f ∈ C2(S1) (i.e., as a 2π-periodic function on R, f is twice differentiable and
f ′′ is continuous and 2π-periodic). Then, show that Sfn → f uniformly. [Hint: Express Fourier
coefficients of f ′ in terms of Fourier coefficients of f ]

Question: Could we have proved this exercise first, and then used the density of C2(S1) in
C(S1) (in fact C∞(S1) is also dense in C(S1)) to get an alternate proof of Fejér’s theorem?

A brief history of Fejér’s theorem: This is a cut-and-dried history, possibly inaccurate, but only
meant to put things in perspective!

(1) The vibrating string problem is an important PDE that arose in mathematical physics, and
asks for a function u : [a, b]×R̄+ → R satisfying ∂2

∂t2
u(x, t) = ∂2

∂x2
u(x, t) for (x, t) ∈ (a, b)×R+

and satisfying the initial conditions u(x, 0) = f(x) and ∂
∂tu(x, t)

∣∣∣∣∣∣
t=0 = g(x), where f and

g are specified initial conditions.

(2) Taking [a, b] = [−π, π] (without loss of generality), it was observed that if f(x) = eikx and
g(x) = ei`x, then u(x, t) = cos(kt)eikx + 1

` sin(`t)ei`x solves the problem.

(3) Linearity of the system meant that if f and g are trigonometric polynomials, then by taking
linear combinations of the above solution, one could obtain the solution to the vibrating
string problem.

(4) Thus, the question arises, whether given f and g we can approximate them by trigonomet-
ric polynomials (and hopefully the corresponding solutions will be approximate solutions).

(5) Fourier made the fundamental observation that ek(·) are orthonormal on [−π, π] and de-
duced that if the notion of approximation is in mean-square sense (i.e., in the L2 distance√∫
|f − g|2), then the best degree-n trigonometric polynomial approximation to f is

Snf(x) :=
n∑

k=−n
f̂(k)eikx.

(6) Before Fejér, it was an open question whether ‖Snf − f‖L2 → 0 as n→∞. In other words,
is {ek}k∈Z a complete orthonormal set for L2([−π, π])?
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(7) Since continuous functions are dense is L2[−π, π], it suffices to show that continuous func-
tions can be uniformly approximated by trigonometric polynomials.

(8) In C(S1), it is no longer the case that Snf is the best approximation (in sup-norm sense).
Fejér’s innovative idea was to consider averages of Snf , i.e., σnf := 1

2n+1

∑2n
k=0 Skf (the

same trigonometric polynomials that appeared in the proof) and show that they do con-
verge to f uniformly.

(9) Both Snf and σnf can be written as convolutions. Indeed, we saw that σnf = f ?Kn while
Snf = f ?Dn withDn(t) = sin((n+ 1

2)t)/ sin(1
2 t). The key properties ofKn, that (a)Kn ≥ 0,

(b)
∫
Kn = 1 and (c)

∫
[−δ,δ]c Kn → 0 as n → ∞, ensured that f ? Kn → f in C(S1). Hence

Kn is called an approximate identity (one can make up many approximate identities but
in Fejér’s theorem it was essential that Kn is a trigonometric polynomial). The Dirichlet
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FIGURE 1. The Dirichlet and Fejér kernels for n = 4

kernel Dn is also a trigonometric polynomial and has total integral 1. But it is not positive,
and more importantly,

∫
|Dn(t)|dt → ∞ as n → ∞ (in fact it grows like log n). This is why

it does not act as an approximate identity, and Snf does not converge to f uniformly.

(10) Here is an argument why Sn(f) converges to f uniformly in general. If uniform conver-
gence were to hold for all f ∈ C(S1), then by the uniform boundedness principle applied
to the linear transformations Sn : C(S1) 7→ C(S1), it would follow that Sn is point-wise
bounded and hence uniformly bounded, ‖Snf‖ ≤ κ‖f‖ for all f ∈ C(S1) and for all n,
for a constant κ. However, if we take f ∈ C(S1) such that −1 ≤ f ≤ 1 and f = sgn(Dn)

except on intervals of length ε/2n around each zero ofDn, then Snf(0) ≥ (
∫
|Dn|)−εwhile

‖f‖sup = 1. Thus, ‖Sn‖ =
∫
|Dn| � log n, which is unbounded.

References and further reading: Weierstrass’ theorem is generalized to more abstract forms such
as Stone-Weierstrass theorem.

Theorem 5 (Stone Weierstrass theorem). Let X be a compact Hausdorff space and let A ⊆ CR(X). If
A is (a) a real vector space, (b) closed under multiplication, (c) contains constant functions and (d)
separates points of X . Then, A is dense in C(X) in sup-norm.
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The separation condition means that for any distinct points x, y ∈ X , there is some f ∈ A such
that f(x) 6= f(y). If that were not the case, then no function that gives distinct values to x and y

could be approximated by elements of A. A proof based on Weierstrass’ theorem can be found in
most analysis books. Observe that the Stone-Weierstrass theorem aimplies Fejér’s theorem too.

Weyl’s equidistribution theorem mentioned here is the simplest one. Weyl showed also that for
any real polynomial p(·), the sequence {e2πip(n) : n ≥ 1} is equidistribted in S1 whenever at least
one of the coefficients of p (other than the constant coefficient) is irrational.

Some references:

(1) B.Sury, Weierstrass’ theorem - leaving no stone unturned, a nice expository article on Weier-
strass’ theorem available at http://www.isibang.ac.in/˜sury/hyderstone.pdf.

(2) Rudin, Principles of mathematical analysis or Simmon’s Topology and modern analysis for a
proof of Stone-Weierstrass’ theorem.

(3) Katznelson, Harmonic analysis or many other book on Fourier series for basics of Dirichlet
and Fejér kernels.

3. MÜNTZ-SZASZ THEOREM IN L2

Theorem 1. Let 0 ≤ n1 < n2 < . . . be unbounded and let W = span{xnj : j ≥ 1}. Then, W is dense in
L2[0, 1] if and only if

∑
j

1
nj

=∞.

Almost exactly the same criterion is necessary and sufficient for W to be dense in C[0, 1], except
that for uniform approximation we must take n1 = 0 (otherwise functions not vanishing at 0

cannot be approximated). In the above theorem, nj are not required to be integers. From the
above theorem, it is easy to deduce that if

∑
j

1
nj
< ∞, then W cannot be dense in C[0, 1]. This is

simply beacause ‖f‖L2 ≤ ‖f‖sup for any f ∈ C[0, 1].

Some preliminaries in linear algebra: Let V be an inner product space over R and let v1, . . . , vk

be elements of V . The Gram matrix of these vectors is the k × k matrix A := (〈vi, vj〉)i,j≤k whose
entries are inner products of the given vectors. If V = Rk itself (the same k as the number of
vectors), then A = BtB where B = [v1 . . . vk] is the k × k matrix whose columns are the given
vectors. In this case, det(A) = det(B)2 which is the squared volume of the parallelepiped formed
by v1, . . . , vk (because det(B) is the signed volume of this parallelepiped). Convince yourself that
even for general V , det(A) has the same meaning (but det(B) need not make sense, for example,
if V = Rm with some m > k).

Now, let u, v1, . . . , vk be vectors in V . Let A be the Gram matrix of these k + 1 vectors, and
let B be the Gram matrix of v1, . . . , vk. Using the above-mentioned volume interpretation of the
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determinants and the formula “volume = base volume× height” formula, we see that

det(A) = det(B)× dist.2(u, span{v1, . . . , vk}).

Here the dist.2 term just means ‖P⊥Wu‖2 where P⊥W is the orthogonal projection to W⊥ where
W = span{v1, . . . , vk}.

Example 2. Let n0, n1, . . . , nk be distinct positive numbers and let u = xn0 , v1 = xn1 , . . . , vk = xnk ,
all regarded as elements of L2[0, 1]. Let Wk = span{v1, . . . , vk}. Then,

dist.2(u,Wk) =
det(A)

det(B)

where A =
(

1
ni+nj+1

)
0≤i,j≤k

and B =
(

1
ni+nj+1

)
1≤i,j≤k

. The matrices here are called Hilbert

matrices, and their determinants can be evaluated explicitly.

Cauchy determinant identity: Let x1, . . . , xk be distinct and y1, . . . , yk be distinct (we take them
to be real numbers, but the same holds over any field). Then,

det

(
1

xi + yj

)
1≤i,j≤k

=

∏
i<j

(xi − xj)(yi − yj)∏
i,j

(xi + yj)
.

To see this, observe that ∏
i,j

(xi + yj) det

(
1

xi + yj

)
1≤i,j≤k

is a polynomial in xis and yjs of degree at most n2 − n, and vanishes whenever two of the xis are
equal or two of the yjs are equal. Hence, the polynomial is divisible by

∏
i<j

(xi − xj)(yi − yj). The

latter is a polynomial of degree n(n− 1), hence we conclude that

∏
i,j

(xi + yj) det

(
1

xi + yj

)
1≤i,j≤k

= C
∏
i<j

(xi − xj)(yi − yj)

for some constant C. How to see that C = 1?

Proof of Theorem 1. Let 0 ≤ n0 6∈ {n1, n2, . . .} and set u = xn0 , v1 = xn1 , . . . , vk = xnk , all regarded
as elements of L2[0, 1]. As already explained,

dist.2(u,Wk) =
det(A)

det(B)
11



where A =
(

1
ni+nj+1

)
0≤i,j≤k

and B =
(

1
ni+nj+1

)
1≤i,j≤k

. Cauchy’s identity applies to both these

determinants (take xi = yi = ni + 1
2 ) and hence, after canceling a lot of terms,

dist.2(u,Wk) =

∏k
i=1(n0 − nj)2

(2n0 + 1)
∏k
j=1(n0 + nj + 1)2

=
1

2n0 + 1

k∏
j=1

(
1− n0

nj

)2(
1 +

n0 + 1

nj

)−2

=
1

2n0 + 1

k∏
j=1

(
1− A

nj
+O

(
1

n2
j

))
where A 6= 0. Recall that for 0 < xj < 1, the infinite product

∏∞
j=1(1− xj) is positive if

∑
j xj <∞

and zero if
∑

j xj =∞. From this, it immediately follows that

lim
k→∞

dist.2(u,Wk) = 0 if and only if
∑
j

1

nj
=∞.

Thus, if
∑

j
1
nj
< ∞, then if we take n0 6∈ {n1, n2, . . .}, it follows that xn0 is not in the closed span

of W = {xnj : j ≥ 1}. In particular, W is not dense in L2[0, 1].
Conversely, if

∑
j

1
nj

= ∞, then for any n0 > 0, we see that xn0 ∈ W̄ . Thus all polynomials are
in W̄ which shows that W̄ = L2[0, 1]. �

Hilbert arrived at the Hilbert matrix in studying the following question. How closely can xn be
approximated (in L2[0, 1]) by polynomials of lower degree? This just means finding

rn = dist.(xn, span{1, x, . . . , xn−1}).

The corresponding question in C[0, 1] is much deeper and was (asked and) answered by Cheby-
shev. We shall see it later.

Exercise 3. Find an explicit form of rn. How big or small (i.e., the order of decay/growth) is it?

4. MÜNTZ-SZASZ THEOREM IN C[0, 1]

Theorem 1. Let 0 = n0 < n1 < n2 < . . . be unbounded and let W = span{xnj : j ≥ 0}. Then, W is
dense in C[0, 1] if and only if

∑
j≥1

1
nj

=∞.

The natural approach, would be analogous to the one we gave for L2 approximation. The dif-
ference is that L2 is a Hilbert space (self-dual) and C[0, 1] is a Banach space. Hence, the denseness
in C[0, 1] of a subspace (here span{xnj : j ≥ 0} where 0 = n0 < n1 < n2 < . . .) is detected by the
absence of non-zero bounded linear functionals that vanish on the subspace. We give a sketch of
a proof along these lines later. First we give an elementary, but possibly less natural, proof.

Another proof (from notes of Andreu Ferre Moragues). Fix m > 0 and let f(x) = xm so that f ′(x) =

mxm−1 vanishes at 0. Fix j0 so that nj0 > 1 and set W ′ = span{xnj−1 : j ≥ j0}. By the L2

version of Müntz-Szasz theorem, W ′ is dense in L2[0, 1], and hence we can find Qm ∈ W ′ such
that ‖f ′ −Qr‖2 → 0 as r →∞.

12



Set Pr(x) =
∫ x

0 Qr(t)dt. IfQr(t) =
∑j0+dr

j=j0
cr,jx

nj−1, then Pn(x) =
∑j0+dr

j=j0

cr,j
nj
xnj , hence Pn ∈W .

Note that Pn and f both vanish at 0, hence, for any x ∈ [0, 1],

|f(x)− Pn(x)| = |
∫ x

0
(f ′(t)−Qn(t))dt| ≤

∫ 1

0
|f ′(t)−Qn(t)|dt ≤

√∫ 1

0
|f ′(t)−Qn(t)|2dt

by Cauchy-Schwarz inequality. Thus, ‖f − Pn‖ ≤ ‖f ′ −Qn‖2 → 0. Thus f ∈ W , showing that W
is dense in C[0, 1]. �

In the notes of Andreu Ferre Moragues referred to at the end, there is yet another proof of the
above, which does not rely on the L2 version.

4.1. Sketch of a second proof. Here we sketch the other natural approach that was alluded to
earlier. We need the following ingredients:

(1) A subspaceW of a Banach spaceX is dense if and only if there does not exist any bounded
linear functional L : X → C such that L 6= 0 but L|W = 0.

(2) The space of real-valued continuous functions, C[0, 1], is a Banach space and its dual is
M[0, 1], the space of signed Borel measures on [0, 1]. Elements ofMC[0, 1] are precisely of
the form µ = µ1 − µ2, where µj are finite, positive, Borel measures on [0, 1]. If µ = µ1 − µ2,
then it acts on C[0, 1] by f 7→

∫
fdµ1 −

∫
fdµ2.

(3) The representation of a signed measure µ as µ1 − µ2 is not unique, as we can also write it
as (µ1 + ν)− (µ2 + ν) for any measure ν. Uniqueness of representation2 can be obtained by
imposing the further condition that µ1 ⊥ µ2 (singular measures). If we use this minimal
representation, it is easy to check that the dual norm of µ is precisely µ1([0, 1]) + µ2([0, 1]).

Sketch of the proof. Let W = span{xnj : j ≥ 0}. Recall that W is not dense in C[0, 1] if and only
if there is a non-zero bounded linear functional on C[0, 1] that vanishes on W (by Hahn-Banach
theorem). We know that the dual of C[0, 1] is the space of all complex Borel measures on [0, 1],
acting by f 7→

∫
[0,1] fdµ (one of F. Riesz’s many representation theorems). Thus, W is not dense if

and only if we can find a complex Borel measure µ on [0, 1] such that
∫
tnjdµ(t) = 0 for all j.

For any µ, consider the function Fµ(z) =
∫
tzdµ(t). This is a holomorphic function on the right

half-plane. A question is whether it can vanish at nj for all j, without µ being identically zero. A
holomorphic function can have no accumulation points inside the domain of holomorphicity, but
there is no restriction on vanishing at a sequence of points that go to the boundary (or infinity).
However, if there are some bounds on the growth of the holomorphic function, then its sequence
of zeros must approach the boundary sufficiently fast.

We skip details for now, but what it amounts to is that when
∑

j
1
nj

=∞, such functions do not
exist. Consequently W is dense in C[0, 1]. �

2This is analogous to how any function f can be written as a difference of two positive functions in many ways, but

the minimal way is to write it as f+ − f−.
13



5. MERGELYAN’S THEOREM

On a compact subset K of the complex plane, what functions can be uniformly approximated
by polynomials? Two examples to show what can go wrong.

Let K = D̄ = {z : |z| ≤ 1}. Then z̄ cannot be uniformly approximated by polynomials. This
is because a uniform limit of polynomials must be holomorphic in the open disk D. Thus not all
continuous functions can be uniformly approximated by polynomials.

What about analytic functions? If K = 2̄D \ D = {z : 1 ≤ |z| ≤ 2}, then the function 1/z cannot
be uniformly approximated on K by polynomials. This is because polynomials integrate to zero
on contours in the interior of K, but

∫
γ

1
zdz 6= 0 if γ has non-zero winding around 0.

Mergelyan’s theorem gives the complete answer to the question. Let A(K) be the space of
continuous functions on K that are holomorphic in the interior of K. Endow it with the sup-norm
on K.

Theorem 1 (Mergelyan). Let K be a compact subset in the complex plane such that C \ K has finitely
many connected components. Choose points p1, . . . , pm, one in each of the bounded components of C \K.
LetR be the collection of all rational functions whose poles are contained in {p1, . . . , pm}.

ThenR is dense in A(K). In particular, if C \K is connected, then polynomials are dense in A(K).

For example, if K is the closure of a bounded simply connected region, then all continuous
functions that are holmorphic in the interior can be approximated uniformly by polynomials. If
K = [0, 1] (or any curve γ : [0, 1] 7→ C that is injective), then the interior is empty and C \ K
is connected. Hence the analyticity condition is superfluous and all continuous functions are
approximable by polynomials. If K = S1, again the interior is empty but C \K has one bounded
component D. Taking p = 0 and applying Mergelyan’s theorem gives us Fejér’s theorem.

As the proof of Mergelyan’s theorem uses certain advanced theorems in complex analysis, we
shall postpone it to later.

6. CHEBYSHEV’S APPROXIMATION QUESTION

For f ∈ C[0, 1], n ≥ 1 and a < b, let

γ(f, n, a, b) := inf{‖f − p‖sup : p is a polynomial of degree at most n}.

Weierstrass’ theorem is the statement that γ(f, n) → 0 as n → ∞. But what is the rate at which
it goes to zero? Equivalently, for a given n, how good is the approximation? Try to work out the
bound you get from the proofs we gave of Weierstrass’ theorem. In a landmark paper, Chebyshev
showed that γ(xn, n− 1,−1, 1) = 2−n+1.

For instance, if we use xn−1 to approximate xn, then,

‖xn − xn−1‖sup[−1,1] ≥
(

1− 1

n

)n
−
(

1− 1

n

)n−1

=

(
1− 1

n

)n−1 1

n
∼ e−1n−1.

14



But we shall see that it is possible to find degree n− 1 polynomials that are exponentially close to
xn. To do this, he introduced an immortal class of polynomials, now known as Chebyshev polyno-
mials (of the first kind).

In basic trigonometry, we see that

cos(2θ) = 2 cos2(θ)− 1, cos(3θ) = 4 cos2(θ)− 3 cos(θ).

It is not hard to see that in general, cos(nθ) is a polynomial of degree n in cos(θ). Thus, cos(nθ) =

Tn(cos θ), where Tn is defined to be the nth Chebysev polynomial (of the first kind). For instance,
T2(x) = 2x2 − 1 and T3(x) = 4x3 − 3x.

By the identity cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos(θ) cos(nθ), we see that Tn+1(x) = 2xTn(x)−
Tn−1(x). In fact, this recursion, together with the specification T0(x) = 1 and T1(x) = x, could be
taken as an alternative definition of the Chebyshev polynomials.

Some easy properties: Tn has degree n. The coefficient of xk in Tn is zero unless n−k is even. The
highest coefficient of Tn is 2n−1. Lastly ‖Tn‖sup[−1,1] = 1.

Consequently, |xn − p(x)| ≤ 1 for all x ∈ [−1, 1], where p(x) = xn − 2−n+1Tn(x) is a polynomial
of degree n − 1. Therefore, γ(xn, n − 1,−1, 1) ≤ 2−n+1. Chebyshev’s theorem is that 2−n+1Tn is
the best approximation to xn among lower degree polynomials. We shall prove it shortly.

A less obvious looking property of Chebyshev polynomials is that they are orthogonal w.r.t. the
arcsine measure dµ(x) = 1

π
√

1−x2dx on [−1, 1]. That is,∫ 1

−1
Tn(x)Tm(x)

1

π
√

1− x2
dx = 0 if m 6= n.

To do this without calculations, define the map ϕ : S1 7→ [−1, 1] by ϕ(eiθ) = cos θ. The arcsine mea-
sure is precisely the push-forward of the normalized Lebesgue measure on S1 under ϕ. Further,
Tk ◦ ϕ = Re{ek}. From this, it easily follows that

∫ 1

−1
Tm(x)Tn(x)

1

π
√

1− x2
dx =


1 if m = n = 0

1
2 if m = n 6= 0

0 otherwise
¯

.

Relevance to the approximation question: Any x ∈ [−1, 1] can be written as x = cos θ, hence
Tn(x) = cos(nθ) ∈ [−1, 1]. Thus, ‖Tn‖sup = 1. The monic polynomial 2−n+1Tn has sup-norm
2−n+1 in [−1, 1]. Write p(x) = xn − 2−n+1Tn(x), a polynomial of degree n− 2. Then,

‖xn − pn(x)‖sup[−1,1] = 2−n+1‖Tn‖sup[−1,1] = 2−n+1.

This is much smaller than the 1/n that we got earlier by approximating xn by xn−1. We next show
that this is the best possible.
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The oscillation idea: Let f ∈ C[−1, 1], let p be a polynomial of degree n, and δ > 0. Suppose f − p
oscillates between ±δ many times, say m. By this we mean that there exist x1 < x2 < . . . < xm+1

in [−1, 1] such that |f(xj) − p(xj)| ≥ δ for all j and sgn(f(xj) − p(xj)) alternates between +1 and
−1 as j runs from 1 to m+ 1.

Now suppose q is another polynomial of degree n and ‖f − q‖sup < δ. Then, sgn(q(xj)− p(xj))
alternates between +1 and −1 as j runs from 1 to m + 1. Indeed, suppose f(x1) − p(x1) ≥ δ and
f(x2) − p(x2) ≤ −δ. Then q(x1) > f(x1) − δ ≥ p(x1) and q(x2) < f(x2) + δ ≤ p(x2). This shows
that q − p must have at least m roots, one in (xj , xj+1) for each 1 ≤ j ≤ m.

If m ≥ n+ 1, this is not possible, as q− p has degree at most n. The way out of the contradiction
is that ‖f − q‖sup[−1,1] ≥ δ for every degree n polynomial q. We collect this conclusion as a lemma
below.

Lemma 1. If f ∈ C[0, 1], p is a polynomial of degree n, and there exist n+2 points x1 < x2 < . . . < xn+2

in [−1, 1] such that |f(xj)− p(xj)| ≥ δ for all j and sgn(f(xj)− p(xj)) alternates between +1 and −1 as
j runs from 1 to n+ 2. Then, for any polynomial q of degree n or less, ‖f − q‖sup[−1,1] ≥ δ.

Chebyshev polynomial is the best approximation to the monomial: Let f(x) = xn, p(x) = xn −
2−n+1Tn(x) (a degree n−1 polynomial) and δ = 2−n+1. Note that f(x)−p(x) = 2−n+1Tn(x). Write
x = cos θ and let θ range over [0, π] (so x runs through [−1, 1]). Recall that Tn(cos θ) = cos(nθ),
take θk = kπ/n for k = 0, 1, . . . , n, and note that Tn(cos θk) = (−1)k. Thus, f − p alternates n + 1

times between ±δ. From Lemma 1, we conclude that for any polynomial q of degree n− 1 or less,
‖f − q‖sup[−1,1] ≥ 2−n+1.

An application: We have found the best way to approximate xn by a polynomial of lower degree.
In principle, replacing the highest power in the approximating polynomial by a lower degree
Chebyshev polynomial, and continuing, it should be possible to reduce the degree of the approx-
imating polynomial while keeping a reasonable level of approximation. This raises the question,3

how small a degreem can we take and still approximate xn (on [−1, 1]) by a degreem polynomial?
First we find the expansion of xn in terms of Chebyshev polynomials (this is obviously possible

since Tk has degree k for each k). If

xn =

n∑
k=0

cn,kTk(x),

3This part of the notes is taken from Nisheet Vishnoi’s notes which contains more on these problems and their uses

in algorithms. The derivation of expansion of xn in terms of Chebyshev polynomials given here was suggested by

Chaitanya Tappu, and is more natural than what we did in class.
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then we must have

cn,0 =

∫ 1

−1
xnT0(x)

dx

π
√

1− x2
dx,

cn,k = 2

∫ 1

−1
xnTk(x)

dx

π
√

1− x2
dx for k ≥ 1,

by the orthogonality of Tks with respect to the arcsine measure. Make the change of variables
x = cos θ to write∫ 1

−1
xnTk(x)

dx√
π(1− x2)

dx =
1

π

∫ π

0
cosn θ × cos(kθ)dθ

=
1

2π

∫ π

−π

(
eiθ + e−iθ

2

)n(
eikθ + e−ikθ

2

)
dθ

=
1

2n

(
n
n+k

2

)
.

To see the last inequality, expand (eiθ + e−iθ)n and observe that only the terms with e±ikθ give a
non-zero integral. There are two of them, each with the binomial coefficient. If we write pn,k =

2−n
(

n
(n+k)/2

)
for k = n, n− 2, . . . ,−n+ 2,−n, then cn,0 = pn,0 and cn,k = pn,k + pn,−k.

The basic observation is that (pn,k)k is the Binomial probability distribution (the distribution of
ξ1 + . . . + ξn, where ξk are independent and equal to ±1 with probability 1/2 each). Most of the
mass of this distribution is concentrated in |k| .

√
n. For example, the Chebyshev inequality gives∑

k:|k|≥d

pn,k ≤
n

4d2

which becomes small when d�
√
n. A better bound is the following

Bernstein/Chernoff bound:
∑

k:|k|≥d

pn,k ≤ 2e−d
2/2n.

Thus, if we set Pn,d(x) =
∑d

k=0 cn,kTk(x), then

‖xn − Pn,d‖sup[−1,1] =
∣∣∣ n∑
k=d+1

cn,kTk(x)
∣∣∣

≤ 2
∑
k:k>d

pn,k (as ‖Tk‖sup[−1,1] = 1)

≤ 2e−d
2/2n

by the Chernoff bound. Thus, we can approximate xn well by polynomials of degree d provided
d is much larger than

√
n. For example, if d =

√
2Bn log n, then ‖xn − Pn,d‖sup[−1,1] ≤ n−B .

This finishes our discussion of approximation questions. Much more can be found in the refer-
ences we mentioned earlier.

Exercise 2. Show that Tn(x) = (−1)n

1×3×...×(2n−1)

√
1− x2 dn

dxn (1− x2)n−
1
2 .

One can also take this as the definition and prove the other properties (recursion, orthogonality,
etc.). The following exercise introduces Chebyshev polynomials of the second kind.
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Exercise 3. Argue that sin((n+1)θ)
sin θ is a polynomial of cos θ. Hence define the polynomials Un, n ≥ 0

by Un(cos θ) = sin((n+1)θ)
sin θ . Show that (1) Un(x) = 1

n+1T
′
n+1(x), (2)

∫ 1
−1 Un(x)Um(x)

√
1− x2dx = 0 if

m 6= n.

18



CHAPTER 2

Equidistribution

1. WEYL’S EQUIDISTRIBUTION THEOREM

Let 0 < α < 1 and consider the sequence xn = nα}, where (for this section), x denotes x (mod
1), i.e., x − bxc. How does this sequence inside [0, 1) look? If α is a rational number, than after a
xn = 0 for some n and then the entire sequence repeats periodically. For irrational α, it is an easy
exercise to show that xn 6= xm for all n 6= m, and that the sequence {xn : n ≥ 1} is dense in [0, 1).
Much more is true.

Theorem 1 (Weyl’s equidistribution - the linear case). Suppose α 6∈ Q. For any 0 ≤ a < b < 1, as
n→∞,

1

n
|{k ≤ n : xk ∈ [a, b]}| → b− a.

In words, the sequence is uniformly distributed over the interval [0, 1). It is also worth noting
that since we are working with [0, 1) with addition modulo 1, it is the same as the circle group
S1 with the isomorphism x 7→ e2πix. Therefore, an equivalent formulation is that the sequence
{zk := e2πinα : n ≥ 1} is equidistributed on S1, in the sense that the proportion of k ≤ n for which
zk is in the arc {eiθ : a ≤ θ ≤ b}, converges to b − a, as n → ∞. We freely move between the two
notations (eg., we may write f(x) or f(eix)).

0.2 0.4 0.6 0.8 1.0
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15

20
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FIGURE 2. Histogram of kα, 1 ≤ k ≤ 800, for α = 1/π and α = 7/22.

Now we proceed to the proof of the theorem. First of all, it is good to note the virtual impossi-
bility of getting a direct handle on the quantity on the left.
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Step-1: The statement of Theorem 1 can be written as

1

n

n∑
k=1

f(kα)→
∫ 1

0
f(x)dx.(1)

where f = 1[a,b] is the indicator function of the interval [a, b]. This suggests the question: are there
other functions for which one can prove the statement and then deduce it for indicators?

Step-2: Let em(x) = e2πimx for somem ∈ Z (ifm 6∈ Z, then f(0) 6= f(1)), then we get lucky because
e2πimx = e2πimx and the annoying “modulo 1” operation can be removed. For m 6= 0, the sum on
the left side of (1) is a geometric series:

1

n

n∑
k=1

e2πimkα =
1

n

n∑
k=1

e2πimkα

=
1

n
× e2πimα 1− e2πimnα

1− e2πimα
.

The last step is possible because e2πimα 6= 1 (this is the only place where irrationality of α is used).
Now, the entire quantity on the right is bounded in absolute value by

1

n|1− e2πimα|

which goes to 0 as n → ∞. Further, if f = e0, then the sum on the left side of (1) is equal to 1 for
any n. Since ∫ 1

0
em(x)dx = δm,0

we see that (1) is true when f = em for any m ∈ Z. Clearly, it then holds for any finite linear
combinations4 of em.

Step-3: On the other side, we observe that if (1) is proved for f ∈ C(S1) (this means f ∈ C[0, 1]

with the property that f(0) = f(1)), then the same follows for indicator functions. To see this, first
show that given [a, b] and any ε > 0, we can find f, g ∈ C[0, 1] such that (a) 0 ≤ f, g ≤ 1, (b) f is
supported in [a+ ε, b− ε], (c) g is supported in [a− ε, b+ ε], (d) f ≤ 1a,b ≤ g. Here all addition is
modulo 1, as noted above. We leave it as an exercise to show that such f, g exist and that one can
in fact take f, g to be smooth (we do not need that here).

Then,

1

n

n∑
k=1

f(kα) ≤ 1

n

n∑
k=1

1[a,b](kα) ≤ 1

n

n∑
k=1

g(kα) and
∫
f(x)dx ≤ b− a ≤

∫
g(x)dx

4Functions of the form f(x) =
∑p
m=−p cmem(x) for some p and some cm ∈ C, are called trigonometric polynomials.
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By assumption, that (1) holds for continuous functions, we see that∫
f(x)dx ≤ lim inf

n→∞

1

n

n∑
k=1

1[a,b](kα) ≤ lim sup
n→∞

1

n

n∑
k=1

1[a,b](kα) ≤
∫
g(x)dx.

But
∫
g(x)dx−

∫
f(x)dx ≤ 4ε (since g − f ≤ 1 and equal to zero except on two intervals on length

2ε centered at a and b). Hence, the lim inf and lim sup in the above inequalities and the number
b− a, all three are within 4ε of each other. As ε is arbitrary, the limit exists and is equal to b− a.

Step-4: From Step-2, we have the result for trigonometric polynomials and by Step-3 we would
be done if we had the result for continuous functions on S1. Another approximation is required,
this time provided by Fejér’s theorem, which states that if C(S1) is endowed with the sup-norm
metric (d(f, g) = max |f(x) − g(x)|), then trigonometric polynomials form a dense subset. This
theorem is discussed at length in the chapter on approximation, but for now you may find it an
exercise to derive it from the Stone-Weierstrass’ theorem.

Given f , apply Fejér’s theorem to find a trigonometric polynomial T such that ‖f − T‖sup < ε.
Then, ∣∣∣ ∫ f(x)dx−

∫
T (x)dx

∣∣∣ < ε and
∣∣∣ 1
n

n∑
k=1

f(kα)− 1

n

n∑
k=1

T (kα)
∣∣∣ < ε.

Therefore, letting N →∞ and using the result for T , we see that∫
f(x)dx− ε < lim inf

n→∞

1

n

n∑
k=1

f(kα) ≤ lim sup
n→∞

1

n

n∑
k=1

f(kα) <

∫
f(x)dx+ ε.

As ε is arbitrary, the limit of 1
n

∑n
k=1 f(kα) exists and is equal to

∫
f(x)dx. �

Exercise 2. Let α, β ∈ [0, 1). Find conditions under which {αn+ β : n ≥ 1} is equidistributed.

Summary: Steps 1, 3, 4 have general lessons in analysis. One is that for any statement about sets,
it is good to find the analogous statement for functions, and vice versa. Second is of approach-
ing problems by approximation - prove results for sufficiently nice functions, and then for more
general functions by approximation.

But once we put aside these general lessons, the key step is the use of complex exponentials.
This is the subject of Fourier series. More specifically, the idea of studying exponential sums
to understand a sequence of numbers is a far reaching one. We shall see more of it in the next
section. The use of characteristic functions to prove central limit theorem in probability may be
also thought of as an outgrowth of the above use to show equidistribution.

2. WEYL’S EQUIDISTRIBUTION FOR POLYNOMIALS EVALUATED AT INTEGERS

Let P (x) = αdx
d + . . . + α1x + α0 be a polynomial with real coefficients. What can we say

about the equidistribution of the sequence P (n), n ≥ 1? If all the αk are rational, then P (n) is
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also rational, and in fact there are only a finite number of values taken by P (n) as n varies over
integers. No equidistribution can be hoped for. Further, α0 is fairly irrelevant, since it shifts
the entire sequence and cannot change the equidistribution property. Thus the question is what
happens if one of α1, . . . , αd is irrational? One example is the sequence αn2, n ≥ 1.

Theorem 1 (Weyl’s equidistribution for polynomials). Let P (x) = αdx
d + . . . + α1x + α0 where at

least one of α1, . . . , αd is irrational. Then the sequence {P (n) : n ≥ 1} is equidistributed in [0, 1).

We shall only prove a limited version which indicated the difficulties of the general case.

Theorem 2 (Weyl’s equidistribution for quadratics). Let P (x) = αx2 + βx+ γ where α is irrational.
Then the sequence {P (n) : n ≥ 1} is equidistributed in [0, 1).

I cannot improve on the presentation of the proof in Sayantan Khan’s notes. I recommend
reading from those notes and the reference given there.

Presentation topic: Proof of equidistribution for polynomials.

3. SAYING IT IN THE LANGUAGE OF WEAK CONVERGENCE

What we are discussing here is convergence of measures. Recall that by Riesz’s representation
theorem, the dual of the Banach space C(S1) (with sup-norm) is the space of all complex Borel
measures on S1. In concrete terms, these are of the form µ = µ1−µ2 + iµ3− iµ4, where µi are finite
positive Borel measures (if you want a unique representation like this, then some conditions on
singularity of µ1 and µ2, etc., must be imposed). It acts on C(S1) by integrating w.r.t µ, of course.

Recall the notion of weak-* convergence on the dual of a Banach space wherein Ln
w∗→ L if

Ln(x) → L(x) (in C) for all x in the Banach space. On C(S1)∗, this means that µn → µ (weakly) if
and only if

∫
fdµn →

∫
fdµ for all f ∈ C(S1).

In general, if µn → µ, it is not true that µn(A) → µ(A) (indicator functions are not continuous
in general). In fact, it is not difficult to show that µn(A) → µ(A) if and only if µ(∂A) = 0. For
example, if µn is the uniform probability measure on [1

2 −
1
n ,

1
2 + 1

n ], then µn → δ 1
2

(the measure

that puts mass 1 at the point 1
2 ). However, µn[0, 1

2 ] = 1
2 does not converge to µ[0, 1

2 ] = 1.
If ζ1, ζ2, . . . is a sequence in S1, then we may form the empirical measures µn = 1

n(δζ1 + . . .+ δζn)

that puts mass 1/n at each of the first n points of the sequence (with multiplicity if points are
repeated). Equidistribution means µn → m, the normalized Lebesgue measure on S1. Weak
convergence implies that µn(I) → m(I) for any arc I (as ∂I consists of at most two points, and
m puts zero mass on points). Note that this is not true for general Borel sets. For example, if
A = {ζ1, ζ2, . . .}, then µn(A) = 1 for all n but m(A) = 0.

In this language, what we have been doing for a sequence x1, x2, . . . is to consider the sequence
of empirical measures µn and asking if they converge to uniform measure on [0, 1). The main idea
of Weyl is summarized as saying that this is true if and only if

∫
em(t)dµn(t)→ 0 as n→∞ for any

non-zero integerm. It is not necessary for µn to come from a sequence, this is true for any sequence
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of probability measures on S1. In particular, we shall use the following version with triangular
arrays replacing sequences. By a triangular array, we mean a collection {{ξn,1, . . . , ξn,n} : n ≥ 1}
of elements of S1. We say that it is equidistributed if the empirical measures µn = 1

n(δξn,1 + . . . +

δξn,n) converges to m(·), as n → ∞. By the discussion so far, this is equivalent to convergence of
exponential sums as in the following lemma. Observe that we do not need to consider exponential
sums with negative powers since ξ−1 = ξ for ξ ∈ S1.

Lemma 3. A triangular array {{ξn,1, . . . , ξn,n} : n ≥ 1} in S1 is equidistributed if and only if

1

n

n∑
k=1

ξpn,k → 0

as n→∞, for every integer p ≥ 1.

4. DISTRIBUTION OF ZEROS OF POLYNOMIALS

Figure 4 shows that roots of certain random polynomials are concentrated close to the unit circle
in the complex plane, and the angular distribution is roughly uniform. In this section we want to
prove a theorem of this nature. Randomness will not play any role.

Consider a sequence of complex polynomials

fn(z) + an,nz
n + an,n−1z

n−1 + . . .+ an,1z + an,0

= an,n(z − ζn,1) . . . (z − ζn,n).

Let ζn,k = rn,ke
2πiθn,k and let ξn,k = e2πiθn,k . To make precise the theorem suggested by the pic-

tures, introduce the empirical measures µn = 1
n(δζn,1 + . . . + δζn,n). Let µ be the uniform measure

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

FIGURE 3. Zeros of two random polynomials of degree 80. Left: Coefficients are
±1 with equal probability. Right: Coefficients uniformly distributed in [0, 1]. The
unit circle is shown in red.
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on S1, i.e., µ(A) is the normalized Lebesgue measure of A ∩ S1 for any Borel set A ⊆ C. Then we
show the following theorem.

Theorem 1. Assume that there exist 0 < b < B < ∞ such that b ≤ |an,k| ≤ B for all k ≤ n and for all
n ≥ 1. Then µn → µ as n→∞.

The convergence of µn to µ is exactly the same as the pair of statements below, taken together.

(1) (Radial distribution converges to δ1): µn{z : 1 − δ < |z| < 1 + δ} → 1 as n → ∞. This is
clearly equivalent to weak convergence of the probability measures 1

n(δrn,1 + . . .+ δrn,n) on
R to the degenerate measure δ1.

(2) (Angular distribution converges to uniform on S1): µn{z : α < arg z < β} → β−α
2π for any

0 ≤ α < β ≤ 2π. This is clearly equivalent to the equidistribution of the triangular array
{{ξn,1, . . . , ξn,n} : n ≥ 1}.

We prove the theorem in steps as follows.

(1) Show that most of the roots have absolute value close to 1. This takes care of radial distri-
bution.

(2) Show that 1
n

∑n
k=1 ζ

m
n,k is small. This is easier because it is a symmetric polynomial of the

roots and hence it can be expressed in terms of the coefficients of the polynomial.
(3) By the first step, ξn,k and ζn,k are almost the same, for most zeros. Then use the second step

to conclude that 1
n

∑n
k=1 ξ

m
n,k is small.

(4) Invoke Lemma 3 to conclude equidistribution.

Step-1: A first observation that we make is that all the zeros have absolute value between b/(B+b)

and (B+ b)/b. Indeed, |fn(z)| ≥ b−B(|z|+ |z|2 + . . .+ |z|n) ≥ b−B |z|
1−|z| which is strictly positive

if |z| < b/(B + b). Hence such a z cannot be a root.
For the same reason, the polynomial f∗n(z) := znfn(1/z) = an,n+an,n−1z+ . . .+an,0z

n has roots
with absolute value less than b/(B + b). But the roots of f∗n are the reciprocals of the roots of fn,
hence fn has no roots with absolute value greater than (B + b)/b.

Step-2: The second observation is that for any δ > 0, there are numbers Mδ such that fn has at
most Mδ roots whose absolute value are either less than 1− δ or greater than 1 + δ.

This is easy to see by a compactness argument. Let H denote the set of all power series with
coefficients bounded between b and B in absolute value. Observe that the radius of convergence
is equal to 1 for all f ∈ H. On any subdisk D(0, 1 − δ), we have the uniform bound |f(z)| ≤
B/(1 − |z|) ≤ B/δ for all f ∈ H. hence by Montel’s theorem5, H is a normal family. Therefore, if
there were a sequence of polynomials fn in H with at least `n roots in D(0, 1− δ), where `n →∞,
then by taking a subsequential limit we would get a power series f ∈ H that has infinitely many

5Montel’s theorem is an overkill here. Can argue directly by taking subsequential limits of coefficients...
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zeros in D(0, 1 − δ). But this is impossible as f is non-zero (since |f(0)| ≥ b) and is holomorphic
on the unit disk. This proves a uniform upper bound Mδ on the number of roots in D(0, 1− δ) for
any f ∈ H.

Since the number of roots of fn of absolute value greater than 1 + δ is the same the the number
of roots of f∗n in D(0, 1/(1 + δ), and f∗n ∈ H, we also get a similar uniform bound for the number
of zeros outside D(0, 1 + δ).

Step-3: We now study the power sums of roots. For any x1, . . . , xn, recall the elementary symmetric
polynomials ek(x) =

∑
i1<...<ik

xi1 . . . xik and the power symmetric polynomials pk(x) = xk1 + . . . +

xkn. When applied to the roots of the polynomial f , the elementary symmetric polynomials are
easily expressed in terms of the coefficients as ek(ζ) = (−1)k

an−k
an

. What we want is to control
pk(ζ). For this, we must express pk in terms of e1, . . . , ek. For example, p1 = e1, p2 = e2

1 − 2e2.
More generally, one can see by induction that there are some universal polynomials Qk (it is a
homogeneous polynomial in k variables and has degree k) such that pk = Qk(e1, . . . , ek). It is
important to note that the coefficients of Qk do not depend on n at all6.

Now |ek(ζ)| ≤ |an−k|
|an| ≤

B
b , we get the bounds (here we assume that B ≥ 1, for if not, we can

replace it by 1)

1

n
|pk(ζ)| ≤ Ck(B/b)

k

n
(1)

where Ck is the sum of absolute values of the coefficients of all monomials in Qk.

Step-4: Next we study power symmetric sums of ξk = ζk/|ζk|, 1 ≤ k ≤ n. We compare it to
1
n |pk(ζ)|.

∣∣∣ 1
n
pk(ξ)−

1

n
pk(ζ)| ≤ 1

n

n∑
j=1

|1− |ζj |k| ≤
k((B + b)/b)k

n

n∑
j=1

|1− |ζj ||.

In the last step we used the result from Step-1 that |ζj | ≤ B+b
b (and that the derivative of x 7→ xk is

kxk−1). Fix any δ > 0 and split the sum into terms with 1− δ ≤ |ζj | ≤ 1 + δ and the rest. The rest
consists of at most Mδ terms (by Step-2) each of which is bounded by (B + b)/b (by Step-1). The
first summan has all terms bounded by δ. Hence,∣∣∣ 1

n
pk(ξ)| ≤ |

1

n
pk(ζ)|+ δ +

(B + b)Mδ

bn

≤ Ck(B/b)
k

n
+ δ +

(B + b)Mδ

bn

by (1). Let n→∞ and then δ → 0 to see that 1
npk(ξ)→ 0 as n→∞, for every k ≥ 1.

6While we do not need the explicit form, these relationships are expressed by Newton’s identities: pk = (−1)k−1kek−∑k−1
j=1 (−1)

k−j+1ek−j pj . See this Wikipedia article for more on these relationships.
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In conclusion, Step-4 together with Lemma 3 shows that ξn,k, n ≥ k, is equidistributed on S1.
By Step-2 we know that the empirical distribution of radii of zeros converges to δ1. This completes
the proof of the Theorem 1. �

Theorem 1 “proves” the first picture in Figure 4 but not the second one!). This is a limitation of
our method, but the point was not to derive the strongest results, but to illustrate the applicability
of Weyl’s method of using exponential sums. Here is a slight strengthening of the theorem, by
being more quantitative in Step-2.

A quantitative bound for number of roots: Well-known theorems in complex analysis express
the number of zeros of a holomorphic function in terms of certain integrals (eg., the argument
principle). A convenient one is Jensen’s formula which states that if f is holomorphic in a neigh-
bourhood of D(0, R) and f(0) 6= 0, then∫ 2π

0
log |f(Reiθ)|dθ

2π
− log |f(0)| =

∑
ζ:f(ζ)=0

log+

(
R

|ζ|

)
.

Here log+ x = max{log x, 0}. On the right zeros are counted with multiplicities, as always.
Apply this to polynomial f(z) = anz

n+ . . .+a1z+a0 where b ≤ |ak| ≤ B. Suppose 0 < r < R <

1. If nf (r) is the number of zeros of f in D(0, r), then the right hand side is at least nf (r) log(R/r),
since each zero in D(0, r) contributes log(R/r) (and others contribute a non-negative amount). The
left hand side is upper bounded by log(B/(1−R))+log(1/b). This is because− log |f(0)| ≤ log(1/b)

and |f(z)| ≤ B/(1− |z|) for any |z| < 1. Thus, we arrive at

nf (r) log
R

r
≤ log

B

b(1−R)

This gives a quantitative bound for Mδ in terms of b and B.

Exercise 2. Use the quantitative bound onMδ to strengthen Theorem 1 to allowB and 1/b to grow
with n. Perhaps the condition Bn + 1

bn
= o(nε) for every ε > 0 suffices.

5. ERDÖS-TURAN LEMMA

While weak convergence (which can be metrized, when restricted to probability measures) is
the usual notion of convergence, many stronger metrics are sometimes used (perhaps on subsets
of probability measures). Of course, convergence in these stronger metrics is a stronger result than
convergence in weak sense. Here we introduce one of these distances and a quantitative version
of Weyl’s lemma.

For µ, ν Borel probability measures on S1, let KS(µ, ν) = sup
I
|µ(I)− ν(I)| . Here the supremum

is over all arcs in S1. This is called the Kolmogorov-Smirnov distance.

Exercise 1. Show that there exist probability measures µn and µ on S1 such that µn → µweakly but
not in Kolmogorov-Smirnov distance. However, when µ = m, the normalized Lebesgue measure,
then show that µn → m in Kolmogorov-Smirnov distance if and only if µn → m weakly.
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Because of the second part of the exercise above, when talking of equidistribution on the circle,
KS distance is equivalent to weak convergence. Erdös and Turán found a quantitative version
of Weyl’s lemma by giving a bound on the KS distance of a measure from the uniform measure,
in terms of the Fourier coefficients of the measure. Note that even if two metrics are equivalent
(in the sense that they induce the same topology), quantitative estimates in one metric do not
automatically lead to quantitative estimates in the other metric.

Theorem 2. [Erdös-Turán] Let µ be a probability measure on S1 and let m denote the uniform measure on

S1. Then, KS(µ,m) ≤ 4

[
n∑
k=1

|µ̂(k)|
k + 1

n

]
for all n ≥ 3.

The proof given here is from an unpublished note by Mikhail Sodin (personal communication).

First we recall some facts about the Fejér kernel KN (u) = 1
N+1

sin2(N+1
2

2πu)
sin2( 1

2
2πu)

(all functions here are

on S1 or equivalently 1-periodic on R). Then KN ≥ 0 and its integral over [0, 1] is 1. Further,
KN (u) ≤ 1/(N + 1) sin2(πu). Using the fact that sin(x)/x is decreasing on [0, π/2] and hence
sin(x) ≥ 2x/π, we see that for δ < 1

2∫
[−δ,δ]c

KN (u)du ≤ 2

4(N + 1)

∫ 1
2

δ

1

u2
du

≤ 1

2(N + 1)δ
(1)

which is a better bound than what we used when proving Fejér’s theorem (and the improvement
will play a role below).

Proof of Theorem 2. Fix a probability measure µ on S1 = [0, 1) and define the function f : [0, 1] 7→ R
by f(t) = t−µ[0, t]−A, where A is chosen so that f̂(0) =

∫ 1
0 f(t)dt = 0 (clearly possible). Observe

that f(0) = f(1) = 0 and extend f as an 1-periodic function on R. Further note that for any
0 < s < 1 and any t,

f(t+ s)− f(t) = s− µ(t, t+ s] ≤ s.

Let t0 be a point at which |f(t0)| = ‖f‖. Then by the above inequality,

(1) if f(t0) > 0, then f(t) ≥ ‖f‖ − 2δ for t ∈ [t0 − 2δ, t0],

(2) if f(t0) < 0, then f(t) ≤ −‖f‖+ 2δ for t ∈ [t0, t0 + 2δ].

We shall make the choice δ = 2/(N + 1) later (since we need δ < 1
2 for the estimate (1), we assume

N ≥ 3 henceforth).
Next recall σNf from the proof of Fejér’s theorem:

σNf(t) =

N∑
k=−N

(
1− |k|

N + 1

)
f̂(k)e2πikt =

∫
I
f(s)KN (t− s)ds.
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In the first case (when f(t0) > 0),

σNf(t0 − δ) =

∫
[−δ,δ]

f(t0 − δ − s)KN (s)ds+

∫
[−δ,δ]c

f(t− s)KN (s)ds

≥ (‖f‖ − 2δ)

∫
[−δ,δ]

KN (s)ds− ‖f‖
∫

[−δ,δ]c
KN (s)ds

= ‖f‖

(
1− 2

∫
[−δ,δ]c

KN (s)ds

)
− 2δ

≥ ‖f‖
(

1− 1

δ(N + 1)

)
− 2δ.

Remembering that δ = 2/(N + 1), we get ‖f‖ ≤ 2σNf(t0 − δ) + 2δ. This was the case when
f(t0) > 0. If f(t0) < 0, then follow the same steps to get ‖f‖ ≤ 2σNf(t0 + δ) + 2δ. Overall, the
conclusion is that in all cases,

‖f‖ ≤ 2‖σN‖+
4

N
.

Now use the series form of σNf to see that

‖σNf‖ ≤
N∑

k=−N
|f̂(k)| = 2

N∑
k=1

|f̂(k)|

where the last equality is because f̂(0) = 0 (by choice of A) and f̂(−k) = f̂(k). For k ≥ 1 we have

f̂(k) =

∫ 1

0
e−2πikt(µ−m)[0, t]dt (the integral against A is 0)

=

∫ 1

0

∫ 1

0
e−2πikt1[0,t](s) d(µ−m)(s) dt

=

∫ 1

0

∫ 1

0
e−2πikt1[0,t](s) dt d(µ−m)(s) (justify the use of Fubini)

=

∫ 1

0

1− e−2πiks

−2πik
d(µ−m)(s)

=
1

2πik
µ̂(k).

In the last step we used the fact that
∫ 1

0 d(µ − m) = 0 and
∫ 1

0 e
−2πiktdm(t) = 0 (since k ≥ 1).

Plugging this into the bound on ‖σNf‖ and using that in the bound for ‖f‖, we arrive at

‖f‖ ≤ 2

π

N∑
k=1

|f̂(k)|
k

+
4

N
.

Now for any [a, b] ⊆ [0, 1), we see that |f(b)− f(a)| ≤ 2‖f‖. But |f(b)− f(a)| = |µ(a, b]−m(a, b]|.
Thus we get the bounds |µ(a, b]− (b− a)| ≤ 4

π

∑N
k=1

1
k |f̂(k)|+ 4

N . This completes the proof. �
28



6. MATCHING SETS OF POINTS ON THE TORUS

Let Td be the d-dimensional torus that we identify with the cube (−π, π]d. Given two sets of
n distinct points {x1, . . . , xn} and {y1, . . . , yn}, we look for a permutation π ∈ S(n) such that
the average matching cost C := 1

n

∑n
k=1 d(xk, yπ(k)) is minimized. This is one of many different cost-

functions that can be imposed, for example, one can consider `p norms of (d(x1, yπ(1)), . . . , d(xn, yπ(n))),
but the only one that we consider here.

The following is a deep and famous theorem

Theorem 1 (Ajtai–Komlos–Tusnady). Let xi, yi, i ≤ n, be chosen uniformly at random from Td. Then
the average matching cost Cn satisfies

E[Cn] �


1√
n

if d = 1,
√

logn√
n

if d = 2,

1
n1/d if d ≥ 3.

When we place n points in Td, typical inter-point distance is n−1/d. This explains the d ≥ 3 result
above. Interestingly, when d = 2, we have an extra factor of

√
log n, which needs an explanation.

Our interest is not merely in proving this theorem for random points, but to establish a lemma
similar to Erdös–Turan.

Definition 2. Let µ and ν be two probability measures on Td. The Kantorovich distance between
them is defined as

W1(µ, ν) := inf

{∫
Td×Td

d(x, y) dθ(x, y) : θ has marginals µ, ν
}
.

When µ is the uniform distribution on {x1, . . . , xn} and ν is the uniform distribution on {y1, . . . , yn},
it is not hard to see thatW1(µ, ν) is precisely the average matching cost7.

Recall that the Fourier coefficients of a probability measure µ on Td are given by

µ̂(k) =
1

(2π)d

∫
Td
e−i〈x,k〉dµ(x), for k ∈ Zd.

We establish the following lemma analogous to the Erdös-Turan lemma, except that the notion of
distance is different now. Below, if k = (k1, . . . , kd), we write |k|2 = k+

1 . . .+ k+2
d (using any other

norm on Rd will only change the constant C below).

Lemma 3 (Bobkov–Ledoux). Let µ, ν be probability measures on Td. Then

W1(µ, ν) ≤ C

√√√√ ∑
1≤|k|≤N

1

|k|2
|µ̂(k)− ν̂(k)|2 +

1

N


Assuming this lemma, we can easily derive Theorem 1.

7The reason is that every doubly stochastic matrix is a convex combination of permutation matrices.
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Proof of Theorem 1. The average matching cost is just W1(µ, ν), where µ = 1
n

∑n
k=1 δxk and ν =

1
n

∑n
k=1 δyk . From the lemma of Bobkov and Ledoux, and applying Cauchy-Schwarz, we get

E[W1(µ, ν)] ≤ C

√√√√ ∑
1≤|k|≤N

1

|k|2
E[|µ̂(k)− ν̂(k)|2] +

1

N

 .
Fix k and write

µ̂(k)− ν̂(k) =
1

n

n∑
p=1

e−i〈xp,k〉 − e−i〈yq ,k〉.

This is a sum of 2n uncorrelated random variables of unit variance, hence

E[|µ̂(k)− ν̂(k)|2] =
4

n
.

Therefore,

E[W1(µ, ν)] ≤ C

 1√
n

√√√√ ∑
1≤|k|≤N

1

|k|2
+

1

N

 .
Now, by an elementary calculation (e.g., compare with the integral

∫
1≤|x|≤R

1
|x|2dx),

∑
1≤|k|≤N

1

|k|2
�


1 if d = 1,

logN if d = 2,

Nd−2 if d ≥ 3.

In the resulting bound for E[W1(µ, ν)], the optimal choice of N is seen to be N =
√
n (for d = 1),

N = n/
√

log n (for d = 2) and N = n1/d) for d ≥ 3, resulting in the bounds

E[W1(µ, ν)] .


1/
√
n if d = 1,

√
log n/

√
n if d = 2,

1/n1/d if d ≥ 3.

This completes the proof. �

It remains to prove the Lemma of Bobkov and Ledoux. The key tool is a fundamental dual
formulation of the Kantorovich distance. Recall that a Lip(c) function on a metric space is one that
satisfies |f(x)− f(y)| ≤ d(x, y).

Lemma 4 (Kantorovich–Rubinstein). Let µ and ν be probabilty measures on Td. Then

W1(µ, ν) = sup

{∫
Td
udµ−

∫
udν : u ∈ Lip(1)

}
.

The infimum may also be taken over u ∈ C1 with |∇u| ≤ 1.
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Proof. Let u be smooth with |∇u| ≤ 1. Then by the Plancherel/Parseval relation, we have∫
Td
udµ−

∫
Td
udν =

∑
k∈Zd

û(k)(µ̂(k)− ν̂(k))

The smoothness of u ensures that the Fourier coefficients û(k) := 1
(2π)d

∫
Td u(x)e−i〈x,k〉dx decay

faster than any power of |k|, hence the above series is summable (as µ̂, ν̂ are bounded by 1). Ob-
serve that the term k = 0 vanishes, as µ̂(0) = ν̂(0) = 1. Hence, by Cauchy-Schwarz inequality,

∑
k 6=0

û(k)(µ̂(k)− ν̂(k)) ≤

∑
k 6=0

|û(k)|2|k|2
 1

2
∑
k 6=0

1

|k|2
|µ̂(k)− ν̂(k)|2

 1
2

.

As ∂̂ju(k) = −ikj û(k) and using Plancherel, we see that the first factor is equal to ‖∇u‖2, which is
at most (2π)d as |∇u| ≤ 1 pointwise.

The second factor is summable if we assume additional smoothness of µ and ν, but not in
general. For general µ, ν, we replace them by µ′ = µ ? g and ν ′ = ν ? g where g is a smooth
probability density. As µ′, ν ′ have smooth densities, we apply the bound above for them, and use
the fact that µ̂′(k) = µ̂(k)ĝ(k) and ν̂ ′(k) = ν̂(k)ĝ(k) to get

W1(µ′, ν ′) ≤ C

∑
k 6=0

|ĝ(k)|2

|k|2
|µ̂(k)− ν̂(k)|2

 1
2

.

By the obvious coupling dθ(x, y) = g(y − x)dµ(x)dy (pick x according to µ and then pick y − x
according to g), we see thatW1(µ, µ′) ≤ σg, where σ2

g =
∫
Td |x|

2g(x)dx is the second moment of g.
SimilarlyW1(µ, µ′) ≤ σg. Thus,

W1(µ, ν) ≤ C

∑
k 6=0

|ĝ(k)|2

|k|2
|µ̂(k)− ν̂(k)|2

 1
2

+ 2σg.

We can optimize over all g. If we make the choice g = KN , the d-dimensional Fejér kernel of
order N , then we have seen (in d = 1, it is similar in higher dimensions) that σg � 1

N . Further
ĝ(k) = (1− |k|N )+. Therefore, we arrive at

W1(µ′, ν ′) .

 ∑
1≤|k|≤N

1

|k|2
|µ̂(k)− ν̂(k)|2

 1
2

+
1

N
.

This completes the proof. �

7. HOW TO DISTRIBUTE POINTS UNIFORMLY ON A SQUARE?

What is the best way to choose n points in the unit square so that they are as uniformly dis-
tributed as possible? If the underlying space was S1, then the choice seems obvious, pick n equi-
spaced points. But for the two-dimensional question, we need to be more precise about our cri-
terion for “as uniformly distributed as possible”. Changing the space and changing our measure
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of uniformity, one gets a variety of inequivalent problems, some of which are solved, some open.
We stick to one specific choice in this brief introduction to this topic8.

Notation: Let Q = [0, 1)2 (we use right-open, left-closed intervals and squares for usual reasons
that we can partition them into smaller intervals or squares of the same kind). Always PN (or
simply P) denotes a subset of N points in Q. Its discrepancy in any set A ⊆ Q is defined as
#(P ∩ A)− n|A|. In particular, we write DP(x, y) for the discrepancy of the set [0, x)× [0, y). The
total discrepancy of P is defined as

D(P) =

(∫
Q
|DP(x, y)|2 dxdy

) 1
2

.

The goal is to find or get estimates on the lowest possible discrepancy. Note that the answer
would be the same (up to constants) if we considered (as may seem more natural) all rectangles
[x1, x2)× [y1, y2) and considered the L2 norm in the four variables x1, x2, y1, y2.

Obvious generalizations (not considered here) include changing the space Q (eg., [0, 1)d or
sphere or disk etc.), changing the class of sets (eg., can allow rectangles with any orientation,
the collection of all disks, or convex sets), and changing the criterion by which discrepancies of
sets in the collection are combined to get the total discrepancy (eg., Lp norm in a suitable sense, in
particular, the worst-case discrepancy corresponding to p =∞).

The result that we shall prove is this.

Theorem 1 (Roth, Davenport). There exist constants 0 < c < C <∞ such that

(1) D(PN ) ≥ c logN for any N -element subset PN ⊆ Q,

(2) There exists an N -element subset P∗N such that D(P∗N ) ≤ C logN .

Proof of the lower bound: We present Roth’s proof9 of the lower bound. Fix a set P with N

elements. By Cauchy-Schwarz inequality, for any f ∈ L2(Q), we have

D(P) ≥ 〈D, f〉√
〈f, f〉

.

The strategy is to find a function f such that the right hand side is at least c logN . But without
knowing P , how can one produce such a function? The idea is to consider not one, but a family
of functions F such that for any N -point set P , there is one f ∈ F that works. We introduce this
class of functions now.

For a natural number p and 0 ≤ k ≤ 2p − 1, let Ipk denote the dyadic interval [k2−p, (k + 1)2−p).
We refer to Ipk × I

q
` as a (p, q)-dyadic rectangle. For an interval I , let I(−) and I(+) denote the left

half and right half, respectively. Let hpk denote the Haar function supported on Ipk and taking values

8The material here is taken largely from the book Irregularities of distribution by Beck and Chen.
9From the book of Beck and Chen, one gathers that later improvement, particularly by Schmidt, are incorporated

here.
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±1 on Ipk(±). These form an orthogonal family (across p and k) in L2([0, 1)). The function hpk ⊗ h
q
`

is supported on Ipk × I
q
` and takes the values ±1 in a checkerboard pattern in the four quarters of

the dyadic rectangle. Now define

Gp,q =

{
f : Q 7→ {+1,−1} : f =

2p−1∑
k=0

2q−1∑
`=0

±hpk ⊗ h
q
`

}
.

This family consists of 22p+q functions by the choice of the signs. For n ≥ 0, set

Fn = {f : Q 7→ R : f = fn + fn−1 + . . .+ f0 with fp ∈ Gp,n−p}.

This is the family of functions mentioned in the outline above, for a suitable value of n (to break
the suspense, n � logN ).

Lemma 2. Fix n ≥ 0 and 0 ≤ r < s ≤ n. Then Gr,n−r ⊥ Gs,n−s in L2(Q). As a corollary, for any
f ∈ Fn, we have 〈f, f〉 = n+ 1.

Proof. Enough to show that hrk ⊗ h
n−r
` ⊥ hsk′ ⊗ h

n−s
`′ for any k, `, k′, `′ (of course we mean 0 ≤ k ≤

2r − 1, etc.). Fix the second co-ordinate y and integrate over the first co-ordinate x. But their inner
product is just 〈hrk, hsk′〉〈h

n−r
` , hn−s`′ 〉 (these inner products are in L2([0, 1))). As r 6= s, both factors

vanish.
If f = f0 +. . .+fn with fp ∈ Gp,n−p, then by the orthogonality of fps and the fact that 〈fp, fp〉 = 1

for each p (since fp takes values ±1 throughout Q), we conclude that 〈f, f〉 = n+ 1. �

Lemma 3. Fix n such that 2n ≥ N . Then for any N -point set P ⊆ Q, there exists f ∈ Fn such that
〈DP , f〉 ≥ (n+ 1)N2−n−5.

Proof. We shall first show that for each 0 ≤ p ≤ n, there is some fp ∈ Gp,n−p such that 〈DP , fp〉 ≥
N2n−4. Setting f = f0 + . . .+ fn, we get the function as claimed in the lemma.

Now fix 0 ≤ p ≤ n − 1 and let q = n − p. We want fp of the form
∑2p−1

k=0

∑2q−1
`=0 ±h

p
k ⊗ h

q
` that

has all large an inner product with DP(·) as possible. First of all, choose the signs in the sum so
that the inner product of DP with each summand is non-negative. This allows us to drop terms
without increasing 〈DP , f〉. In fact, we shall only consider those k, ` for which P has no points in
Ipk × I

q
` . Note that there are at least 2n −N such pairs (k, `).

Take any such (k, `). Since #(P ∩ [0, x) × [0, y)) stays constant over x ∈ Ipk if we fix y ∈ Iq` , but
hpk(x) is +1 for x ∈ Ipk(+) and −1 for x ∈ Iqk(−), it follows that

∫∫
Ipk×I

q
`

#(P ∩ [0, x)× [0, y)) dxdy = 0.
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Further, writing h = 2−p−1 and k = 2−q−1 for simplicity, we have∫∫
Ipk×I

q
`

Nxy dxdy = N

∫∫
Ipk (−)×Iq` (−)

{xy − (x+ h)y − x(y + k) + (x+ h)(y + k)} dxdy

= N

∫∫
Ipk (−)×Iq` (−)

hk dxdy

= Nh2k2.

Now recall the definition of h, k and that p+ q = n to see that the last quantity is N2−2n−4. Thus,
in 〈DP , fp〉, each empty (p, n − p)-dyadic rectangle having no points of P contributes this much,
and the rest contribute a non-negative amount. Therefore,

〈DP , fp〉 ≥ (2n −N)N2−2n−4 ≥ N2−n−5

since 2n −N ≥ 2n−1 by the choice of n. The proof is complete. �

We put the ingredients together to get the lower bound in Theorem 1.
Take any N -point set PN and choose n such that 2N ≤ 2n < 4N . Then find f ∈ Fn such that

〈DPN , f〉 ≥ (n+ 1)N2−n−5. By the first lemma we know that 〈f, f〉 = n+ 1. Therefore,

‖DPN ‖L2 ≥
〈DPN , f〉√
〈f, f〉

≥
√
n+ 1 N 2−n−5 ≥ 2−9

√
logN.

This completes the proof of the lower bound. �

Proof of the upper bound: We present Davenport’s proof of the upper bound in Theorem 1. The
first choice that comes to mind is to place N points at (k/

√
N, `/

√
N), 1 ≤ k, ` ≤

√
N (ok,

√
N

may not be an integer, but it should be clear that it is a silly point that can be fixed). However, that
leaves long rectangles like ( 1√

N
, 2√

N
)×(0, 1) that have discrepancy of about

√
N . An idea would be

to take this lattice arrangement, and in each horizontal line, shift the points by a different amount
so as to “destroy” long empty rectangles. Clearly if we do the shifts in a regular manner, eg.,

1√
N

(k + kα, `) for some number α (these numbers have to be considered modulo 1), then it is
better to choose an irrational number α. complete this proof
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CHAPTER 3

Isoperimetric iequality

1. ISOPERIMETRIC INEQUALITY

Isoperimetric inequality is a well-known statement in the following form: Among all bodies in
space (in plane) with a given volume (given area), the one with the least surface area (least perimeter) is the
ball (the disk).

Several things need to be made precise. The notion of volume in space or area in the plane
are understood to mean Lebesgue measure on R3 or R2 or more generally on Rd (we denote it by
md(A)). Then of course we restrict the notion of “bodies” to Borel sets (or Lebesgue measurable
sets).

Still, in measure theory class we (probably!) did not study the notion of surface area of a Borel
set in R3 or the perimeter of a Borel set in R2. We first need to fix this notion. And then state a
precise theorem. First we state a form of the isoperimetric inequality which completely avoids the
notion of surface area or perimeter.

Theorem 1 (Isoperimetric inequality). Let A be Borel subsets of Rd and let B be a closed ball such that
md(A) = md(B). Then, for any ε > 0, we have md(Aε) ≥ md(Bε) where Aε = {x ∈ Rd : d(x, y) ≤
ε for some y ∈ A}.

How does this relate to the informally stated version above? If at all we can define the surface
area of A, it must be the limit (or lim sup or lim inf) of (md(Aε)−md(A))/ε as ε→ 0. For simplicity,
let us define the surface area (or “perimeter”) of a Borel set A ⊆ Rd as

σd(A) := lim sup
ε→0

md(Aε)−md(A)

ε

which is either a non-negative real number or +∞. If A is a bounded set with smooth boundary,
then the above definition agrees with our usual understanding of perimeter/surface area.

Theorem 1 clearly gives the following theorem as a corollary.

Theorem 2 (Isoperimetric inequality - standard form). Let A be Borel subsets of Rd and let B be a
closed ball such that md(A) = md(B). Then, σd(A) ≥ σd(B).

In this sense, we are justified in saying that Theorem 1 is stronger than Theorem 2. In addition,
note the great advantage of the former being easy to state for all Borel sets without having to define
the notion of surface area. However, we have omitted a key point in the isoperimetric inequality
which is the uniqueness of the surface-area-minimizing set.
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Theorem 3 (Equality in isoperimetric inequality). In the setting of Theorem 1 assume that A is closed.
If md(Aε) = md(Bε) for some ε > 0, then A = B(x, r) for some x ∈ Rd.

However, the analogous statement for Theorem 1 is false without further qualifications. For
example, if A is the disjoint union of a closed disk and a closed line segment, then it has the same
area and the same perimeter as the ball. But the uniqueness is “essentially true”, for example,
if one restricts to sets with smooth boundary or alternately by taking a more general notion of
perimeter (which does distinguish a disk from a union of a disk and a line segment). We shall
present two proofs of Theorem 1. A short one using the Brunn-Minkowski inequality and a longer
but more natural one by Steiner symmetrization.

Exercise 4. Show that the isoperimetric inequality is equivalent to the following statement: If
A ⊆ Rd is measurable, then |A|

d−1
d ≤ Cdσd(A) where C−1

d = d1− 1
d τ

1/d
d and τd = 2πd/2

Γ(d/2) is the
surface area of the unit sphere Sd−1.

Here is a proof of isoperimetric inequality in the plane under some restrictions.

Exercise 5. Let γ(t) = (x(t), y(t)), 0 ≤ t ≤ L be a simple smooth curve in the plane, parameterized
by its arc length, i.e., ‖γ̇(t)‖ = 1 for all t ∈ [0, 2π]. Let A be the area enclosed by γ and let L be the
length of γ.

(1) Show that the length of the curve is given by L2 =
∫ 2π

0 |γ̇(t)|2dt and A = −
∫ 2π

0 y(t)ẋ(t)dt.

(2) WLOG assume that
∫ 2π

0 y(t)dt = 0 and show that
∫ 2π

0 y(t)2dt ≤
∫ 2π

0 ẏ(t)2dt. [Hint: Assume
that the Fourier series y(t) =

∑
n∈Z ŷne

int converges nicely and uniformly]

2. BRUNN-MINKOWSKI INEQUALITY AND A FIRST PROOF OF ISOPERIMETRIC INEQUALITY

For simplicity write |A| for md(A), the d-dimensional Lebesgue measure. For nonempty sets
A,B ⊆ Rd, define their Minkowski sum A+B := {a+ b : a ∈ A, b ∈ B}.

Theorem 6 (Brunn-Minkowski inequality). If A,B are non-empty Lebesgue measurable subsets of Rd,
and if A+B is also Lebesgue measurable, then,

|A+B|1/d ≥ |A|1/d + |B|1/d.

The proof is very easy in one dimension. In fact, it is a continuous analogue of the following
inequality that we leave as an exercise.

Exercise 7 (Cauchy-Davenport inequality). Let A,B be non-empty finite subsets of Z. Then |A +

B| ≥ |A|+ |B| − 1 and the inequality cannot be improved (here |A| denotes the cardinality of A).
Use the same idea to prove Brunn-Minkowski inequality for d = 1.
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Proof of Theorem 1 using Brunn-Minkowski inequality. Assume |A| = |rB| where B is the unit ball
and r > 0. Then Aε = A+ εB and hence by Brunn-Minkowski

|Aε|1/d ≥ |A|1/d + ε|B|1/d

= r|B|1/d + ε|B|1/d

= |(r + ε)B|1/d.

Since (rB)ε = (r + ε)B, we have proved that |Aε| ≥ |(rB)ε| as required. �

Proof of Brunn-Minkowski inequality. The proof will proceed by proving it when the two sets are
rectangles (parallelepipeds) with sides parallel to the co-ordinate, then for finite unions of rectan-
gles, and finally

Step 1: Suppose A = x + [0, a1]× . . .× [0, ad] and B = y + [0, b1]× . . .× [0, bd] are any two closed
parallelepipeds with sides parallel to the axes (we shall refer to them as standard parallelepipeds).
Then A+B = x + y + [0, a1 + b1]× . . .× [0, ad + bd]. Thus,

|A|1/d + |B|1/d

|A+B|1/d
=

(
d∏

k=1

ak
ak + bk

)1/d

+

(
d∏

k=1

bk
ak + bk

)1/d

≤ 1

d

d∑
k=1

ak
ak + bk

+
1

d

d∑
k=1

bk
ak + bk

(AM-GM inequality)

= 1.

Step 2: Suppose A = A1 t . . . t Am and B = B1 t . . . t Bn are finite unions of standard closed
parallelepipeds with pairwise disjoint interiors. When m = n = 1 we have already proved the
theorem. By induction on m+ n, we shall prove it for all m,n ≥ 1. This is the cleverest part of the
proof.

Translating A or B does not change any of the quantities in the inequality, hence we may freely
do so. Assume m ≥ 2 without loss of generality (else interchange A and B).

Claim: There is at least one axis direction j ≤ d and a number t ∈ R such that each of the sets
A′ := A ∪ {x : xj ≤ t} and A′′ := A ∩ {x : xj < t} are both unions of atmost m − 1 standard
parallelepipeds with pairwise disjoint interiors.

Proof of the claim: Let R1 = [a1, b1]× . . .× [ad, bd] and R2 = [p1, q1]× . . .× [pd, qd] be two among
the parallelepipeds that comprise A. If Ij = [aj , bj ] ∩ [pj , qj ], then I1 × . . .× Id ⊆ R1 ∩ R2. But R1

and R2 have disjoint interiors, hence Ij must be empty or be a singleton for some j. This means
bj ≤ t ≤ pj or qj ≤ t ≤ aj , and we set t = bj or t = qj accordingly. The hyperplane {x : xj = t}
will do the job, since R1 will lie on one side of it and R2 on the other (the boundary of both may
intersect the hyperplane). The claim is proved.
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Set λ = |A′|/|A|. By the above claim, 0 < λ < 1 and each of A′ and A′′ is a disjoint union
of at most m − 1 parallelepipeds (with sides parallel to the axes). Now translate B along the
jth direction, i.e., for each s consider Bs := B + sej and let B′s = Bs ∩ {x : xj ≤ t} and B′′s =

Bs ∩ {x : xj ≥ t}. Choose a value of s such that |B′s| = λ|B| and set B′ = B′s and B′′ = B′′s .
By the induction hypothesis,

|A′ +B′| ≥
(
|A′|1/d + |B′|1/d

)d
= λ

(
|A|1/d + |B|1/d

)d
,

|A′′ +B′′| ≥
(
|A′′|1/d + |B′′|1/d

)d
= (1− λ)

(
|A|1/d + |B|1/d

)d
.

Further, observe that A′ +B′ ⊆ {x : xj ≤ 2t} and A′′ +B′′ ⊆ {x : xj ≥ 2t} and hence |(A′ +B′) ∩
(A′ +B′)| = 0, the intersection being contained in the hyperplane {x : xj = t}. Therefore,

|A+B| = |A′ +B′|+ |A′′ +B′′|

= λ
(
|A|1/d + |B|1/d

)d
+ (1− λ)

(
|A|1/d + |B|1/d

)d
=
(
|A|1/d + |B|1/d

)d
.

This completes the proof when A,B are finite unions of standard parallelepipeds.
Step 3: LetA andB be compact sets. LetQ = [−1, 1]d and fix ε > 0. Observe that compactness of

A implies that there exist x1, . . . , xn ∈ A (for some n) such that A ⊆ A′′ where A′′ = ∪ni=1(xi + εQ).
It is easy to see that A′′ ⊆ Aε√d and that A′′ may be written as a finite union of standard rectangles
whose interiors are pairwise disjoint. Similarly findB′′ = ∪mj=1(yj+εQ) that is a union of standard
rectangles whose interiors are pairwise disjoint and such that B ⊆ B′′ ⊆ Bε√d.

Then, observe that A′′ + B′′ ⊆ (A + B)2
√
dε. Since A′′ and B′′ are finite unions of standard

parallelepipeds, by the previous case, we know that Brunn-Minkowski inequality applies to them.
Thus,

|(A+B)2
√
dε| ≥ |A

′′ +B′′|

≥ (|A′′|1/d + |B′′|1/d)d

≥ (|A|1/d + |B|1/d)d.

This is true for every ε > 0. As A+B is compact we see that ∩ε>0(A+B)2
√
dε = A+B and hence

|(A + B)2
√
dε| ↓ |A + B| as ε ↓ 0. Therefore, Brunn-Minkowski inequality holds true when A and

B are compact.
Step 4: Let A and B be general Borel sets. If either of A or B has infinite Lebesgue measure,

there is nothing to prove. Otherwise, by regularity of Lebesgue measure, there are compact sets
A′ ⊆ A and B′ ⊆ B such that |A \ A′| < ε and |B \ B′| < ε. Then of course A + B ⊇ A′ + B′ and
hence

|A+B|1/d ≥ |A′ +B′|1/d ≥ |A′|1/d + |B′|1/d ≥ (|A| − ε)1/d + (|B| − ε)1/d.

Letting ε→ 0 we get the inequality for A and B. �
38



Remark 8. If we do not assume that A+B is measurable, then (see the last step) we still get

m∗(A+B)1/d ≥ |A|1/d + |B|1/d

where m∗ is the inner Lebesgue measure, m∗(C) := sup{m(K) : K ⊆ B, K compact}. We shall
see in the next section that A+B is not necessarily measurable.

Exercise 9. Let K be a bounded convex set in Rd. Fix a unit vector u ∈ Rd and let Kt := {x ∈
K : 〈x, u〉 = t} denote the sections of K for any t ∈ R. Let I = {t : |Kt| > 0} and let f : I 7→ R be
defined by f(t) = |Kt|1/(n−1). Show that I is an interval and that f is concave. [Note: Here |Kt|
denotes the (d− 1)-dimensional Lebesgue measure of Kt in the hyperplane {x ∈ Rd : 〈x, u〉 = t}.]

3. MEASURABILITY QUESTIONS

We want to exhibit measurable setsA,B ⊆ R such thatA+B is not measurable. In fact we shall
produce an example with B = A. This construction is due to Sierpinski10 and may also be taken
simply as a construction of a non-measurable set (quite different from the one usually presented
in measure theory class).

Step 1: Let K ⊆ [0, 1] be the usual 1/3-set of Cantor. Then K +K ⊇ [0, 2].
To see this, recall that Cantor set consists of numbers whose ternary expansion has digits 0 and

2 (but not 1). Hence, if x, y ∈ 1
2 · K = {u/2 : u ∈ K}, then x =

∑∞
i=1

xi
3i

and y =
∑∞

i=1
yi
3i

with
xi, yi ∈ {0, 1}. Now consider any t ∈ [0, 1] and write t =

∑∞
i=1

ti
3i

where ti ∈ {0, 1, 2}. Clearly, we
can find xi, yi ∈ {0, 1} such that xi + yi = ti for each i. Thus, a given t ∈ [0, 1] can be written as
x+ y with x, y ∈ 1

2 ·K and hence a number in [0, 2] can be written as a sum of two elements of K.

Step 2: Regard R as a vector space over Q. Then the first step says that the span of K is R. Hence,
by a standard application of Zorn’s lemma, there exists a basis B ⊆ K for the vector space.

Step 4: Define E0 = B t (−B) t {0} and En = En−1 + En−1 for n ≥ 1. From the previous step, it
follows that ⋃

n≥0

⋃
q≥1

1

q
En = R.

Indeed, given x ∈ R, write it as x = r1b1 + . . . + rnbn with n ≥ 1, ri ∈ Q, bi ∈ B. Taking q to be
the product of the denominator of ris, we get x = 1

q (p1b1 + . . .+ pnbn) with pi ∈ Z. Negating bi if
necessary (it will still be in E0), we may assume q ≥ 1 and pi ≥ 1.

Step 5: Letm be the smallest n for whichm∗(En) > 0. Since E0 is a subset of a set of zero measure,
m ≥ 1. Hence it makes sense to set A = Em−1. Then A is Lebesgue measurable (since its outer
measure is zero). We claim that A+A = Em is not Lebesgue measurable.

10We have taken this presentation from Rubel’s paper A pathological Lebesue measurable function.
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Indeed, ifEm was measurable, by Steinhaus’ lemma,Em+Em contains an open interval around
0 (since Em is symmetric, Em + Em is the same as Em − Em). But then Em+1 contains an interval
around 0. Thus, given any x ∈ R, we can find q ≥ 1 so that x/q ∈ Em+1. The conclusion is that
every element of R can be written as a linear combination of at most 2m+1 distinct elements of B.
But B is an infinite set (i.e., R has infinite dimensions over Q), and hence b1 + . . . + bk 6∈ Em+1 if
k > 2m+1 and bi are distinct elements of B. This contradiction can only be resolved by accepting
that Em cannot be measurable. �

Remark 10. There is also an example to show that the Minkowski sum of Borel sets need not be
Borel. However, the sum-set will necessarily be Lebesgue measurable.

Here is two simpler facts, one of which was used in the proof of Brunn-Minkowski inequality.

Exercise 11. Show that the Minkowski sum of two compact sets is R is necessarily compact. Show
that the Minkowski sum of two closed sets in R need not be closed.

4. FUNCTIONAL FORM OF ISOPERIMETRIC INEQUALITY

It is a general idea that a statement about sets must have an analogous statement for functions
and vice versa. When the function is taken to be the indicator of a set the functional inequality
should reduce to the inequality for sets. This may not make sense immediately as there may be
assumptions of smoothness etc., that are not satisfied by indicator functions, but in some approx-
imate sense this should hold. Here is the functional analogue of the isoperimetric inequality.

Theorem 12 (Sobolev inequality). Let d ≥ 2 and p = d
d−1 . Then, for every f ∈ C1

c (Rd), we have

‖f‖Lp ≤ ‖∇f‖L1 .

In what way is this analogous to the isoperimetric inequality? If f is the indicator of a bounded
open set, its derivative is zero in interior of the set and in the interior of the complement. All
change occurs at the boundary. As such a measure of the total change can be considered a mea-
sure of the boundary of the set. Transferring this to smooth functions, we would say that any
inequality of the form ‖f‖p ≤ Cd,p,q‖∇f‖q valid for all f ∈ C∞c (Rd) and for some constant Cd,p,q,
is a functional analogue of the isoperimetric inequality.

If such an inequality holds for some p and q, then start with f ∈ C∞c (Rd) and set fs(x) = f(sx)

for s > 0. Then,

‖fs‖p = s
− d
p ‖f‖p and ‖∇fs‖Lq = s

1− d
q ‖∇f‖q.

Since the inequality must hold for fs (with the same constant Cn,p,q), it follows that s1− d
q

+ d
p must

be bounded as a function of s. Seeing the limits as s goes to 0 or∞, we see that it is necessary to
have 1

q −
1
p = 1

d . Remarkably this condition is sufficient as the theorem below show. When q = 1,
we get p = d/(d− 1), which is the special case of Sobolev’s inequality above.
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Theorem 13 (Gagliardo-Nirenberg-Sobolev inequality). Suppose p, q > 0 satisfy 1
q −

1
p = 1

d . Then
‖f‖p ≤ Cd,p,q‖∇f‖q valid for all f ∈ C∞c (Rd)

We first give the proof of Sobolev’s inequality and explain the modifications needed to obtain
the more general case later. The idea of proof is explained easily when d = 2.

Proof for d = 2. Let fi denote the ith partial derivative. Then, for any (x, y) ∈ R2, we have

f(x, y) =

∫ x

−∞
f1(s, y)ds =⇒ |f(x, y)| ≤

∫
R
|f1(s, y)|ds.

f(x, y) =

∫ y

−∞
f2(x, t)dt =⇒ |f(x, y)| ≤

∫
R
|f1(x, t)|dt.

Multiplying the two inequalities, we get

|f(x, y)|2 ≤
(∫

R
|f1(s, y)|ds

)(∫
R
|f2(x, t)|dt

)
.

Integrate over x and y and observe that the right hand side factors∫
R2

|f(x, y)|2dxdy ≤
(∫

R2

|f1(s, y)|dsdy
)(∫

R2

|f2(x, t)|dtdx
)

Since ‖∇f‖ =
√
f2

1 + f2
2 , we have |f1| ≤ ‖∇f‖ and |f2| ≤ ‖∇f‖, and therefore∫

R2

|f |2 ≤
(∫

R2

‖∇f‖
)2

which is precisely the claim of Sobolev inequality for d = 2. �

The proof for d ≥ 3 needs a little more work.

Proof for d = 3. We have as before

|f(x1, x2, x3)| ≤
∫
|f1(s1, x2, x3)|ds1 =: I1(x2, x3)

|f(x1, x2, x3)| ≤
∫
|f2(x1, s2, x3)|ds2 =: I2(x1, x3)

|f(x1, x2, x3)| ≤
∫
|f3(x1, x2, s3)|ds3 =: I3(x1, x2).

We again multiply them and write

|f(x1, x2, x3)|3 ≤ I1(x2, x3)× I2(x1, x3)× I3(x1, x2).

But if we integrate with respect to x1, x2, x3, the right side does not split as a product of integrals
- this is the difference from the case d = 2. Note also that the power of f on the left is 3 while the
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desired inequality should have 3/2. Take square roots and integrate over x1 alone. We get∫
R
|f(x1, x2, x3)|3/2dx1 ≤ I1(x2, x3)1/2

∫
R
I2(x1, x3)1/2I3(x1, x2)1/2dx1

≤ I1(x2, x3)1/2

(∫
R
I2(x1, x3)dx1

)1/2(∫
R
I3(x1, x2)dx1

)1/2

=: I1(x2, x3)1/2J(x3)1/2K(x2)1/2

by Cauchy-Schwarz. Now integrate over x2. The second factor is independent of x2.We apply
Cauchy-Schwarz again to get∫

R2

|f(x1, x2, x3)|3/2dx1dx2 ≤ J(x3)1/2

(∫
R
I1(x2, x3)dx2

)1/2(∫
R
K(x2)dx2

)1/2

=: J(x3)1/2L(x3)1/2

(∫
R
K(x2)dx2

)1/2

Now integrate over x3 and apply Cauchy-Schwarz again to the first two factors to get∫
R3

|f(x1, x2, x3)|3/2dx1dx2dx3 ≤
(∫

K(x2)dx2

)1/2(∫
R
J(x3)dx3

)1/2(∫
R
L(x3)dx3

)1/2

.

It remains to observe that∫
R
K(x2)dx2 =

∫
R3

|f3|,
∫
R
J(x3)dx3 =

∫
R3

|f2|,
∫
R
L(x3)dx3 =

∫
R3

|f1|.

Each of the three is bounded by ‖∇f‖L1 and hence,∫
R3

|f(x1, x2, x3)|3/2dx1dx2dx3 ≤
(∫

R3

‖∇f(x1, x2, x3)‖dx1dx2dx3

)3/2

This is the Sobolev inequality for d = 3. �

Exercise 14. Write the proof for general d. [Hint: Use Hölder’s inequality in place of Cauchy-
Schwarz where necessary.]

4.1. Proof of the GNS inequality. This section is written by Raghavendra Tripathi.
Assume that 1

p = 1
q −

1
d . Let f ∈ C∞c (Rd) and set g := |f |r. Note that |∇g| = r|f |r−1|∇f |. Apply

Sobolev’s inequality to g to get (∫
|f |

dr
d−1

) d−1
d

≤ r
∫
|f |r−1|∇f |.

Since we want |f |p in the left integral, it is clear that we should set r = p(d−1)
d . With this choice of

r, and applying Hölder’s inequality on the right hand side, we get the following:

(1)
(∫
|f |p

) d−1
d

≤ r
(∫
|f |(r−1) q

q−1

) q−1
q

‖∇f‖q.
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Observe that (r − 1) = dp−p−d
d , while q

q−1 = dp
dp−d−p . Therefore (1) becomes

‖f‖
p(d−1)
d

p ≤ r‖f‖
q−1
q

p ‖∇f‖q,

which gives the desired inequality with the constant Cd,p = r = p(d−1)
d . �

5. FUNCTIONAL FORM OF BRUNN-MINKOWSKI INEQUALITY

What is the functional form of the Brunn-Minkowski inequality? The latter involves volumes
of A,B and A + B. That volume must be replaced by the integral of a function is clear. But what
is the analogue of Minkowski sum for functions?

The first idea that comes to mind is the convolution. IfA andB are bounded open sets, it is easy
to see that 1A?1B is positive onA+B and zero on the complement. However,

∫
1A?1B = |A|×|B|

(in general
∫
f ? g =

∫
f ×

∫
g) and not |A + B|. Indeed, the convolution counts points of A + B

with multiplicity (meaning how many ways to write z ∈ A + B as x + y with x ∈ A and y ∈ B),
while 1A+B counts the same points without multiplicity. The following operation turns out to be
the right analogue of Minkowski sum.

Fix 0 < t < 1. For f, g : Rn 7→ R+, define

(f#tg)(z) = sup{f(x)tg(y)1−t : z = tx+ (1− t)y}.

These notations are for convenience and not the convention in any sense. Then observe that for
any t and any setsA,B ⊆ Rn, we have 1A#t1B = 1tA+(1−t)B . In this sense, #t is a good functional
form of Minkowski sum11 With this, we present the functional analogue of the Brunn-Minkowski
inequality.

Theorem 15 (Prékopa-Leindler inequality). Let f, g, h : Rn 7→ R+ be measurable functions and let
0 < t < 1 be fixed. Assume that h ≥ f#tg a.e. on Rn. Then

∫
h ≥ (

∫
f)t(

∫
g)1−t.

Some remarks are in order.

(1) The reason why we simply don’t write the theorem simply as
∫

(f#tg) ≥ (
∫
f)t(

∫
g)1−t is

that (f#tg) may not be measurable even though f and g are.

(2) The Prékopa-Leindler inequality is a kind of reverse to Hölder’s inequality. Indeed, if we
write h0 = f#tg (ignore the measuability question) and h1(z) = f(z)tg(z)1−t, then it is
clear that h0 ≥ h1 (the supremum defining h0(z) contains the case x = y = z). What
Hölder’s inequality says is that (

∫
f)t(

∫
g)1−t ≥

∫
h1, while Prékopa-Leindler says that

(
∫
f)t(

∫
g)1−t ≤

∫
h0.

(3) Brunn-Minkowski inequality can be deduced from Prékopa-Leindler. Indeed, we apply
the latter to f = 1A and g = 1B and h = 1tA+(1−t)B . For any 0 < t < 1, the conditions
are satisfied and we get |tA + (1 − t)B| ≥ |A|t|B|1−t. Apply this to 1

tA and 1
1−tB to see

11To think: Many others suggest themselves. Why not sup{tf(x) + (1 − t)f(y) : z = tx + (1 − t)y}? I don’t know

what is the problem if we do this.
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that |A + B| ≥ |A|t|B|1−tt−nt(1 − t)−n(1−t). Optimize the right hand side over t (helps

to take logarithms before differentiating!) to see that the optimal t = |A|1/n
|A|1/n+|B|1/n (hence

1− t = |B|1/n
|A|1/n+|B|1/n ). A little calculation gives us |A+B| ≥ (|A|1/n + |B|1/n)n.

Now we prove the Prékopa-Leindler inequality. There are two steps, firstly the statement for
n = 1, and secondly an induction step. The second step is almost trivial (the cleverness is already
in the formulation of the statement).

Case n = 1: Fix any u > 0 and observe that if f(x) > u and g(y) > u, then h(tx+ (1− t)y) > u. In
other notations, t{f > u} + (1 − t){g > u} ⊆ {h > u}. By the Cauchy-Davenport inequality (the
one-dimensional Brunn-Minkowski), it follows that |{h > u}| ≥ |{f > u}| + |{g > u}|. Integrate
with respect to u from 0 to infinity to see that

∫
h ≥ t

∫
f + (1 − t)

∫
g. Here we used the fact that

for a non-negative function f we have
∫
f =

∫∞
0 |{f > t}|/ But tx + (1 − t)y ≥ xty1−t (weighted

AM-GM inequality). Thus the theorem is true in one dimension.

Case n ≥ 2: Write x, y, z ∈ Rn as (x′, x′′), (y′, y′′), (z′, z′′) with x′, y′, z′ ∈ Rn−1 and x′′, y′′, z′′ ∈ R.
Given f, g, h as in the theorem, fix x′, y′ ∈ Rn−1, set z′ = θx′ + (1 − θ)y′ and observe that the
one-variable functions f(x′, ·), g(y′, ·), h(z′, ·) satisfy exactly the same assumptions. Therefore, by
the case n = 1, we conclude that∫

R
h(θx′ + (1− θ)y′, z′′) dz′′ ≥

(∫
R
f(x′, x′′)dx′′

)t(∫
R
g(y′, y′′)dy′′

)1−t
.

Now define F,G,H : Rn−1 7→ R by

F (x′) =

∫
R
f(x′, x′′)dx′′, G(y′) =

∫
R
g(y′, y′′)dy′′, H(z′) =

∫
R
h(z′, z′′)dz′′.

What the previous inequality shows is that F,G,H satisfy the hypothesis of Prékopa-Leindler
inequality. Inductively if we assume that the inequality has been proved for dimension n−1, then
we conclude that ∫

Rn−1

H(z′)dz′ ≥
(∫

Rn−1

F (x′)dx′
)t(∫

Rn−1

G(y′)dy′
)1−t

.

But
∫
Rn−1 H(z′)dz′ =

∫
Rn h(z)dz and similarly for the other two integrals. Thus the above inequal-

ity is the same as what we set out to prove. �

6. PROOF OF ISOPERIMETRIC INEQUALITY BY SYMMETRIZATION

Using symmetrization techniques introduced by Steiner and induction on the dimension, we
give a proof of the isoperimetric inequality12.

12This proof is taken from the appendix to a paper of Figiel, Lindestrauss and Milman, where they prove the isoperi-

metric inequality on the sphere. They modeled it on a well-known proof for the Euclidean case which is written in many

books but since I did not find one, I translated back their proof to the Euclidean case. Hence, there may be avoidable

complications in the proof.
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Theorem 16. Let A be a compact subset of Rd and let B be a closed ball with |A| = |B|. Then, |Aε| ≥ |Bε|
for all ε > 0.

The theorem is obvious in one dimension. Indeed, if M = maxA and m = minA, then Aε \ A
contains the intervals (M,M + ε) and (m − ε,m) and hence has measure at least 2ε. But B is an
interval and clearly |Bε| = |B|+ 2ε. Thus, |Aε| ≥ |Bε| for all ε > 0.

Next we introduce the key notion of symmetrization. Given a unit vector e ∈ Rd, let ` = Re (a
line) and a set A, we define the sections of A as At := A ∩ (`⊥ + te) for t ∈ R (the intersection of A
with the affine hyperplane that orthogonal to ` and at a distance of t from the origin).

Definition 17. Given a line ` = Re and a compact set A, define the symmetrization of A with
respect to ` as the set C such that: For any t ∈ R, the section Ct := C ∩ (t + `⊥) is the closed
(d − 1)-dimensional disk in the affine hyperplane t + `⊥. Further, the center of Ct is on ` and the
(d−1)-dimensional volume of Ct is the same as that of At := A∩ (t+ `⊥). To be unambiguous, we
adopt the following convention: If At is empty, then Ct is defined to be empty. If At is non-empty
but has zero (d − 1)-dimnesional Lebesgue measure, then Ct is defined to be a singleton. The
resulting set C is denoted as σ`(A).

Exercise 18. Show that σ`(A) is compact for any compact A.

For compact A, let

M(A) =
{
C ⊆ Rd : C is compact, |C| = |A|, |Cε| ≥ |Aε| for all ε > 0

}
.

These are the sets that are better than A in isoperimetric sense. Theorem 16 is equivalent to saying
thatM(A) contains a ball. The main idea of the proof is that the symmetrization of a set has better
isoperimetric profile than the original set.

Lemma 19. Let A be a compact subset of Rd. Then, σ`(A) ∈M(A) for any line `.

Observe that σ`(A) is a set which is symmetric about the axis `. Thus one may expect that by
symmetrizing about various lines, the set becomes rounder and rounder, and approach a ball. The
lemma assures us that the isoperimetric profile only gets better in the process. But a finite number
of operations may not get to a ball. For a rigorous argument, we use an auxiliary functional on
sets. Let the radius of a compact set be defined by

r(A) = inf{r > 0 : B(x, r) ⊇ A for some x ∈ Rd}.

This will be used as follows.

Lemma 20. If A is a compact subset that is not a ball, then there exist lines `1, . . . , `m (for some m) such
that σ`1 ◦ . . . ◦ σ`m(A) has strictly smaller radius than A.

The isoperimetric inequality is an easy consequence of the previous two lemmas together with
the next one.
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Lemma 21. Let A be a compact set. Then r attains its minimum onM(A).

Proof of Theorem 16. Fix A and let B be a minimizer of r onM(A) (by Lemma 21). If B is not a ball,
by Lemma 20 there is a sequence of symmetrizations that strictly reduce the radius. By Lemma 19,
the resulting set is still inM(A), contradicting that B is a minimum of r(·) insideM(A). �

It remains to prove the lemmas.

Proof of Lemma 20. Fix A and let B = B(x, r(A)) contain A. Take any line ` passing through x and
symmetrize to get A1. The ball remains fixed under symmetrization. Since B \A contains an open
ball, ∂B \ A1 contains a cap C ⊆ ∂B (by cap, we mean a ball inside ∂B in spherical metric).Now
pick a line `1 passing through x and a boundary point of C and symmetrize to get A2. Then,
draw a picture and convince yourself that ∂B \A2 contains a cap C ′ with radius double that of C.
Continuing to reflect on further lines `2, `3, . . ., in a finite number of steps we get to a set Am such
that Am ∩ ∂B = ∅. Then r(Am) < r(A). �

Proof of Lemma 21. First we claim that r is continuous. In fact it is Lipschitz, i.e., |r(A1)− r(A2)| ≤
dH(A1, A2). This is because ε > dH(A1, A2) and B(x, r) ⊇ A1 implies that B(x, r + ε) ⊇ A2.

We next claim that M(A) is closed. To see this, let Cn ∈ M(A) and Cn → C in Hausdorff
metric. Then Cε ⊇ Cn for large n showing that |Cε| ≥ lim sup

n→∞
|Cn| = |A|. Put ε = 1/k and note

that ∩k≥1C1/k = C (as C is compact) to get |C| = lim
k→∞

|C1/k| ≥ |A|. Further, for any δ > 0 we have

C ⊆ (Cn)δ for large n and hence |C| ≤ |(Cn)δ| ≤ |Aδ|. Now put δ = 1/k and use A = ∩kA1/k to
get |C| ≤ |A|. We have now proved that |C| = |A|. Next fix ε > 0 and δ > 0 and observe that
|Cε| ≤ lim inf |(Cn)ε+δ| ≤ |Aε+δ| since C ⊆ (Cn)δ for large n. Put δ = 1/k and let k → ∞ to get
|Cε| ≤ |Āε|, since ∩kAε+1/k = Āε. Thus, |Cε| ≤ |Āε| for every ε > 0. Use this for ε − 1/k and
take union over k. Since Cε−k−1 increase to Cε and Aε−k−1 increase to Aε, taking limits we get
|Cε| ≤ |Aε| for any ε > 0.

Since A ∈ M(A), in minimizing r we may restrict ourselves to {C ∈ M(A) : r(C) ≤ r(A)}.
Translation does not change isoperimetric profile, hence it suffices toM0(A) = {C ∈ M(A) : C ⊆
B(0, r(A))}. But M0(A) is a compact set (see Exercise 22) and r is continuous, there must be a
minimum. �

Exercise 22. Let (X, d) be a compact metric space. Then (C, dH), the space of closed subsets en-
dowed with Hausdorff metric, is also compact.

The following proof is easier understood with pictures, but I don’t have time to draw some.
Some notation used in the following proof: Without loss of generality we shall take the line to

be ` = Red (where ed = (0, . . . , 0, 1)). For t ∈ R, let τt(A) = A + ted (translation in “vertical”
direction). We use λd to denote the d-dimensional Lebesgue measure λd−1 to denote the lower
dimensional Lebesgue measure on any affine hyperplane in Rd (particularly on the hyperplane
`⊥ + ted = {x ∈ Rd : xd = t}).
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Proof of Lemma 19. Fix A and ` and let C = σ`(A). Since λd−1(Ct) = λd−1(At) for all t, it follows
that λd(A) = λd(C). This is because λd(A) =

∫
R λd−1(At)dt and similarly for C.

It remains to compare λd(Cε) with λd(Aε). The sections of Aε get contributions from many
different sections of A. In fact,

(Aε)
t =

⋃
s:|s−t|≤ε

(τt−s[A
s])√

ε2−(t−s)2 .(2)

The notation does not show this, but the neighbourhoods on the right are taken inside the hyper-
plane `⊥ + ted. Analogously,

(Cε)
t =

⋃
s:|s−t|≤ε

(τt−s[C
s])√

ε2−(t−s)2 .

A key observation is that for fixed t, the sets on the right are concentric balls in Ht, hence there is
at least one s for which (τt−s[C

s])√
ε2−(t−s)2 is equal to the whole set of (Cε)

t.
For that s, we use the inequality

λd−1((τt−s[C
s])√

ε2−(t−s)2) ≤ λd−1((τt−s[A
s])√

ε2−(t−s)2).(3)

This inequality follows inductively (we assume the validity of Theorem 16 for dimension d − 1)
and using |Cs| = |As| (which implies |τt−s[Cs]| = |τt−s[As]|, of course). In (3), the left side is equal
to λd−1((Cε)

t) by the choice of s, while the right hand side is at most λd−1((Aε)
t) by (2). Thus,

λd−1((Cε)
t) ≤ λd−1((Aε)

t).

Integrate over t to get λd(Cε) ≤ λd(Aε). Thus, we have proved that C ∈M(A). �

Remark 23. As remarked earlier, this proof is taken from a paper of Figiel, Lendenstrauss and
Milman where they prove isoperimetric inequality in the sphere Sn−1. Brunn-Minkowski inequal-
ity does not make sense in the sphere (there is no addition operation) but the above proof by
symmetrization goes though virtually identically, with spherical metric replacing the Euclidean
metric and symmetrization done w.r.t. great circles in place of straight lines. One difference is in
the proof of Lemma 19, where

√
ε2 − (t− s)2 has to be replaced by some function of ε, t, s (it is not

required to know what this function precisely is!). A lesser point is that in the proof of Lemma 21,
the whole collectionM(A) is compact (since the sphere is itself compact), and there is no need to
bring inM0.

Functional form of symmetrization: It is a valid an interesting question to ask about the analogue
of symmetrization for functions. In the proof above, the symmetrization was done section by
section. Here we simply consider symmetrization in a fixed dimension.

Let f : Rn 7→ R+ be a measurable function such that |{f > t}| <∞ for any t > 0. For example, f
could be a continuous function that vanishes at infinity. Now define a new function f∗ : Rn 7→ R+

having the following properties:
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(1) f∗ is radial and decreasing. That is, f∗(x) = g(|x|) where g : R+ 7→ R+ is a decreasing
function.

(2) |{f∗ > t}| = |{f > t}| for all t > 0.

(3) g as defined above is a left-continuous function.

The last condition is simply put in to ensure uniqueness. The key point is that f∗ is a radial,
decreasing and has its super-level sets have the same measure as those of f . Such a function f∗

does exist (why?).
As an example, if A is a bounded set with positive measure, then 1∗A is equal to the indicator of

the closed ball B(0, r) where r is chosen so that |A| = |B(0, r)|. In this sense this is the right gener-
alization to functions. Further, the key point of symmetrization, that the ball is isoperimetrically
better than the original set, carries over to functions in the following sense.

Theorem 24. Let f be a smooth function vanishing at infinity. Then, ‖∇f∗‖L1 ≤ ‖∇f‖L1 .

This is only one of many rearrangement inequalities that are widely used in analysis. We shall not
explore this topic further for lack of time13.

7. CONCENTRATION OF MEASURE

Isoperimetric inequalities are closely related to a phenomenon called measure concentration -
an important topic in probability, analysis and high dimensional geometry. We just introduce the
basic notions here.

Let us assume the isoperimetric inequality on spheres. As remarked earlier, it can be proved by
symmetrization. However, let us be precise about what the actual statement is.

Let Sn−1 = {x ∈ Rn : ‖x‖ = 1} denote the (n− 1)-dimensional sphere. It is a metric space with
metric dn inherited from Rn and defineAε as the ε-neighbourhood ofA in the metric dn. And balls
are also defined with respect to dn. One can also use the metric adapted to the sphere (measuring
distance along geodesics), but for the purposes of this section the two are equivalent since they
are monotone functions of each other. Apart from distance, we also need the right measure which
we discuss next.

Orthogonal matrices of order n× n preserve Sn−1. There is a unique probability measure µn−1

on Sn−1 that is invariant under the action of orthogonal matrices. That is, µn−1(A) = µn−1(P.A)

for any A ∈ B(Sn−1) and any P ∈ O(n). Here P.A = {Px : x ∈ A}. We shall refer to it as the
uniform measure on Sn−1. It can be defined in many ways, but one quick way is as follows: Let γn
be the Borel probability measure on Rn defined as dγn(x) = 1

(2π)n/2
e−|x|

2
dx. Define the projection

map Πn : Rn \ {0} 7→ Sn−1 as Πn(x) = x/‖x‖. Then define µn = γn ◦ Π−1
n as the push-forward of

γn under Πn. Since γn{0} = 0, the measure µn has total mass 1. Its invariance under orthogonal
transformations comes from the corresponding property of γn.

13The old book of Hardy, Littlewood and Pólya titled Inequalities, has a couple of chapters devoted to this topic.

Another book is that of Lieb and Loss titled Analysis. This latter book has a remarkable selection of topics in analysis.
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Exercise 25. Show that γn(P.A) = γn(A) for all A ∈ B(Rn) and for all P ∈ O(n).

With these definitions, here is the statement of the isoperimetric inequality.

Theorem 26. Let A is a measurable subset of Sn−1 and let B be a ball. If µn(A) = µn(B), then µn(Aε) ≥
µn(Bε) for any ε > 0.

Now we come to the concentration of measure phenomenon. Suppose A ⊆ Sn−1 have µn(A) =
1
2 . Then µn(A) = µn(B) where B = {x ∈ Sn−1 : x1 ≤ 0} (a hemisphere). Therefore, by the
isoperimetric inequality, we see that µn(Aε) ≥ µn(Bε) for any ε > 0. The quantity µn(Bε) can be
calculated explicitly. Before doing the computation, observe that µn(Bc

ε) is the measure of those
x ∈ Sn−1 for which x1 ≥ ε. For large n, we should expect that most of the xk are of order 1/

√
n

(since x2
1 + . . .+ x2

n = 1 and there is symmetry in co-ordinates), hence µn(Bc
ε) ought to be small. It

is remarkably small, as we see now by explicit computation.
Indeed, by our definition of µn,

µn(Bε) = γn{x ∈ Rn : x1 < ε}

= 1− 1

(2π)n/2

∫
Rn

1x1≥εe
− 1

2
(x21+...+x2n)dx1 . . . dxn = 1−

∫ ∞
ε

An elementary calculation shows that

µn(Bε) = 1− 1

Zn

∫ 1

ε
(1− t2)

1
2

(n−2) dt

whereZn =
∫ 1
−1(1−t2)

1
2

(n−1)dt. By a change of variable, one sees thatZn = Beta(1
2(n+1), 1

2(n+1)).
Writing it in terms of Beta functions and using Stirlings’ approximation, it is easy to see that
Zn ≥ n−α for some α. Consequently,

Another formulation of concentration of measure is in terms of Lipschitz functions. Suppose
F : Sn−1 7→ R is a 1-Lipschitz function, i.e.,|F (x)−F (y)| ≤ dn(x, y). Then the diameter of the image
of F can be as large as 2 (since the diameter of the sphere is 2). However, from the point of view of
measure µn, the function F is nearly constant! How is that? Define M such that µn{F ≥ M} ≥ 1

2

and µn{F ≤ M} ≥ 1
2 (such an M always exists, it is called a median). Then, let A = {F ≥ M}

and observe that Aε ⊇ {F ≥ M − ε} by the Lipschitz property of F . By the Lévy concentration
inequality, we see that µn{F ≥M − ε} ≥ 1−Ce−cnε2 for some universal constants C, c. Applying
this to −F , we see that µn{F ≤M + ε} ≥ 1− Ce−cn. Taking intersections, we find that

µn{x ∈ Sn−1 : M − ε ≤ F ≤M + ε} ≥ 1− Ce−cnε2 .

Thus, on most part of the sphere, F takes values very close to M .

8. GAUSSIAN ISOPERIMETRIC INEQUALITY

Let γn be the standard Gaussian measure on Rn given by dγn(x) = 1
(2π)n/2

e−
1
2
‖x‖2dx where

dx. This is a Borel probability measure. Some of the most basic properties of γn are given in the
exercise below.
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Exercise 27. (1) Show that γn(P.A) = γn(A) for all A ∈ B(Rn) and for all P ∈ O(n).

(2) If Πd : Rn 7→ Rd is the projection Πd(x1, . . . , xn) = (x1, . . . , xd) (here d ≤ n), show that
γn ◦Π−1

d = γd.

The first part shows that the measure is invariant under a change of orthonormal basis. In that
sense, it is not associated to a co-ordinate system but to the Hilbert space structure of Rn itself. The
second fact, taken together with the first, shows that the marginal (push-forward under projection)
on any d-dimensional subspace is the standard Gaussian measure on that subspace.

Now we state the Gaussian isoperimetric inequality. Recall that a half-space is a set of the form
{x ∈ Rn : 〈x, u〉 ≤ t} for some unit vector u ∈ Rn and some t ∈ R. These take the place of balls as
the optimal sets in the isoperimetric sense.

Theorem 28 (Borell, Sudakov-Tsirelson). Let A ∈ B(Rn) and the half-space H be such that γn(A) =

γn(H). Then γn(Aε) ≥ γn(Hε).

While one can build proofs analogous to the proofs we gave for Euclidean space or the sphere,
our intention is to introduce a useful idea that relates the Lebesgue measure on the sphere and
Gaussian measure. Indeed, the original proofs of the Gaussian isoperimetric inequality were de-
duced in this way.

Lemma 29 (Maxwell? Poincaré?). Let Πn,d : Sn−1 7→ Rd be defined by Πn,d(x1, . . . , xn) =
√
n(x1, . . . , xd).

Let µn be the uniform probability measure on Sn−1. Then, µn ◦Π−1
n,d(A)→ γd(A) for all A ∈ B(Rd).

The usual notion of convergence of Borel probability measures on Rd is weak convergence:
νn → ν weakly if for any bounded continuous function f ∈ Cb(Rd), we have

∫
fdνn →

∫
fdν as

n → ∞. This is equivalent to the statement that νn(A) → ν(A) for those A ∈ B(Rd) for which
ν(∂A) = 0. The sense of convergence in the lemma above is stronger. It comes from convergence
of densities, as shown by the following general fact.

Lemma 30 (Scheffe’s lemma). Let νn, ν be Borel probability measures on Rd having densities fn, f with
respect to Lebesgue measure. If fn → f a.e. (w.r.t. Lebesgue measure), then νn(A) → ν(A) for all
A ∈ B(Rd).

Proof. Write |fn − f | = fn − f + (f − fn)+ (where x+ = max{x, 0}). Fix any A ∈ B(Rd). Since
(f−fn)+ is dominated by f and goes to zero a.e., it follows by the dominated convergence theorem
that

∫
A(f − fn)+ → 0 as n → ∞. Therefore,

∫
A |fn − f | → 0 (by the relationship with (f − fn)+

and the fact that
∫
fn =

∫
f = 1). Thus

∫
A fn →

∫
A f for any Borel set A. �

One could state this lemma in greater generality on any measure space with probability mea-
sures νn, ν whose densitites with respect to some fixed measure λ converge almost everywhere.
The proof is the same.

Proof of Lemma 29. Let fn be the density of µn ◦ Π−1
n,d. If (t1, . . . , td) ∈ Rd, then the pre-image of it

under Πn,d is the set {x ∈ Sn−1 : xi = ti√
n
, i ≤ d}, which is a n − 1 − d dimensional sphere with
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radius
√

1− 1
n(t21 + . . .+ t2d). From this, it is clear that (the first factor comes from the

√
n scaling

included in the projection Πn,d)

fn(t) =
1

n
d
2

σn−d
σn

(
1−

t21 + . . .+ t2d
n

) 1
2

(n−1−d)

.

Plug in the standard formula σd = dπd/2/Γ(d2 +1). Now let n→∞ and use the fact that Γ(n
2

+1)

Γ(n−d
2

+1)
→

1

2
d
2

(from Stirlings’ formula, for example) to get

fn(t)→ 1

(2π)
d
2

e−
1
2

(t21+...+t2d).

By Scheffe’s lemma, µn ◦Π−1
n,d(A)→ γd(A) for all Borel sets A (or even measurable sets). �

Exercise 31. Compute the exact density of x2
1 and joint density of (x2

1, x
2
2), etc., where x = (x1, . . . , xn)

has the distribution µn on Sn−1.

Now we deduce the Gaussian isoperimetric inequality from the isoperimetric inequality on
spheres.

Proof of Theorem 28. Let A ∈ B(Rd) with γd(A) = α. Assume 0 < α < 1 (the cases when α = 0 and
α = 1) are trivial. Fix β < α and choose a half-space H = {x : x1 ≤ t} such that γd(H) = β. Define
An = Π−1

n,d(A) and Hn = Π−1
n,d(H), subsets of Sn−1. By Lemma 29 we know that µn(An) → α and

µn(Hn) → β as n → ∞. Consequently, µn(An) ≥ µn(Hn) for all large n. Further, Hn = {x ∈
Sn−1 : x1 ≤ t√

n
} is a ball in Sn−1. Consequently, by the isoperimetric inequality on the sphere, it

follows that µn((An)ε/
√
n) ≥ µn((Hn)ε/

√
n). Note that these enlargements are in the metric on the

sphere (which we take to be the distance inherited from Rn in the standard embedding of Sn−1

in Rn). However, Πn,d is a Lipsschitz map with Lipschitz constant
√
n. Therefore, Π−1

n,d(Aε) ⊇
(An)ε/

√
n. Therefore,

µn(Π−1
n,d(Aε)) ≥ µn((Hn)ε/

√
n).

But then (Hn)ε/
√
n = {x ∈ Sn−1 : x1 ≤ s√

n
}where s is related to t, ε by

�

9. SOME RECENT DEVELOPMENTS

There are many aspects of the isoperimetric inequality that are still being studied. We mention
just two that we are aware of.

Stability version: Suppose A is a compact set in Rn with the same volume as a ball B and having
only an ε more surface area than B has. Is A necessarily close to a ball? Closeness could be
measured in Hausdorff distance, for example.
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Double bubble conjecture: Suppose positive numbers a1, . . . , ak are specified. Among all col-
lections of compact sets A1, . . . , Ak having disjoint interiors and having volumes |Aj | = aj for
1 ≤ j ≤ k, is there one that minimizes the surface area of the union A1 ∪ . . . ∪ Ak? What is that
configuration?

10. ALEXANDROV-FENCHEL INEQUALITIES

If K1, . . . ,Kn are convex bodies in Rn, then

mn(t1K1 + . . .+ tnKn) =
n∑

i1,...,in=1

V [Ki1 , . . . ,Kin ]ti1 . . . tin

where V [K1, . . . ,Kn] are called mixed volumes. It is symmetric, positive and V [K, . . . ,K] =

mn(K). Alexandrov-Fenchel inequalities state that

V [K1,K2,K3, . . . ,Kn]2 ≥ V [K1,K1,K3, . . . ,Kn]V [K2,K2,K3 . . . ,Kn].

Many other equivalent forms, for example, t 7→ V [K1 + tK2, . . . ,K1 + tK2,Km+1, . . . ,Kn]1/m is
concave on R+ (note that there are no K3, . . . ,Km in this expression). When m = n this gives
Brunn-Minkowski inequality.

52



CHAPTER 4

Matching theorem and some applications

1. THREE THEOREMS IN COMBINATORICS

1.1. Hall’s matching theorem. We recall some basic notions. A graphG = (V,E) is a set V (“vertex
set”) together with an edge-set E where E is a symmetric relation on the set V (i.e., E ⊆ V × V
and (u, v) ∈ E implies (v, u) ∈ E). We shall also assume that the relation is anti-reflexive, i.e.,
(u, u) 6∈ E for any u ∈ E. In such a case, we shall be loose in our language and say that {u, v} is
an edge or write u ∼ v and say u is adjacent to v. Also, we say that the edge {u, v} is incident to
the vertices u and v.

When we talk about a directed graph, the symmetry condition on E is dropped (and the conven-
tion is to say that the edge (u, v) is directed from u towards v) but we shall still require it to be
anti-reflexive. Clearly, any undirected graph can also be considered as a directed graph.

A bipartite graph is an undirected graph whose vertex set V can be partitioned into V1 and V2

such that if u ∼ v, then u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.
A (complete) matching of a graph is a collection of edges such that every vertex is adjacent to

exactly one edge in the collection.
In a graph, G = (V,E), let N(A) = {v ∈ V : v ∼ u for some u ∈ A} be the neighbourhood of A.

Theorem 1 (Hall’s marriage theorem). Let G = (V,E) be a finite bipartite graph with parts V1, V2 of
equal cardinality. Then G has a complete matching if and only if |N(A)| ≥ |A| for all A ⊆ V1.

We shall give multiple proofs of the marriage theorem. It is related to other theorems of a similar
flavour (similar in the sense that the most natural obstacle to achieving something is shown to be
the only obstacle) such as Dilworth’s theorem and Ford-Fulkerson max-flow min-cut theorem, etc. We
shall first state Dilworth’s theorem and derive Hall’s theorem from it and also give a direct proof of
Hall’s theorem. In a later section we shall derive it from the max-flow min-cut theorem. The latter
theorem can be given a direct proof, but we shall derive it from a more sophisticated viewpoint
which gives a chance to introduce minimax theorems that are of much importance in many fields
and also to make connection to convexity and duality.

1.2. Dilworth’s theorem. Let P be a partially ordered set. Recall that this means that there is a
relation (denoted “≤”) on P that is reflexive (x ≤ x for all x ∈ P), anti-symmetric (x ≤ y and y ≤ x
imply x = y) and transitive (x ≤ y and y ≤ z imply x ≤ z). It will be convenient to write the
reversed relation as “≥” (i.e., x ≥ y if y ≤ x).
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FIGURE 4. Poset of subsets of {1, 2, 3, 4} and of {1, 2 . . . , 5}.

A chain is a totally ordered subset in P . An anti-chain (also called independent set) is a subset in
which no two distinct elements are comparable. Suppose we write the poset as a union of chains
Cj for j ∈ J (some index set). If A is any anti-chain in P , it can put at most one point in each of
the chains Cj . Therefore, |A| ≤ |J | (in these sections |A|will denote the cardinality of A).

Example 2. The collection of all subsets of a given set is a poset with the order given by set in-
clusion is a poset. For example, if the given set is {1, 2, 3}, then C1 = {∅, {1}, {1, 2}, {1, 2, 3}},
C2 = {{2}, {2, 3}} and C3 = {{3}, {1, 3}} are all chains and C1 ∪ C2 ∪ C3 = P .

Theorem 3. If m is the maximal size of an anti-chain in a finite poset, then the poset can be written as a
union of m chains.

Use Dilworth’s theorem to solve a famous problem first posed by Erdös and Szekeres.

Exercise 4. Let N = mn + 1 and a1, . . . , aN be distinct real numbers. Then, there exists an in-
creasing subsequence of cardinality n + 1 or a decreasing subsequence of cardinality m + 1 (or
both).

In many interesting posets, it is hard to find the size of the maximal anti-chain. A very beautiful
example is that of the Boolean poset consisting of subsets of {1, 2, . . . , n}, with ordering given
by set-inclusion. It is clear that Ak, the collection of all subsets with a given cardinality k, is an
anti-chain. Since |Ak| =

(
n
k

)
, among these anti-chains, the maximal size if

(
n
bn/2c

)
. It is a beautiful

result of Sperner that in fact this is the maximal size among all anti-chains of the Boolean poset.
We outline it as an exercise.

The language used will be simpler if you imagine the Hasse diagram of the Boolean poset as
shown in the figures above. At the bottom is the empty set and at the top is the whole set.

Exercise 5. Let an ant start at the empty set and moves upward by picking an element uniformly
at random (among all elements in the layer immediately above that are connected by an edge in
the Hasse diagram). At each step the picks are made independently. After n steps, the ant is at the
top.

For any set A ⊆ {1, 2, . . . , n}, let p(A) be the probability that the ant passes through the vertex
A. Calculate p(A). What can you say about p(Ai)s if A1, . . . , Am is an anti-chain?
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Put these together to prove Sperner’s lemma.

Here is another standard application of Dilworth’s theorem. Let G be any graph. A vertex cover
is any subset of vertices such that every edge is incident to at least one of the vertices in the subset.
A matching (now we use it to mean incomplete matchings) is a collection of edges such that no
vertex of the graph is incident to more than one edge in the collection.

Exercise 6. In a finite bipartite graph, show that the maximal number of edges in any matching is
equal to the minimal number of vertices in any vertex cover. This is known as König’s theorem.

1.3. Proof of Hall’s theorem and some consequences. Here is how Dilworth’s theorem implies
Hall’s theorem.

Proof of Hall’s matching theorem. Given a bipartite graph as in the statement of Hall’s theorem, de-
fine a partial order of V by declaring u ≤ v if u ∈ V1, v ∈ V2 and u ∼ v in the graph. We claim
that the maximal size of an anti-chain is n := |V1| = |V2|. Indeed, if A is an anti-chain, N(A ∩ V1)

is disjoint from A ∩ V2 (if not, there is a vertex in A ∩ V1 that is adjacent to a vertex in A ∩ V2,
contradicting the anti-chain property). Their cardinalities sum to at most |V2| = n. Thus, using
Hall’s condition, |A ∩ V1| ≤ N(A ∩ V1)|, we have

|A| = |A ∩ V1|+ |A ∩ V2| ≤ |N(A ∩ V1)|+ |A ∩ V2| ≤ n.

On the other hand, we do have anti-chains of cardinality n (eg., V1 or V2). Thus the size of a
maximal anti-chain is precisely n.

By Dilworth’s theorem, we can write V as a union of n chains. As |V | = 2n and each chain has
cardinality at most 2, this means that V is a union of n pairs {u, v} with u ≤ v (i.e., u ∈ V1, v ∈ V2

and u ∼ v). That is precisely the matching that we want. �

As a useful consequence of Hall’s theorem, we derive a theorem of Birkoff and von Neumann
that every doubly stochastic matrix is a convex combination of permutation matrices. Recall that
a doubly stochastic matrix is a square matrix having non-negative entries and whose row and
column sums are all equal to 1. The space DSn of all n × n doubly stochastic matrices is easily
seen to be a convex set. It is also compact (as a subset of Rn2

). If K is a compact convex set
in Rd, then a point is said to be an extreme point of K if it cannot be written as a strict convex
combination of two distinct points in K and the set of all extreme points of K is denoted by E(K).
In other words, x ∈ E(K) if and only if x ∈ K and x = αy + (1 − α)z for some 0 < α < 1 and
y, z ∈ K implies that y = z.

A well-known theorem of Krein and Milman states that for any non-empty compact convex set
K in Rd is the convex hull of its extreme points. That is

K = conv(E(K)) :=

{
n∑
i=1

αixi : n ≥ 1, xi ∈ E(K), αi ≥ 0 and
n∑
i=1

αi = 1

}
.
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In fact, Krein-Milman theorem is valid in general locally convex spaces, except that we must take
the closure on the right. That is K = conv(E(K)).

Example 7. The space of probability measures on R is a convex set whose extreme points are δa,
a ∈ R. The space of probability measure whose mean exists and is equal to 0 is also a convex set.
Its extreme points are δ0 and b

a+bδ−a + a
a+bδb for some positive a, b. In general, the set of measures

with specified m moments will form a convex set. What are its extreme points?

The set DSn is convex and compact. Its extreme points are precisely the set of permutation
matrices (we had trouble justifying this in class, but it follows from the proof below) and then
Krein-Milman would imply that all such matrices are convex combinations of permutation matri-
ces. We show this directly, invoking Hall’s theorem.

Theorem 8 (Birkoff-von Neumann theorem). Every doubly stochastic matrix is a convex combination
of permutation matrices.

Proof. Let A ∈ DSn. Define a bipartite graph with V1 being the set of rows of A and V2 being the
set of columns of A and put an edge between ith row and jth column if and only if ai,j > 0. If
R1, . . . , Rk are any k rows, the k × n matrix formed by these rows has a total sum of k (each row
sums to 1) and hence the sum of all the column sums is k. Since each column sum is at most 1,
there must be at least k con-zero columns. Therefore, |N(S)| ≥ |S| for S = {R1, . . . , Rk}. This
shows the validity of Hall’s conditions, and hence there is a matching of rows and columns in this
bipartite graph.

Denote the matching by i ∼ π(i) where π is a permutation. Let α = min{ai,π(i) : i ≤ n}which is
positive. If Pπ denotes the permutation matrix with 1s at (i, π(i)), then the matrix A−αP has row
and column sums equal to 1 − α. If α = 1, then A = P and we are done. If α < 1, we can rescale
it to a doubly stochastic matrix and write A = αP + (1− α)B where B ∈ DSn. Note that B has at
least one more zero entry than A. Continue to write B as βQ+ (1− β)C where Q is a permutation
and C is a doubly stochastic matrix, etc. The process must terminate as the number of zeros in the
doubly stochastic matrix increases by at least 1 in each step. We end with a representation of A as
a convex combination of permutation matrices. �

1.4. Proof of Dilworth’s theorem. The proof will be by induction on the cardinality of the poset.
Check the base case yourself.

Let P be a finite poset and let a1, . . . , am be an anti-chain of maximal cardinality in P . Then, for
any x ∈ P , there is some i such that x ≤ ai or ai ≤ x (otherwise {a1, . . . , am, x} would be a larger
anti-chain). Hence, if we define

P− = {x : x ≤ ai for some i ≤ m}, P+ = {x : ai ≤ x for some i ≤ m},

then P = P− ∪ P+. Both P− and P+ are posets and {a1, . . . , am} is an anti-chain in both. If we
could argue that these two posets had strictly smaller cardinality than P , then inductively we
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could write them as unions of m chains:

P+ = C+
1 ∪ . . . ∪ C

+
m, P− = C−1 ∪ . . . ∪ C

−
m

where each C±i is a chain and ai ∈ C±i . Since ai is a maximal element in P− (and hence in C−i ) and
a minimal element in P+ (and hence in C+

i ), it follows that Ci = C+
i ∪ C

−
i is a chain in P . This

gives the decomposition P = C1 ∪ . . . ∪ Cm of the given poset into chains.
The gap in the proof is that P+ or P− could be all of P (clear, but give an explicit example) and

hence induction does not help.
To fix this problem, we first take a maximal chain C0 in P and setQ = P \C0. ThenQ is strictly

smaller than P .

Case 1: Suppose Q has an anti-chain of size m, say {a1, . . . , am}. Now take this anti-chain in the
argument outlined earlier (for the poset P , now we may forgetQ). The proof is now legitimate be-
cause P+ does not contain the minimal element of C0 (else C0∪ai would be a chain for some i and
ai 6∈ C0). Similarly P− does not contain the maximal element of C0. Both P+ and P− have strictly
smaller cardinality and hence the induction hypothesis applies. We get a chain decomposition of
P as above.

Case 2: Suppose that the maximal cardinality of a chain in Q is m′ which is strictly smaller than
m (then m′ = m − 1 in fact). Then write Q (by induction hypothesis) as a union of m′ chains.
Together with C0 this decomposes P into m chains.

This completes the proof. �

1.5. A direct proof of the marriage theorem. This proof is taken from a paper of Halmos and
Vaughan, and just like in that paper we shall state it in a more general form (which is not used in
the sequel).

Theorem 9 (Hall’s marriage theorem, general form). Let G be a bipartite graph with V1, V2 being the
two parts of the vertex set (these are now allowed to be infinite sets). Assume that |N(A)| ≥ |A| for all
finite A ⊆ V1. Then there is a matching of V1 into V2, i.e., there exists an injective function f : V1 7→ V2

such that x ∼ f(x) for all x ∈ V1.

Proof of the finite case. The proof is by induction on n = |V1|. When n = 1, the hypothesis imme-
diately gives a partner for the sole element of V1 and hence the claim is true. Assume that the
theorem is proved when |V1| < n and consider the case when |V1| = n. The idea is to marry off a
proper subset of V1 first, and then marry of the remaining, using the induction hypothesis. Care
is needed to make sure that Hall’s condition is preserved in the reduced graphs.

Case 1: Assume that |N(A)| ≥ |A| + 1 for all proper subsets A ⊆ V1. In this case, we pick an
element x ∈ V1, an element y ∈ V2 such that y ∼ x and set V ′1 = V1 \ {x} and V ′2 = V2 \ {y}.
The subgraph G′ of the given graph with vertex set V ′1 t V ′2 is claimed to satisfy Hall’s condition.
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Granting that, the induction hypothesis applies and we find a matching g : V ′1 7→ V ′2 . Then define
f : V1 7→ V2 by f(x) = y and f(t) = g(t) for t ∈ V ′1 . Clearly a matching.

Case 2: There is a proper subset A ⊆ V1 such that |N(A)| = |A|. In this case, the subgraph with
vertex set A tN(A) must satisfy Hall’s condition (since any subset of A has the same neighbour-
hood in the subgraph as in the original graph). Inductively there is a matching g of A into N(A),
but since the cardinalities are equal, g is in fact a bijection from A onto N(A). Now consider the
subgraph with vertex set V ′1 t V ′2 where V ′1 = V1 \ A and V ′2 = V2 \N(A). If A1 ⊆ V ′1 and N ′(A1)

is its neighbourhood in the subgraph, then N(A t A1) = N(A) t N ′(A1). Since G satisfies Hall’s
condition, it follows that |N ′(A1)| ≥ |A1|. Thus Hall’s condition is satisfied on the subgraph and
a matching h : V ′1 7→ V ′2 exists. Setting f = g on A and f = h on V ′1 gives the matching of the
original graph. �

Proof of the infinite case. Let F = {f : V1 7→ V2 : f(x) ∼ x for all x ∈ V1}. One can clearly identify F
as the Cartesian product of the setsN({x}) as x varies over V1. ForA ⊆ V1, let FA be the collection
of f that are injective on A. By the finite version of Hall’s theorem (applied to the subgraph with
vertex set A t N(A) or if you are squeamish that N(A) could be infinite, observe that you may
choose a sufficiently large subset of N(A) and still preserve Hall’s condition), it follows that FA
is not empty for any finite A. The collection FA, |A| < ∞, has the finite intersection property
(since FA ∩ FB = FA∪B). If we can find a topology on F in which all the sets FA (for finite A) are
compact, then the finite intersection property implies that the complete intersection of FA, over all
|A| <∞, is not empty. But such a function is clearly injective (for any x, y ∈ V1, since f ∈ F{x,y}, it
follows that f(x) 6= f(y)), and hence gives a matching.

Since N({x}) is finite for each x, if we endow it with the discrete topology it becomes compact.
By Tychonoff’s theorem F is compact, and so are FA for all finite A. �

The following example shows why we had to assume that N({x}) is finite for all x.

Example 10. Consider a bipartite graph with V1 = {1, 2, 3, . . .}, V2 = {1′, 2′, 3′, . . .} and edges
between k+ 1 and k′ for all k ≥ 1 and between 1 and j′ for all j ≥ 1. In this case, Hall’s conditions
are satisfied. Indeed, if A 3 1, then N(A) is an infinite set and if A 63 1, then |N(A)| = |A|.
However, any attempt at matching forces 2 7→ 1′, 3 7→ 2′, 4 7→ 3′, . . . , leaving no possible match for
1 even though he/she has taken great efforts to know everyone of the opposite sex.

Wherever Tychonoff’s theorem is used, if we restrict to an appropriate countable setting, it can
be replaced by a diagonal argument.

Exercise 11. Assume that V1 is countable. Use diagonal argument in place of Tychonoff’s theorem
to prove the existence of a matching.

58



2. HAAR MEASURE ON TOPOLOGICAL GROUPS

Topological groups: A topological group is a group G endowed with a Hausdorff topology such
that the operations (xy) 7→ xy (from G×G to G) and x 7→ x−1 (from G to G) are continuous.

As examples, we may take any finite or countable group (with discrete topology), the group
(Rn,+), the group GL(n,R) of n × n invertible matrices with real entries, similarly GL(n,C),
the unitary group U(n), the orthogonal group O(n), various other subgroups of matrices (all with
topology inherited from Rn2

or Cn2
), the groupMn(R) of isometries of Rn (which can be built from

the translation group Rn, the “rotation group” O(n) and reflections x 7→ −x), group of isometries
of Hyperbolic space, groups constructed by taking products such as (Z/(2))J for an arbitrary index
set J , etc.

Another kind of example (for the sole purpose of giving an exercise): For a graphG = (V,E), by
an automorphism of G we mean a bijection f : V 7→ V such that u ∼ v if and only if f(u) ∼ f(v).
The set of all such automorphisms Aut(G) forms a group under composition. The graph is said to
be transitive if for any u, v ∈ V , there exists f ∈ Aut(G) such that f(u) = v. Examples of transitive
graphs are Zd, lattices, regular trees, etc. Give the topology of pointwise convergence on Aut(G).
If the graph is rooted (i.e., one vertex is distinguished), then the automorphism is required to fix
the root. They too form a group (an obvious subgroup of Aut(G)).

Exercise 12. If G is any transitive group with a countable vertex set where each vertex has finite
degree , show that the group of automorphisms fixing the root vertex is compact.

Exercise 13. Identify the automorphism group of the rooted infinite binary tree shown in Figure 2.

Invariant measures: On a topological group we may talk of the Borel sigma-algebra and measures
on it. We have seen some of these.
I On Rn we have the Lebesgue measure λn with the property that λn(A + x) = λn(A) for all

A ∈ B(Rn) and for all x ∈ Rn. Any constant multiple of λn also has this property of translation-
invariance, and no other measure does.
I On R+ = (0,∞) with multiplication, define the measure dµ(x) = dx

x . Check that µ(xA) =

µ(A) for all A ∈ B(R+) and for all x ∈ R+. For example,

µ(a, b) =

∫ b

a

1

x
dx = log(b/a)

which is clearly the same as µ(2a, 2b).
I On GL(n,R), define the measure dµ(X) = |detX|−ndX where dX denotes Lebesgue mea-

sure on Rn2
(of which GL(nR) is an open set). Then if A ∈ GL(n,R), the map X 7→ A.X has

59



FIGURE 5. The rooted binary tree shown up to four levels. At the top is the root.

Jacobian determinant equal to det(A)n (why?). Therefore, for a Borel set S ⊆ GL(n,R), we have

µ(AS) =

∫
AS
| detX|−ndX =

∫
S
|det(AX)|−nd(AX)

=

∫
S
| det(AX)|−n | det(A)|n dX =

∫
S
| det(X)|−ndX = µ(S).

Thus µ is invariant under left multiplication. Check that it is also invariant under right multipli-
cation.
I Let G = (Z/(2))J where J is an arbitrary index set. Let µ = 1

2δ0 + 1
2δ1 be the unique invari-

ant measure on Z/(2). A basic theorem in probability theory (Kolmogorov’s existence theorem)
assures us that there is a unique “product measure” µ⊗J on G such that its projection to any fi-
nite number of co-ordinates j1, . . . , jn is precisely the n-fold product µ ⊗ . . . ⊗ µ. This µ⊗J is an
invariant measure on G (check!).

The general question is whether every topological group has an invariant measure.

Definition 14. Let G be a topological group. A nonzero, regular Borel measure µ is said to be a left
Haar measure on G if µ(gA) = µ(A) for all g ∈ G, A ∈ B(G). Similarly, a right Haar measure is one
that satisfies µ(Ag) = µ(A). If a measure is both left and right invariant, we call it a Haar measure.

Recall that regularity means that for any Borel set A,

µ(A) = inf{µ(U) : U ⊇ A,U open} = sup{µ(K) : A ⊇ K,K compact}.

Some situations are problematic.

Example 15. Consider Q under addition. If µ is invariant, and the singleton {0} has mass p, then
every singleton must have mass p. If p = 0, the measure is identically zero, so we must take p > 0.
Then µ is basically counting measure on Q, and the only sets with finite measure are finite sets.
It does not appear to be of much use, for instance, all nonempty open sets have infinite measure.
Alternately, observe that the same measure would be an invariant measure for Q with discrete
topology. The fact that we are taking a more interesting topology that respects addition on Q is
not getting us a more interesting measure.
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Example 16. Take any infinite dimensional normed space X , eg., `2 or C[0, 1]. Addition is the
group operation. If µ is a translation-invariant measure on X , that would be like Lebesgue mea-
sure in infinite dimensions - something looks suspicious! Here is one issue. Any such µ must give
infinite measure to all open sets. To see this, observe that the unit ball contains countably many
balls of identical radius r > 0 (intersection of the unit ball with each orthant is open). Since each
of these smaller balls must have equal measure, either the unit ball has zero measure or infinite
measure.

Example 17. Consider affine transformations on the real line, fa,b(x) = ax + b, where a > 0 and
b ∈ R. These form a group under composition with the multiplication: fa,b ◦ fc,d = fac,ad+b.

In searching for an invariant measure, we try dµ(a, b) = h(a, b)da db. Push forward under left
multiplication by fA,B to getA−2h(a/A, (b−B)/a)da db. Invariance requires h(a, b) = A−2h(a/A, (b−
B)/a) for almost all a, b and any A,B, which implies that h(a, b) = a−2 (up to a constant).

Similarly, if we consider right multiplication by fA,B , then the measure h(a, b)da db pushes
forward to A−1h(a/A, b− aB)db db. Deduce that right invariance forces h(a, b) = 1/a (again, up to
constant factor).

This example shows that the right Haar measure and left Haar measure can both exist and be
distinct.

Exercise 18. Consider the group of affine transformation fA,b : Rn 7→ Rn defined by fA,b(x) =

Ax+ b. Here A ∈ GL(n,R) and b ∈ Rn. Show that they form a group under composition and find
the left and right Haar measures.

Now we are ready to state the results on existence and uniqueness of Haar measures.

Theorem 19 (André Weil). If G is a locally compact topological group, then it has a unique (up to multi-
plication by constants) left Haar measure. Similarly for right Haar measure.

We shall not prove this. But we shall prove the theorem for compact groups.

Theorem 20 (Haar, von Neumann). If G is a compact topological group, then it has a unique (up to
multiplication by constants) Haar measure.

One can phrase invariance in terms of integrals instead of functions.

Exercise 21. Let G be a locally compact topological group. Let µ be a regular Borel measure on G.
Show that the following are equivalent.

(1) µ is a left-Haar measure on G.

(2) For any f ∈ Cc(G), we have
∫
f(x)dµ(x) =

∫
f(gx)dµ(x) for all g ∈ G.
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3. PROOF OF EXISTENCE OF HAAR MEASURE ON COMPACT GROUPS

Let G be a compact group. We want to show the existence of a unique probability measure µ on
G such that for any f ∈ C(G) and any y ∈ G,∫

f(yx)dµ(x) =

∫
f(xy)dµ(x) =

∫
f(x)dµ(x).

This µ is then the unique Haar measure on G.

The key idea: Distribute n points as spread out regularly as possible on G. Then the probability
measure that puts mass 1/n at each of these points converges to a measure on G that is the Haar
measure. For example, if G = S1, it is clear that the most regular distribution of points is to take
the nth roots of 1 (or rotate them all by one element of S1).

There is a starting issue with this plan - what is the meaning of a well-distributed set of points?
For simplicity of presentation of the key ideas, we first make the following assumption and re-
move it later.

Assumption: The topology of G is induced by an invariant metric d, i.e., d(zx, zy) = d(x, y) for all
x, y ∈ G.

Once we have a metric, we can talk about ε-nets. Recall that an ε-net is a set A ⊆ G such that
every point of G is at distance less than ε of some point in A. Since G is compact, finite ε-nets
exists for every ε > 0. Let Nε be the smallest cardinality of any ε-net. The following lemma has
the key idea which makes the proof work.

Lemma 22. If A = {x1, . . . , xNε} and B = {y1, . . . , yNε} are two ε-nets of minimal cardinality for G,
then there is a permutation π such that d(xi, yπ(i)) < 2ε for every i ≤ Nε.

Proof. Define a bipartite graph with parts A and B (even if a point is common to A and B, it
corresponds to two vertices in this graph) with edges xi ∼ yj if d(xi, yj) < 2ε.

SupposeA′ ⊆ A and letN(A′) ⊆ B be its neighbourhood in the graph. Let C = (A\A′)∪N(A′).
We claim that C is an ε-net. To show this, take any z ∈ G, and find i, j such that d(xi, z) < ε and
d(yj , z) < ε. Then d(xi, yj) < 2ε, hence xi ∼ yj . Therefore, either (1) xi ∈ A \ A′ in which case
xi ∈ C or (2) xi ∈ A′ in which case yj ∈ N(A′) ⊆ C. Thus every point of G is within ε of a point
of C, showing that C is an ε-net. Therefore Nε ≤ |C| = Nε − |A′| + |N(A′)|. In other words,
|N(A′)| ≥ |A′|.

Thus, Hall’s conditions are satisfied, and we get a matching of the bipartite graph. That is
precisely the permutation π. �

For a finite set A = {x1, . . . , xn}, let LA : C(G) 7→ R be defined by

LAf =
1

n

N∑
k=1

f(xk) =

∫
fdµA
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where µA = 1
n

∑n
k=1 δxk . For any f ∈ C(G), we define its modulus of continuity ωf (ε) =

sup{|f(x) − f(y)| : d(x, y) ≤ ε}. Then ωf (ε) → 0 as ε → 0. The above lemma easily implies
that if A and B are two minimal cardinality ε-nets, then |LAf − LBf | ≤ ωf (2ε). We now extend
this comparision to nets for different ε.

Lemma 23. LetA (andB) be minimal cardinality ε-net (respectively δ-net) forG. Then for any f ∈ C(G),
we have |LAf − LBf | ≤ ωf (2ε) + ωf (2δ).

Proof. Let A = {x1, . . . , xn} and B = {y1, . . . , ym}. Let C = A.B = {xiyj : i ≤ n, j ≤ n}. We can
write C =

⋃
i≤m xiB =

⋃
j≤mAyj . Thus,

LCf =
1

n

n∑
i=1

LxiBf =
1

n

m∑
j=1

LAyjf.

But Ayj is a minimal cardinality ε net for each j ≤ m, hence the numbers LAyjf are all within
ωf (2ε) of LAf . Therefore LCf (being an average of LAyjf , j ≤ m, is also within ωf (2ε) of LAf . By
an analogous argument, |LCf −LBf | ≤ ωf (2δ). Putting these together, we see that |LAf −LBf | ≤
ωf (2δ) + ωf (2ε). �

Lemma 24. For each ε > 0, fix a minimal cardinality ε-net Aε. Then, limε→0 LAεf exists for every
f ∈ C(G). The limit does not depend on the choice of the nets Aε.

Proof. For f ∈ C(G). For ε > 0 let Kε be the collection of all numbers LAf , where A varies over
all minimal-cardinality δ-nets for any δ < ε. Clearly Kε ⊆ [−‖f‖sup, ‖f‖sup]. Further, dia(Kε) ≤
2ωf (2ε). Therefore, it follows that ∩K̄ε is a singleton {c}, and that number is the limit of LAεf
along any sequence of minimal-cardinality ε-nets (as ε→ 0). �

Proof of Theorem 20 under Assumption 3. For each f ∈ C(G), let Lf be the number given by the pre-
vious lemma, i.e., Lf = lim

ε→0
LAεf along any sequence of minimal cardinality ε-nets Aε. Linearity

and positivity of L is obvious. Also L(1) = 1.
For any g ∈ G, let τgf(x) = f(gx). Then,

L(τgf) = lim
ε→0

LAε(τgf) = lim
ε→0

LgAεf = Lf

where the last equality follows from the fact that gAε is also a minimal cardinality ε-net. Similarly,
L(σgf) = Lf where σgf(x) = f(xg).

By Riesz’s representation theorem, Lf =
∫
G fdµ for a probability measure µ. Invariance of L

implies that this measure satisfies the second condition in Exercise 21. Hence, it is a bi-invariant
probability measure on G. �
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Removing the assumption 3: If we don’t assume that an invariant metric exists, then we cannot
talk of ε-nets, but we shall simply consider the net of neighbourhoods of the identity14.

Given a neighbourhood V of identity, xV y, x, y ∈ G, is an open cover forG. Hence it has a finite
sub cover. A blocking set for V is a set of minimal cardinality that intersects every one of the sets
xAy for x, y ∈ G. Write a ∼ b (w.r.t. V ) if there is some x, y such that xV y contains both a and b. A
blocking set is a set that intersects each of the sets xV y for x, y ∈ G. Minimum cardinality blocking
sets will replace minimal cardinality ε-nets in our proof. We prove the analogous lemmas.

Note added later: An important missing point in this discussion was pointed out by Abu Sufian.
We must show that finite blocking sets exist. When you consider a metric space and ε balls, in
finding a blocking set we would need to consider ε/2 balls. The analogue of this without the
metric is the following.

Fact: Let V be a neighbourhood of the identity in a topological group G. Then, there exists a
neighbourhood W of the identity such that W.W.W := {xyz : x, y, z ∈W} is contained in V .

It is easy to see this from the fact that the map (x, y, z) 7→ xyz fromG×G×G toG is continuous,
hence the pull back of V is an open set containing (e, e, e), where e is the identity of the group.

We leave it as an exercise to work out the existence of a finite blocking set using this observation.

For f ∈ C(G), we define ωf (V ) = sup{|f(x)− f(y)| : x ∼ y}.

Lemma 25. If A and B are blocking sets of minimal cardinality (w.r.t V ), then |LAf − LBf | ≤ ωf (V ).

Proof. We shall apply Hall’s marriage theorem to say that there is a bijection π between A =

{a1, . . . , an} and B = {b1, . . . , bn} such that ai ∼ bπ(i) (w.r.t. V ) for all i ≤ n. Once that is done,

|LAf − LBf | ≤
1

n

n∑
k=1

|f(ak)− f(bπ(k))| ≤ ωf (V ).

To check Hall’s condition, let A′ ⊆ A and N(A′) = {b ∈ B : b ∼ a for some a ∈ A′}. Set C =

(A \ A′) ∪ N(A′). Show that C is a blocking set. But its cardinality is |A| − |A′| + |N(A′)| which
shows that |N(A′)| ≥ |A′|. �

Lemma 26. Let V,W be two neighbourhoods of identity inG. LetA andB be minimal cardinality blocking
sets w.r.t. V and W , respectively. Then |LAf − LBf | ≤ ωf (V ) + ωf (W ).

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bm}. Compare LAf and LBf with

1

mn

∑
i≤n

∑
j≤m

f(aibj).(1)

This can be written alternately as 1
m

∑m
j=1 LAbj or as 1

n

∑n
i=1 LaiB . Since each Abj is a minimal

cardinality blocking set, |LAbjf − LAf | ≤ ωf (V ) for all j ≤ m. Similarly, |LaiBf − LBf | ≤ ωf (W ).

14A net is a partially ordered set in which given any two elements, there is a common element greater than or equal

to both. For example, the collection of all neighbourhoods of a point x0 in a topological space, endowed with the reverse

inclusion, is a net. Given U, V , we have U ∩ V lying above U and above V .
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This shows that the quantity in (1) is with ωf (V ) of LAf and within ωf (W ) of LBf . Therefore,
|LAf − LBf | ≤ ωf (V ) + ωf (W ). �

Exercise 27. Let f ∈ C(G). Given ε > 0, show that there exists a neighbourhood V of identity
such that for all neighbourhoods e ∈W ⊂ V and all minimal blocking setsA, we have ωf (W ) ≤ ε.

We put all these to prove the existence of Haar measure.

Proof of Theorem 20. Fix f ∈ C(G) and for V , a neighbourhood of identity, define

KV = {LAf : A is a minimal cardinality blocking set w.r.t. W for some W ⊆ V, W 3 e}.

Then, all elements of KV are within 2ωf (V ) of each other, hence dia(KV ) ≤ 2ωf (V ) which goes
to zero by the exercise above. Further, KV ⊇ KW if V ⊇ W . Hence, the sets K̄V have finite
intersection property since KV1 ∩ . . . ∩KVm ⊇ KW where W = V1 ∩ . . . ∩ Vm. From this, it follows
that

⋂
V K̄V is a singleton that we denote as {Lf}. Another way to say this is that if Vi is a net of

neighbourhoods that converge to {e}, then limLAif exists and is independent of the choice of the
minimal cardinality blocking sets Ai chosen.

The mapping L : C(G) 7→ R is linear, positive and L(1) = 1. Hence Lf =
∫
fdµ for some

probabilit measure µ (Riesz’s representation theorem). Fix any x0 ∈ G and consider g(x) = f(x0x).
Then, for any blocking setA, it is clear thatLAg = Lx0Af . SinceA is a minimal cardinality blocking
set w.r.t. V if and only is x0A is, it follows that Lf = Lg. In other words, L is left-invariant.
Similarly it is also right invariant. That is, for any f ∈ Cc(G), we have

∫
f(x)dµ(x) =

∫
f(gx)dµ(x)

for all g ∈ G. Hence µ is a Haar measure. �

The uniqueness question: We have constructed a bi-invariant probability measure µ. Suppose ν
is another left-invariant probability measure onG. Define the measure θ = µ?ν by (the right hand
side is a positive linear functional of f , hence represented by a measure)∫

f(x)dθ(x) =

∫∫
f(xy)dµ(x)dν(y)

for f ∈ C(G). By the right-invariance of µ, the inner integral is
∫
fdµ for every y ∈ G (a constant

independent of y). Integrating w.r.t ν gives us that
∫
fdθ =

∫
fdµ.

Apply Fubini’s theorem (applicable since the integrand is bounded) to write∫
f(x)dθ(x) =

∫∫
f(xy)dν(y)dµ(x) =

∫∫
f(y)dν(y)dµ(x)

by the left-invariance of ν. The inner integral is independent of x and we simply get
∫
fdθ =

∫
fdν.

Thus,
∫
fdµ =

∫
fdν for all f ∈ C(G), whence it follows that µ = ν.

Remark 28. What was all this? If you are comfortable with probability language, let X and Y be
independent random variables with distribution µ and ν, respectively. Bi-invariance of µ means
that gX , Xg and X all have the same distribution µ, for any fixed g ∈ G. Left-invariance of ν
means that gY has the same distribution as Y , for any g ∈ G.
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Now consider Z = XY . Using independence, we can argue that Z has the same distribution as
X (condition on Y ) and that Z has the same distribution as Y (condition on X). Hence X and Y

have the same distribution, i.e., µ = ν.

4. MATCHING THEOREM VIA CONVEX DUALITY AND FLOWS

In this section we revisit the matching theorem and give a new proof from a more sophisticated
view point. In the process, we introduce some deep ideas of importance in themselves.

The matching theorem will be derived from the max-flow, min-cut theorem. To state this the-
orem, we introduce the notion of a flow on a directed graph. Let G = (V,E) be a finite directed
graph. This means that V is a finite set and E is a subset of V × V \ {(u, u) : u ∈ V }. An element
(u, v) ∈ E will be interpreted as an edge going from u to v. Note that both (u, v) and (v, u) may be
present (thus an undirected graph can be made into a directed graph by replacing an undirected
edge by directed edges in both directions). For every vertex u ∈ V , its incoming edges are those
of the form (x, u) and outgoing edges are those of the form (u, x).

Fix two vertices s, t ∈ V (called source and sink, respectively). A flow on G from s to t is a
function θ : E 7→ R+ such that (a) for any u ∈ V \ {s, t} we have

∑
x θ(x, u) =

∑
x θ(u, x) (the left

sum is over incoming edges and the right sum is over outgoing edges), (b) θ(x, s) = 0 if (x, s) ∈ E,
(c) θ(t, x) = 0 if (t, x) ∈ E. The strength of a flow is defined as ‖f‖ :=

∑
f(s, x). Since

∑
u∈V

[∑
x

f(u, x)−
∑
x

f(x, u)

]
=
∑

f(s, x)−
∑

f(x, t)

as all other contributions cancel, it follows that the strength of f is also equal to
∑

x f(x, t).
A cut-set (for s, t) is a subset Π of V such that every directed path from s to t passes through

some vertex of Π (i.e., if s = u0, u1, . . . , um−1, um = t are vertices such that (ui, ui+1) ∈ E for all i,
then there is some k such that uk ∈ Π). The capacity of a cut-set is defined as

Theorem 29 (Ford-Fulkerson max-flow min-cut theorem). In the setting above, the maximum strength
over all flows is equal to the minimum capacity of a cutset.

Hall’s marriage theorem can be derived from the max-flow min-cut theorem, somewhat simi-
larly to the derivation from Dilworth’s theorem.

Proof of the matching theorem from the max-flow min-cut theorem. From the given bipartite graph, cre-
ate a directed graph with vertex set {s} t V1 t V2 t {t} (here s and t are two new vertices). The
edges of the directed graph are of three kinds: (a) (s, x) for all x ∈ V1, (b) (x, y) for all x ∈ V1,
y ∈ V2 with x ∼ y in the given bipartite graph, (c) (y, t) for all y ∈ V2. We give capacity 1 to all
edges.

What is the maximum flow from s to t? For this, we claim that Π0 = {(s, x) : x ∈ V1} is a
minimal cut-set. Indeed, if Π is any cut-set �
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4.1. Convex functions, Legendre transformation and a minimax theorem. Let f : X × Y 7→ R
be a function. Then it is true in general that

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

Indeed, fix any x ∈ X and y ∈ Y , and observe that inf
y′∈Y

f(x, y′) ≤ f(x, y) ≤ sup
x′∈X

f(x′, y). Therefore

the supremum (over x ∈ X) of the left hand side is bounded above by the infimum (over y ∈ Y ) of
the right hand side, which is what the above inequality says. Results that provided conditions (on
the spaces and the function) under which the above inequality is actually an inequality are called
minimax theorems. We shall prove one such theorem. Convexity plays a key role, hence we recall
some aspects of it.

If E is a topological vector space and f : E 7→ R ∪ {+∞}, then f is said to be a convex function
if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for any x, y ∈ E and any 0 ≤ t ≤ 1. We shall assume that
f(x) < +∞ for at least one x ∈ E. The Legendre transform (or convex dual or convex conjugate or
Legendre-Fenchel dual...) is the function f∗ : E∗ 7→ R ∪ {+∞} defined as

f∗(L) = sup
x∈E

L(x)− f(x) for L ∈ E∗.

If x0 ∈ E is a point such that f(x0) < +∞, then f∗(L) ≥ L(x0) − f(x0), hence f∗ takes values in
R ∪ {+∞}.

Example 30. Let E = Rn and let f(x) = 1
p

∑
i |xi|p. For p ≥ 1, this is a convex function. Then

E∗ = Rn and f∗(λ) = sup{〈λ, x〉 − 1
p‖x‖

p : x ∈ Rn}. By a simple calculation, this is found to be
1
q

∑
i |λi|q where q is defined by 1

p + 1
q = 1. This is the source of all the intimate connection between

the p-norm and the q-norm.

Exercise 31. Find the convex dual of (1) f(x) = maxi |xi| on Rn, (2) f(x) = |x| on R, (3) f(x) = ex

on R.

Lemma 32. f∗ is lower semi-continuous in the weak-* topology on E∗.

Proof. Suppose f∗(L) > t for some t ∈ R. Then there is some x ∈ E such that L(x) − f(x) > t.
Hence if L′ is close to L (recall that the weak-* topology on X∗ is the smallest topology in which
L 7→ L(x) is continuous for each x), then L′(x)− f(x) > t for the same x, and therefore f∗(L) > t.
Thus, {f∗ > t} is open, implying that f∗ is lower semi-continuous. �

One of the key properties of the convex dual is that it is a dual - in other words f∗∗ = f . But
to make sense of this, we must recall that f∗∗ is a function on E∗∗ and E is naturally embedded
inside E∗∗. The question is whether the restriction of f∗∗ to E is equal to f . In finite dimensional
spaces this is always true, but in infinite dimensional spaces some condition on the continuity of
f is needed.
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Theorem 33 (Fenchel-Moreau). Let E be a locally convex and let f : E 7→ R ∪ {+∞} be a convex
function that is finite somewhere. Assume that f is lower semi-continuous. Then, f∗∗

∣∣
E

= f .

Proof. First note that f∗∗(x) = sup{L(x) − f∗(L) : L ∈ E∗} for x ∈ E. Since L(x) − f∗(L) ≤ f(x)

for all x ∈ E and all L ∈ E∗ (by the definition of f∗), it follows that f∗∗(x) ≤ f(x). �
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CHAPTER 5

Asymptotics of integrals

1. SOME QUESTIONS

Consider the sequence n!, which, by definition, it is the product of the first n positive integers.
Do we understand how large it is? For example, it is easy to see that 2n−1 ≤ n! ≤ nn−1. Both sides
of this inequality are quantities we are more familiar with and can work with easily. However, they
are quite far from each other. We can sharpen the bounds as follows. Write log n! =

∑n
k=1 log k

and hence
∫ k
k−1 log xdx ≤ log k ≤

∫ k+1
k log xdx. Therefore,∫ n

0
log x dx ≤ log n! ≤

∫ n+1

1
log x dx

giving n log n− n ≤ log n! ≤ n log(n+ 1)− n+ log(n+ 1). Thus,

nne−n ≤ n! ≤ nn+1e−n(n+ 1).

The ratio of the upper and lower bounds is only of order n2 now. Can we sharpen it further and
get an elementary expression f(n) such that15 n! ∼ f(n)? Stirling’s formula asserts that n! ∼
√

2πnn+ 1
2 e−n. We shall prove this later.

Similarly, one is often interested in the magnitudes of various quantities such as

(1) Asymptotics of the Bell numbers Bn, the number of ways to partition the set {1, 2, . . . , n}.

(2) Asymptotics of p(n), the number of ways to partition the number n.

(3) Asymptotics of Hn(x) (fixed x, large n), where Hn is the nth Hermite polynomial.

One could list many more. We shall see some basic techniques to get the asymptotics of such
quantities. We shall restrict ourselves to quantities that can be expressed as integrals of certain
kinds. Fortunately, this covers many examples.

(1) n! =
∫∞

0 xne−xdx.

(2) Bn = n! 1
2πi

∫
C e

ez−1z−n−1dz where C is a simple closed contour enclosing the origin in the
complex plane.

(3) Hn(x) = (−1)nn!ex
2 1

2πi

∫
γ

1
(z−x)n+1 e

−z2dz.

In general, if we have a sequence (an), and its generating function F (z) =
∑∞

n=0 anz
n or exponen-

tial generating function G(z) =
∑∞

n=0 anz
n/n! has a positive radius of convergence, we can write

15Common notation: (1) an ∼ bn means limn→∞
an
bn

= 1, (2) an � bn means that cbn ≤ an ≤ Cbn for some constants

c and C, (3) an ≈ bn means log an ∼ log bn. Similar interpretation for f(x) ∼ g(x) etc.
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an as

an =
1

2πi

∫
γ
F (z)z−n−1dz, an = n!

1

2πi

∫
γ
G(z)z−n−1dz.

We will work out a few examples in the next sections16. The method is important, more than than
the statements of the results.

2. LAPLACE’S METHOD

Let us return to the factorial function. We shall derive its asymptotics (Stirling’s formula) using
the integral representation

n! =

∫ ∞
0

e−xxndx.

Here is a quick sketch of the idea. The integrand is exp{−x + n log x}. The exponent (and hence
the integrand) is maximized at x = n. Near this point, the second order Taylor expansion of the
exponent is (derivative term vanishes because we are at a maximum)

−x+ n log x = (−n+ n log n)− 1

2n
(x− n)2.

If we blindly replace the exponent by this, we get

e−n+n logn

∫ ∞
0

e−
1
2n

(x−n)2dx = nne−n
∫ ∞
−
√
n
e−

1
2
t2dt.

For large n, the integral can be extended to the whole line without affecting the value significantly,
hence we get

nne−n
∫ ∞
−∞

e−
1
2
t2dt = nne−n

√
2πn

which is precisely Stirling’s approximation! We have not yet justified the steps, or shown in what
precise sense this approximates n!, but the idea described here is general: The contribution to the
integral comes from a certain neighbourhood (here of order

√
n in length) of the point where the

integrand is maximized (here n).

A general theorem: We now try a general integral of the form I(λ) =
∫
R e
−λf(x)g(x)dx. Make the

following assumptions.

(1) Let f : R 7→ R+ be C2, with a unique minimum at 0. Assume that f(0) = 0 (without loss of
generality) and that f ′′(0) > 0. For δ > 0, assume thatmδ = inf |x|≥δ f(x) is strictly positive.

(2) Let g : R 7→ R be continuous and assume that g(0) > 0 (if g(0) < 0, replace g by −g).

(3) Assume that the integral defining I(λ) converges absolutely for all λ.

Theorem 1. With the above assumptions, we have (as λ→∞)

I(λ) ∼
√

2πg(0)√
f ′′(0)

√
λ
.

16Much of this material is taken from a very well-written old book of de Bruijn titled Asymptotic methods in analysis.
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In one line, the idea is that most of the contribution to the integral comes from a neighbourhood
of 0, and the contribution there is go by a second order Taylor expansion of f (and continuity of g)
which leads to a standard Gaussian integral whose value is given in the statement of the theorem.

Proof. Let δ > 0 (we may later allow it to depend on λ) and write I(λ) = I1(λ) + I2(λ) + I3(λ)

where

I1(λ) =

∫ δ

−δ
e−λf(x)g(x)dx, I2(λ) =

∫ ∞
δ

e−λf(x)g(x)dx, I3(λ) =

∫ −δ
−∞

e−λf(x)g(x)dx.

The contribution from I2 and I3 are small. Indeed, we can write

|I2(λ)|+ |I3(λ)| ≤
∫

[−δ,δ]c
e−λf(x)|g(x)|dx

≤ e−λmδ
∫
R
|g(x)|dx.

Now we turn to I1(λ). We have ε(δ) that goes to zero as δ goes to zero, such that (from our
assumptions f(0) = f ′(0) = 0) for all x ∈ [−δ, δ],

1

2
f ′′(0)(1− ε)x2 ≤ f(x) ≤ 1

2
f ′′(0)(1 + ε)x2, g(0)(1− ε) ≤ g(x) ≤ g(0)(1 + ε)

where we have written ε for ε(δ) so as to not add to the ugliness in this world. We can write the
errors multiplicatively as g(0)(1± ε) and f ′′(0)(1± ε) because of the assumption that g(0) > 0 and
f ′′(0) > 0. Thus,

g(0)(1− ε)e−
1
2
λf ′′(0)(1+ε)x2 ≤ g(x)e−λf(x) ≤ g(0)(1 + ε)e−

1
2
λf ′′(0)(1−ε)x2 , for |x| ≤ δ.(1)

From basic facts about the Gaussian integral17, for any τ > 0 we know that
√

2π√
τ

(
1− 2√

2πδ
e−

1
2
τδ2
)
≤
∫

[−δ,δ]
e−

1
2
τx2dx ≤

√
2π√
τ

Integrating all sides of (1) and using these inequalities gives
√

2πg(0)(1− ε)√
λf ′′(0)(1 + ε)

(
1− 2√

2πδ
e−

1
2
λf ′′(0)(1+ε)δ2

)
≤ I1(λ) ≤

√
2πg(0)(1 + ε)√
λf ′′(0)(1− ε)

If δ → 0 as λ→ 0, then also ε→ 0 and we can simply write

I1(λ) ∼
√

2πg(0)√
λf ′′(0)

.

Observe that this behaves as 1/
√
λ while our bound for |I2(λ)| + |I3(λ)| was e−λmδ . Hence the

latter is negligible compared to I1(λ) and we arrive at I(λ) ∼
√

2πg(0)√
λf ′′(0)

as claimed. �

17These inequalities follow by recalling that
∫∞
−∞ e

− 1
2
x2dx =

√
2π and for any a > 0, we have the estimate∫∞

a
e−

1
2
x2dx ≤

∫∞
a

x
a
e−

1
2
x2dx = 1

a
e−

1
2
a2 . Rescaling the variable by

√
τ gives the estimates in the form we need.
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Remark 2. To simplify notation we assumed that the minimum of f occurs at 0 and the value
taken is zero. If the minimum occurs at a unique point x0, then by applying the theorem with
f(x− x0)− f(x0), we get the asymptotic formula

I(λ) ∼
√

2πg(x0)e−λf(x0)√
λf ′′(x0)

.

Remark 3. In most cases (eg., if we assume additional smoothness on f and g), it is reasonable to
expect that ε(δ) � δ and that mδ � δ2 as δ ↓ 0. Going through the proof, the ratio between I(λ)

and the asymptotic form give is of the form 1± δ± e−λδ2/2. Taking δ = C
√

log λ/
√
λ for a suitably

large constant C optimizes the error and we get 1 ±
√

log λ√
λ

. Observe that it is important to take
δ >> 1√

λ
to get the full Gaussian integral in I1(λ). Later we show that by expanding f and g to

higher orders, one can improve the asymptotics so well that the error is reduced to O(λ−p) for any
p.

Example 4. Now we are ready to make precise the derivation of Stirlings’ approximation. We start
with

n! =

∫ ∞
0

xne−xdx =

∫ ∞
0

(nx)ne−nxndx

= nn+1

∫ ∞
0

e−n[x−log x]dx.

This is in the form of the integral considered in the theorem, with λ = n, g(x) = 1 and f(x) =

x − log x (the interval of integration is (0,∞) instead of R, but that does not make a difference
as long as the global minima of f are in the interior. Alternately, set g = 0 on (−∞, 0)). Since
f ′(x) = 1 − 1

x , we see that f attains its unique minimum at x0 = 1 and that f ′′(1) = 1. Therefore,
by the theorem (or the remark following it)

n! ∼ nn+1

√
2πg(1)e−nf(1)

√
n
√
f ′′(1)

= nn+ 1
2 e−n

√
2π.

This is Stirlings’ formula.

Exercise 5. Show that
∫ π

0 xn sinxdx ∼ πn+2

n2 .

When the maximum of the integral occurs at and end of the interval of integration, the same
methods can be followed to get a different answer.

Exercise 6. Let I(λ) =
∫∞

0 e−λf(x)dx where f : R+ 7→ R+ has a unique minimum at zero. Make
appropriate assumptions and show that I(λ) ∼ −1

f ′(0)λe
λf(0).

3. ON ASYMPTOTIC EXPANSIONS

We have shown that n!

nn+
1
2 e−n

√
2π

= 1 + o(1). Now we want to find the error term and improve

the asymptotics. Or more generally, how to get better approximants to I(λ) =
∫
R g(x)e−λf(x)dx?
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Let us work in the language of the theorem in the previous section, but with some extra as-
sumptions. Let g(x) = 1 for simplicity, and assume that f has additional smoothness as required.
We still assume that f has a minimum at 0 and f(0) = 0.

As before we write I(λ) as I1(λ)+I2(λ)+I3(λ) splitting the integral over [−δ, δ], over (δ,∞) and
over (−∞,−δ). Recall that |I2(λ)| + |I3(λ)| = O(e−mδλ) while I1(λ) � 1√

λ
. Consequently, as long

as mδλ ≥ C log λ, the contribution from I2 and I3 can be safely ignored. Further, since mδ � δ2,
this just means that we should make sure that δ2λ1. Thus we concentrate only on I1. By Taylor
expansion, we see that with ε = ε(δ) that goes to 0 as δ → 0, we have for all x ∈ [−δ, δ],

f(x)
ε
=

1

2
x2f2 +

1

3!
x3f3 +

1

4!
x4f4

where fk = f (k)(0). Here h(x)
ε
= k(x) means that h(x)/k(x) is between 1 − ε and 1 + ε (for

x ∈ [−δ, δ]). Consequently, I1(λ) is bounded between J(λ(1± ε)) where

J(µ) =

∫ δ

−δ
e−µ[ 1

2
f2x2f2+ 1

3!
x3f3+ 1

4!
x4f4]dx

=

∫ δ
√
µ

−δ√µ
e−

1
2
x2e
− f3

3!
x3√
µ
− f4

4!
x4

µ dx.

Write the series expansion

e
− 1

3!
x3√
µ
− 1

4!
x4

µ = 1− f3

3!

x3

√
µ

+
1

µ

[
f2

3x
6

2× (3!)2
− f4x

4

4!

]
+

1

µ
3
2

[
− f3

3x
9

3!× (3!)3

]
+ [. . .]

We shall integrate these terms now. Three points:

(1) The integral will be extended to the whole line. To estimate the error, one must use bounds
of the form ∫ ∞

a
xpe−

1
2
x2dx ≤ Cpape−

1
2
a2

for some constant Cp and valid for all a ≥ 1. We leave you to figure out how such a bound
can be derived (we showed it earlier for p = 0).

(2) Check that
∫∞
−∞ x

pe−
1
2
x2dx =

√
2π(p − 1) × (p − 3) . . . × 3 × 1 if p is even and zero if p is

odd. We only need the cases p ≤ 6 for the calculation shown here.

(3) Show rigorously that the terms denoted by [. . .] contribute only O(µ−2) after integration.

Once these points are made, we have the asymptotic relation

J(µ) ∼
√

2π
√
µ
√
f′′(0)2

(
1− 1

µ

[
5f2

3

24
− f4

8

]
+O(µ−2)

)
Writing these for µ = λ(1± ε) and using that ε→ 0 as δ → 0, we finally arrive at

I(λ) ∼ I1(λ) ∼
√

2π√
λ
√
f2

(
1− 1

λ

[
5f2

3

24
− f4

8

]
+O(λ−2)

)
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Remark 1. As before, if the minimum of f is attained at some x0, we get

I(λ) ∼
√

2πe−λf(x0)

√
λ
√
f ′′(x0)

(
1− 1

λ

[
5f (3)(x0)2

24
− f (4)(x0)

8

]
+O

(
1

λ2

))
.

Example 2. Let us apply this in the case of n! = nn+1
∫∞

0 e−nf(x)dx with f(x) = x − log x. Then
x0 = 1, f

′′
(0) = 1, f (3)(0) = 2, f (4)(0) = 6. Therefore,

n! ∼ nn+1

√
2πe−n
√
n
√

1

(
1 +

1

n

[
5× 22

24
− 6

8

]
+O(

1

n
)

)
= nn+ 1

2 e−n
√

2π

(
1 +

1

12n
+O

(
1

n2

))
.

It is clear that there is nothing to stop us (except boredom and reluctance) from getting further
terms. If one does that, one arrives at the notion of asymptotic expansion. For a function F , if we
can find number b0, b1, . . . such that

F (x) = b0 +
b1
x

+ . . .+
bn
xn

+O(x−n−1)

as x→∞, for any n, then we say that F has an asymptotic expansion and write

F (x)
asy.
= b0 +

b1
x

+
b2
x2

+ . . .

One must be careful to not think of this as equality for fixed x. In fact, for any fixed x, the series on
the right (usually) diverges! But truncations of the series give excellent approximations as x→∞,
and the more terms we keep, better the asymptotic approximation.

Exercise 3. Work out the next term in the asymptotic expansion of I(λ) =
∫
R e
−λf(x)dx (under the

usual assumptions). Deduce that

n! = nn+ 1
2 e−n

√
2π

(
1 +

1

12n
+

1

288n2
+O

(
1

n3

))
.

Exercise 4. Find the expansion of I(λ) =
∫
R g(x)e−λf(x)dx (make appropriate assumptions) to

improve the approximation

I(λ) ∼
√

2πg(x0)e−λf(x0)√
λf ′′(x0)

.

to the next term.

4. ASYMPTOTICS OF BELL NUMBERS

Let Bn denote the number of set partitions of the set [n] = {1, 2, . . . , n}. For example, B3 = 5,
because the possible partitions are

{{1, 2, 3}}, {{1, 2}, {3}} {{1, 3}, {2}} {{2, 3}, {1}} {{1}, {2}, {3}}.
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Let us emphasize that we disregard ordering of the blocks, or the ordering of elements within
blocks. Equivalently, we may adopt the convention that the blocks are ordered according by the
smallest element they contain, and that elements are ordered increasingly within each block.

Question: What are the asymptotics of Bn for large n?
Our approach will be to express Bn as an integral and then find the asymptotics of the integral.

Various choices made here are explained later under the general rubric of the saddle point method
or the method of steepest descent.

The first step is that although there is no explicit formula for Bn, there is a weighted sum for
which there is. The power series in the lemma below is known as the exponential generating function
of the sequence (Bn)n≥0. This is in contrast to the ordinary generating function

∑∞
n=0Bnz

n. Which
of these two is convenient to work with depends on the sequence.

Lemma 1. Set B0 = 1. Then
∑∞

n=0Bn
zn

n! = ee
z−1 for all z ∈ C.

Proof. Observe the recurrence (for n ≥ 1)

Bn =
n∑
k=1

(
n− 1

k − 1

)
Bn−k

that results from fixing the block containing the element 1, and then partitioning the remaining
elements. Therefore,

∞∑
n=1

Bn
zn−1

(n− 1)!
=
∞∑
n=1

zn−1

(n− 1)!

n∑
k=1

(
n− 1

k − 1

)
Bn−k

=

∞∑
k=1

zk−1

(k − 1)!

∞∑
n=k

Bn−k
zn−k

(n− k)!
.

Writing B(z) for the exponential generating function, the above equation reads B′(z) = B(z)ez .
But ee

z−1 satisfies this differential equation and has the value 1 at z = 0, just like B(z). Hence
B(z) = ee

z−1. �

Exercise 2. In writing the above proof we did not bother about convergence issues. Fill the gaps.

Applying Cauchy’s formula for derivatives, we arrive at the following formula

Bn =
n!

2πi

∫
γ
ee
z−1z−n−1dz

where γ is any contour that winds around the origin once (anti-clockwise). We choose the follow-
ing contour (the choices will be explained later):

(1) Let u > 0 be the unique solution to ueu = n + 1. Observe that u ∼ log n − log logn as
n→∞ (to see this, check that xex > n+ 1 if x = (1 + δ)(log n− log logn) and xex < n+ 1

if x = (1− δ)(log n− log logn)).
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(2) Let δ > 0 be fixed (we may also let it depend on n after seeing various error terms). Then
let γ = γ0 + γ1, where γ0 is the straight line segment from u − iδ to u + iδ and γ1 is the
circular arc centered at the origin and going from u + iδ to u − iδ (in the anti-clockwise
direction)18.

We shall show that the integral over γ1 is negligible and that the integral over γ0 comes from the
behaviour of the integrand at the point u alone. First some preparation.

ææ

FIGURE 6. The contour γ = γ0+γ1 used for estimatingBn. Most of the contribution
comes from a neighbourhood of the saddle point marked in black - the point (u, 0)

where ueu = n+ 1.

Integral over γ0: Parameterize γ0(t) = u+ it for −δ ≤ t ≤ δ to see that the integral is (we have set
aside the n!/2π factor)

I0(n) =

∫ δ

−δ
eψ(t)dt

where ψ(t) = eu+it− 1− (n+ 1) log u− (n+ 1) log(1 + it
u ) (here we choose the branch of logarithm

on the right half-plane that is equal to 0 at 1). Since |t| ≤ δ and u ∼ log n− log log n is going to∞,
the following Taylor expansion is valid uniformly over [−δ, δ]:

ψ(t) = ψ(0) + tψ′(0) +
1

2
t2ψ′′(0) + [. . .]

Note that

(1) ψ(0) = eu − 1− (n+ 1) log u,

(2) ψ′(0) = i[eu − n+1
u ] which is zero by the choice of u (this explains the choice!).

(3) ψ′′(0) = −[eu + n+1
u2

] = −eu(1 + 1
u) (second equality is by the choice of u).

18This part was differently in class. There we followed de Bruijn and transformed the curve to the vertical straight

line t 7→ u+ it, −∞ < t <∞. But doing it the way written here, it seems that one can take care of the error term more

easily. Please check the arguments carefully and critically!
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Although the integrand is complex-valued, the first two derivatives are real and we can use
Laplace’s method and get∫ δ

−δ
eψ(t)dt ∼ eψ(0)

∫ δ

−δ
e−

1
2
ψ′′(0)t2dt

∼
√

2πeψ(0) 1√
−ψ′′(0)

∼
√

2π
ee
u−1− 1

2
u

un+1
.

Integral over γ1: Let u + iδ = reiη in polar coordinates, so r =
√
u2 + δ2. Then γ1(θ) = reiθ for

η ≤ θ ≤ 2π − δ. For z = reiθ on γ1 we have Re ez ≤ |ez| = eRe z ≤ eu (since γ1 lies to the left of the
vertical line through u). Therefore, the absolute value of the integrand∣∣∣eez−1

zn+1

∣∣∣ =
eRe{ez}−1

rn+1
≤ ee

u−1

un+1

(u
r

)n+1
.

Now observe that u
r =

(
1 + δ2

u

)−1
≤ e−cδ/u for some constant cδ (for example, one may use the

elementary inequality 1 + x ≥ ex/2 valid for 0 ≤ x ≤ 1
2 ) and hence (u/r)n+1 ≤ e−cδ

n+1
u = e−cδe

u
.

Thus we see that

I1(n) ≤ 2πr
ee
u−1

un+1
e−cδe

u

≤ 4πue−ce
u+ 1

2
u e

eu−1− 1
2
u

un+1
.

Here we used r ≤ 2u which is obvious. The last factor is the asymptotic expression that we got
for I0(n) (up to constants). The remaining factor is clearly O(e−

1
2
eu). Thus we see that I1(n)

I0(n) =

O(e−cn/ logn) (since eu � n
logn ).

Putting everything together, we arrive at

Bn =
n!

2π
(I0(n) + I1(n))

∼ n!√
2π

ee
u−1− 1

2
u

un+1

where ueu = n+ 1.

Exercise 3. Write the asymptotic expression in terms of n (without using the implicitly defined u).

Remark 4. What were the key steps? The first was of course getting the explicit formula for the
generating function that allowed us to writeBn as a contour integral. After that, the key point was
to choose the right curve, so that the contour integral comes entirely from contributions close to
one point. In the case at hand, it was important that the curve passed through the point u on the
real line satisfying ueu = n+ 1, and also that it passed through the point in the vertical direction.
What is special about u is that it is a saddle point of the function ψ(z) = ez − 1−Logz (but not the
only saddle point). At any saddle there are two perpendicular directions, one in which the value
of ψ increases (when moving away from the saddle) and one in which the values of ψ decreases.
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The vertical line is the line of steepest descent in our example. The general idea of using saddle
points to find a convenient contour is explained in the next section.

5. THE SADDLE POINT METHOD - GENERALITIES

Here we are interested in evaluating integrals of the form I(λ) =
∫

[A,B] g(z)eλf(z)dz where f, g
are holomorphic functions on some region and A,B are points in the region. The parameter λ is
real and will go to infinity. We want the asymptotic behaviour of I(λ).

In our examples, we shall take f and g to be entire functions. The idea consists of two steps:

(1) By holomorphicity, the integral does not change if we deform the contour of integration
(keeping end points fixed at A,B). The first step is to choose the right contour, by which
we mean whatever will make the second step work!

(2) Once the contour is chosen, write I(λ) as an integral over an interval in the real line, I(λ) =∫ b
a g(γ(t))eλf(γ(t))γ̇(t)dt. If the contour is well-chosen, Laplace’s method (or some other)

could apply to this integral and we could calculate the asymptotics.

How do we choose a good contour? Here are some guidelines. They are not guaranteed to work,
but often do.

Guidelines: Consider the absolute value of eλf(z) which is eλu(z) where u = Re f . For Laplace
method to apply in the second step, we would like eλu(γ(t)) to be peaked at one point t0 so that the
entire contribution to the integral comes from a neighbourhood of t0 (for large λ). Then u(γ(t))

should achieve a maximum at t0. Let us assume t0 is not an endpoint, then u achieves its maximum
on γ at γ(t0).

But since u is harmonic, it has no maxima (or minima) in the plane. Therefore, γ(t) must be a
saddle point of u. Working backwards, we see that a good choice of γ is one that passes through
one of the saddle points of u, and it should pass through the saddle point in such a way that the
maximum of u on the curve is attained at this saddle point.

Example 1. If f(z) = z2, then u(x, y) = x2 − y2 (where z = x + iy) and ∇u(z) = (2x,−2y). The
only saddle point is (0, 0). Along the x-axis, this is a minimum of u, and along the y-axis, this is a
maximum of u. We could choose our curve to pass through 0 in the direction of the y-axis. Other
choices are possible. In fact, u < u(0) in the two sectors |x| > |y| and u < u(0) in the two sectors
|x| < |y|. We can take any curve that stays strictly within the latter sectors, for example, t + 2it is
such a curve. Difficulties arise if the curve passes through the saddle point (here 0) tangentially to
the boundary of the sector - hence we used the phrase ‘strictly inside’.

In general, if f = u + iv is holomorphic, then f ′ = ux + ivx = ux − iuy (Cauchy-Riemann
equations). Thus, saddles of u are precisely the zeros of f ′. Further, the Taylor expansion of f
near ζ looks like f(z) = f(ζ) + 1

2(z − ζ)2f ′′(ζ) + . . .. We shall always assume that f ′′(ζ) 6= 0. One
can handle the cases where this is violated (we refer to them as degenerate saddles) by going to
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FIGURE 7. The function ez
2

has a saddle at zero. The blue region is where the value
is lower than the value at the saddle point. What is shown in black is an admissible
curve for the saddle point method. The y-axis is the curve of steepest descent.

higher derivatives, but that only increases the complications. For the applications we give, there
will only be non-degenerate saddles. Then, if z = ζ + reiθ (small r) and f ′′(ζ) = Reiα, then

u(z) = u(ζ) +
1

2
r2R cos(2θ + α) + . . .

The directions of steepest descent (respectively ascent) are the two values of θ (differing by π from
each other) for which cos(2θ + α) = −1 (respectively +1). The straight line through the saddle
point in the direction of the steepest descent is called the axis of the saddle. In other words, it is the
line of z such that (z − ζ)2f ′′(ζ) is real and negative. The line of ascent is orthogonal to the line of
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descent. Further, the curves of constancy of u are given by cos(2θ + α) = 0, and these are a pair of
curves passing through ζ at π/4 angle to the directions of ascent and descent.

Exercise 2. Show the same in an alternative way by going through the Hessian of u given by

Hu(ζ) =

[
ux,x ux,y

uy,x uy,y

]
and the fact that the direction of the steepest descent is the direction of the eigenvector corre-
sponding to the negative eigenvalue of Hu.

6. INTEGER PARTITIONS - PRELIMINARIE - 1

Let p(n) denote the number of integer partitions of n. For example,

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15, . . .

and Mathematica gives p(100) = 190569292 (because it uses the formula of Hardy-Ramanujan-
Rademacher!). The goal in this section is to get the asymptotic formula for p(n) as n→∞.

Like with Bell numbers, we shall first find the generating function of the sequence p(·), and
then express p(n) as a contour integral in which n is a parameter. Unlike before, the generating
function is now analytic in the unit disk, and has singularities as one approaches any root of unity
on the circle. The circle method is to deform the curve in such a way that the contributions of theses
singularities are extracted. Some technical details will be skipped19.

6.1. Euler’s generating function for p(·). Let p(0) = 1. Euler showed that
∞∑
n=0

p(n)qn =
∞∏
n=1

(1− qn)−1.

The product converges uniformly on compact subsets of the open unit disk D and hence the gen-
erating function is holomorphic in D.

Proof. If we expand the right hand side formally, we get
∞∏
n=1

∞∑
k=0

qkn =
∑

`1,`2,...

z`1+2`2+3`3+...

where the last sum is over all sequences `1, `2, . . . that are eventually zero. The term qn occurs as
many times as there are such sequences with `1 + 2`2 + . . . = n. But that is precisely p(n), by

19The result about p(n) is due to Hardy and Ramanujan, but the circle method itself is attributed to Hardy and

Littlewood. What we present is from a later refinement of the method and result is due to Rademacher, as presented

in his paper On the expansion of the partition function in a series. I learned many of the points here from conversations

with Surya Ramana of HRI, whose lecture gives a beautiful overview, with many details, of the topic. Some parts of

the proof are taken from the paper The circle method and non lacunarity of modular functions by Sanoli Gun and Joseph

Oesterlé.
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identifying the sequence with the partition of n that consists of `1 ones, `2 twos, etc. We leave it as
an exercise to fill in the details to make this argument rigorous. �

6.2. Contour integral representation for p(n). From the generating function, it follows that

p(n) =
1

2πi

∫
C
q−n−1

∞∏
n=1

(1− qn)−1 dq

for any closed curve C inside the disk that winds around the origin once. We shall write every-
thing on the upper half plane H by composing with the map z 7→ q := e2πiz from H to D \ {0}.
This map is surjective but not injective. In fact q(z) = q(z + 1) for all z and each vertical strip
{z ∈ H : t ≤ Re z < t + 1} gets mapped to the whole of D \ {0} under this mapping. Define

F : H 7→ C by F (z) =
∞∏
n=1

(1− qn)−1. Then the integral formula becomes (note that dqdz = 2πiq)

p(n) =

∫ i+1

i
q−n

∞∏
n=1

(1− qn)−1 dz.

Under the map z 7→ q (which also maps R to S1), the pre-image of roots of unity are precisely
rational numbers in R. By the mapping properties of q listed above, it suffices to look at the strip
0 ≤ Re z ≤ 1 and rational numbers in [0, 1] which we proceed to do next.

6.3. Ford’s geometric picture of fractions. Rational numbers will be written as p/q with q ≥ 1 and
gcd(p, q) = 1, unless otherwise stated. Let Cp/q denote the circle of diameter 1/q2 whose lowest
point is p/q. Thus, Cp/q ⊆ H and its center is p

q + i p
2q2

.

Observation: The interiors of Cp/q and Cr/s are disjoint from each other. Two distinct circles are
tangential to each other if and only if ps− qr = ±1.

Let us write p
q ∼

r
s if Cp/q and Cr/s are tangential to each other and say that pq is adjacent to r

s .

Proof. The square of the distance between the centers is(
p

q
− r

s

)2

+
1

4

(
1

q2
− 1

s2

)2

=
1

4q4s4

{
4q2s2(ps− rq)2 + (s2 − q2)2

}
while the square of the sum of their radii is(

1

2q2
+

1

2s2

)2

=
1

4q4s4
(s2 + q2)2 =

1

4q4s4

{
4q2s2 + (s2 − q2)2

}
.

Comparing the two expressions, it is clear that the circles can intersect if and only if (ps−qr)2 ≤ 1.
If ps− qr = 0, the circles are the same, while if ps− qr = ±1, the circles are tangential (because the
two quantities are then equal). �

The Farey series of order n is the finite increasing sequence of all rational numbers p/q with
0 ≤ p ≤ q ≤ n.
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FIGURE 8. A picture of the Ford circles for fractions with 0 ≤ p ≤ q ≤ 6. The
fractions shown form the Farey series of order 6.

Exercise 1. Show that pq ∼
r
s if and only if p/q and r/s are consecutive terms in the Farey series of

some order.

Exercise 2. If p
q ∼

r
s , then the set of all rationals t

u adjacent to p
q are of the form r+np

s+nq for some
n ∈ Z. As n → ∞ (respectively n → −∞), these circles approach p

q from the right (respectively
left).

There is a feature of the picture that we have not shown, that is, the region {z ∈ H : Im z < 1} is
made up of ’circular triangles’. This is established if we show that if pq <

r
s are adjacent, then there

is a (necessarily unique) t
u between p

q and r
s and adjacent to both. To see that use the exercise to

see that p
q and r

s are adjacent to each other in the Farey series of order n for some n ≥ 1. Find the
smallest m > n for which there is a rational number between the two given rationals. We claim
that this fraction is unique. Indeed, if more than one such rational, then we can find two that are
adjacent to each other. But then they must be of the form t

m and t+1
m (in reduced form) in which

case they cannot be adjacent to each other (because (t+ 1)m− tm = m ≥ 2).

A new contour for integration: Let N ≥ 1 and let 0 = x1 < . . . < xkN = 1 be the Farey series of
order N . As observed above, Cxk−1

touches Cxk for 2 ≤ k ≤ kN . Let this point of intersection be
denoted ζN,k. Make the convention that ζN,0 = i and ζN,kN+1 = i + 1. Let γN,i denote the a cirve
that traces the upper arc of Cxi connecting ζN,i−1 to ζN,i. Then γN := γN,0 + . . .+ γN,kN is a curve
from i to i+ 1 that is homotopic to the straight line [i, i+ 1]. Hence we certainly have

p(n) =

∫
γN

F (z)e−2πinzdz.

We want to let N → ∞. Every rational number x ∈ Q ∩ [0, 1) belongs to some Farey series and
hence enters the picture for sufficiently large N . Further, the arc of the circle that is part of γ(N)
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increases to C∗x := Cx \ {x}. To see this, just note that there are infinitely many Ford circles that
touch Cx on the right and on the left, and since these have to be smaller and smaller, their points
of contact with Cx gets closer and closer to x. In other words, in the limit, γN becomes the union
of all Ford circles (with their lowest points excluded). We claim that

p(n) =
∑

x∈Q∩[0,1)

∫
C∗x

F (z)e−2πinzdz.

This can be justified by the dominated convergence theorem, provided we check that∑
x∈Q∩[0,1)

∫
C∗x

|F (z)|
∣∣e−2πinz

∣∣|dz| <∞.
Here

∫
γ |f(z)||dz|means

∫ b
a |f(γ(t))| |γ̇(t)|dt. We skip the justification for now, because it involves

getting some estimates on F and that will be easier after we have the transformation rules for F .
We just state for now that the integral on C∗x will be bounded by (a constant times) q−5/2 where
x = p/q. Since there are at most q rational numbers in [0, 1) having denominator q, the sum above
can be bounded by

∑
q≥1

q−3/2 which is finite.

The geometric picture of rational numbers is quite useful. We show here a consequence for
rational approximation20. The rest of this section are not necessary for the problem of finding
asymptotics of p(n) and may be safely skipped.

Fix any x ∈ R and let Lx denote the vertical line x + iy, y > 0. We claim that if x 6∈ Q, then Lx
intersects infinitely many circles. Clearly this is false if x ∈ Q. However, when x 6∈ Q, traverse Lx
downwards. It must leave every circle that it enters (otherwise x must be the bottom point of the
circle). But when it exits a circle, it must then enter a mesh triangle made up of three circles (one
of which it just left) and then enter the smaller of the two other circles. As this repeats indefinitely,
we have proved the claim. But now observe that Lx interesects Cp/q if and only if |x− p

q | ≤
1

2q2
(the

projection of the circle to the x-axis must contain the point x). Thus, we have proved that for any
irrational number x, there are infinitely many rational numbers p

q satisfying |x− p
q | ≤

1
2q2

. This is
(a slightly stronger form) of a theorem of Dirichlet.

Question: Fix λ > 0. Is it true that for every irrational x, there are infinitely many rational numbers
p
q such that |x− p

q | ≤
λ
q2

?
We have see that the answer is ‘yes’ for λ = 1

2 . Here is the optimal result.

Theorem 3 (Hurwitz). The answer to the above question is ’yes’ if λ ≥ 1√
5

and ’no’ if λ < 1√
5
.

Let Cλp/q denote the circle concentric with Cp/q and having radius λ/q2. If we show that Lx
intersects infinitely many of the circles Cλp/q for any irrational number x, then we get that |x− p

q | ≤
λ
q2

for infinitely many p
q . In particular, if we show that whenLx is in a mesh triangle, this inequality

20The proof is essentially in Ford’s paper, although the presentation is not identical
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holds for one of the three rational numbers whose circles bound the triangle, then we are done.
This leads us to the following geometric consideration.

A geometric consideration: Consider three mutually tangential circles C1, C2, C3 in the upper half
plane and tangential to the real line at the points 0, 2x, 2 respectively (where 0 < x < 1) and having
radii r, s, t respectively. First we show that r is the only free parameter and write the formulas for
x, t, s in terms of r. Observe that s is the smaller of the three radii and without loss of generality
we take s ≤ r ≤ t.

Indeed, the tangency of C1 and C2 forces (r − s)2 + 4x2 = (r + s)2 which implies rs = x2.
Similarly, we must have st = (1−x)2 (tangency of C2 and C3) and rt = 1 (tangency of C1 and C3).

x =

√
r

√
r +
√
t

=
r

r + 1
, s =

1

(
√
r +
√
t)2

=
r

(1 + r)2
.

Now let Ĉi denote the circle Ci with the center fixed and radius scaled by λ. Then the projections
of the Ĉi onto the x-axis are [−λr, λr], [2x− λs, 2x+ λs] and [2− λt, 2 + λt] respectively. We wish
to find a condition on λ such that (for any r), the union of these three intervals contains [0, 1]. This
happens if and only if at least one of the following happens.

(1) The first and third interval overlap. This happens if and only if 2−λt ≤ λr or equivalently,
λ ≥ 2

r+ 1
r

.

(2) The second interval overlaps with the first as well as the third. This happens if and only if
2x− λs ≤ λr and 2x+ λs ≥ 2− λt. In other words,

λ ≥ 2x

r + s
=

2

(r + 1) + 1
r+1

and λ ≥ 2(1− x)

s+ t
=

2
r+1
r + r

r+1

.

The function u 7→ 2
u+ 1

u

decreases from∞ to 1 as u increases from 0 to 1. Since we assumed

r ≤ t we must have r ≤ 1 ≤ t (because rt = 1), and hence r
r+1 ≤

1
r+1 . Therefore of the two

inequalities here, the second one is the more stringent one.

In conclusion, the condition is that λmust be at least min{ 2
r+ 1

r

, 2
r+1
r

+ r
r+1

}. The first term is decreas-

ing and the second is increasing for 0 < r < 1, hence the minimum is largest when the two terms
are equal. That is when r = 1

r+1 or r2 + r − 1 = 0 which gives r =
√

5−1
2 . The minimum at this

point is 2
r+ 1

r

= 2√
5
. Thus the desired condition is λ ≥ 2√

5
.

Returning to Hurwitz’s theorem, the above geometrical consideration applies to any three mu-
tually tangential circles. Since the Ford circles at 0 and 1 is of radius 1

2 (not 1 as in the geometrical
consideration above), we see that the in Hurwitz’s theorem, for λ ≥ 1√

5
the claim holds. The above

considerations also suggest why it fails for λ < 1√
5
. complete this

6.4. The modular group. In complex analysis class you would likely have seen the fact that

SL2(Z) acts on the upper half plane H = {z : Im z > 0} by g.z = az+b
cz+d , where g =

[
a b

c d

]
. Since

84



g and −g act exactly the same way, one often thinks of the action of PSL2(R) = SL2(R)/{±I}.
This action is faithful. The subgroup SL2(Z) becomes PSL2(Z) = SL2(Z)/{±I} under quotient-
ing. This is called the Modular group.

Example 4. T =

[
1 1

0 1

]
and S =

[
0 −1

1 0

]
act as T.z = z + 1 and S.z = −1

z .

Lemma 5. S and T generate the modular group.

The basic idea is that of the Euclidean algorithm21

Proof. Let g =

[
a b

c d

]
. Observe that

Sg =

[
−c −d
a b

]
and T−qg =

[
a− qc b− qd
c d

]
.

Our goal will be to keep multiplying on the left by S or powers of T till we get to ±I . That of
course shows that g is in the group generated by S and T . As we proceed through the steps, we
shall maintain our matrix in such a way that the (1, 1) entry is at least as large as the (2, 1) entry,
in absolute value. Here is the first step:

Two cases, (a) |c| > |a|, (b) |c| ≤ |a|. In the first case we multiply g on the left by S. In the second
case we multiply by ST−q where q is chosen so thats 0 ≤ a− qc < |c|. The new matrix is[

−c −d
a b

]
or

[
−c −d

a− qc b− qd

]
.

In both cases observe that the requirement on the entries of the first column is maintained.
Applying this step repeatedly, after a finite number of steps we arrive (recall the Euclidean

algorithm which ends with the remainder becoming 0 at some stage) at a matrix of the form[
x y

0 z

]
.

Since this is an SL2(Z) matrix, we must have x = z = 1 or x = z = −1. If y = 0, we have reached
our goal. Otherwise multiply by T±y on the left to get ±I . �

6.5. Transformation property of F (z) under the action of the modular group. The function F

transforms in a nice way under the action of the modular group. Throughout this section, when-
ever we encounter the square root of a complex number, it is defined to be the branch of

√
w on

the complement of the negative real axis with the property that the root of a positive number is
positive (explicitly,

√
w =

√
|w|ei

1
2
arg(w) where −π < arg(w) < π.

21There are some tricky points one must pay attention to. I learned this proof from Soumya Bhattacharya.
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Lemma 6. F (z + 1) = F (z) and F
(
−1
z

)
= 1√

−iz e
− iπ

12
(z+ 1

z
)F (z). More generally,

F (g.z) = ε(g)
1

(cz + d)
1
2

e
iπ
12

(g.z−z)F (z)

where ε(g) is a 12th root of unity (can be written explicitly but we shall not).

Since the action of g can be got by composing powers of S and T , it is clear that the third
statement should follow from the first two. However, as we did not give an explicit expression for
g in terms of S and T this is not entirely obvious. An alternative is to check that the set of g for
which the transformation formula hold forms a group. Since it holds for S and T , it holds for all g
in the group generated by S, T , which is the whole modular group. To carry this out, the explicit
form of ε(g) will be needed, of course.

Of the first two identities, the first one, F (z + 1) = F (z) is clear, since q is itself 1-periodic. It
remains to prove the identity for F (−1/z). There are two main ingredients.

• Euler’s pentagonal number theorem: For |q| < 1, we have the expansion

1

F (z)
=
∑
n∈Z

(−1)nq
1
2
n(3n−1).

• Poisson summation: For a, b ∈ C with Re(b) > 0, let H(a, b) :=
∑

n∈Z e
−π(bn2+2an). Then,

H(a, b) =
1√
b
e
πa2

b H

(
ia

b
,
1

b

)
.

These are explained later. Assuming these, here is how we derive the transformation rule relating
F (−1/z) to F (z).

Proof. By the pentagonal number theorem

1

F (z)
=
∑
n∈Z

eiπne−π(−3izn2+izn) = H

(
1

2
i(z − 1),−3iz

)

=
1√
−3iz

e−
iπ(z−1)2

12z H

(
i(1− z)

6z
,
i

3z

)
.

In the second line we used the Poisson summation formula. On the other hand, substituting −1/z

in the first line, we see that
1

F (−1
z )

= H (3i, )

�

The group SL2(R) consists of 2× 2 real matrices g =

[
a b

c d

]
satisfying ad− bc = 1. It has the

subgroup SL2(Z) of matrices with integer entries with determinant one. Now, SL2(R) acts on the
upper half plane H by

g.z =
az + b

cz + d
.
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The action is holomorphic with derivative g′.z = 1
(cz+d)2

(the notation g′.z is not meaningful, but
we use it nevertheless).

Observe that g.z = h.z if and only if g = ±h, hence the quotient groupPSL2(R) := SL2(R)/{±I}
acts faithfully on H (meaning that distinct group elements do not act identically). The function
F (z) has a remarkable transformation formula under the action of the subgroup SL2(Z) (also
known as the modular group). To state it in terms of a more familiar function that turns up often,
we define the Dedekind eta function

η(z) = q
1
24

∞∏
n=1

(1− qn)

which is the same as q
1
24F (z). A function closely related to η is ∆(z) = (2π)12η(z)24. The lemma

below can be stated in standard jargon as “∆ is a modular form (in fact a cusp form) of weight
12”.

Lemma 7. (g′.z)−12∆(g.z) = ∆(z) for all z ∈ H, for all g ∈ SL2(Z). Consequently,

F (e
2πi p

q
−2π z

q2 ) = ωp,q

√
z

q
e
π

12z
− πz

12q2 F

(
e

2πi p
′
q
− 2π

z

)
where pp′ = −1 (mod q) and ωp,q is a root of unity (which can be made explicit).

Proof. �

7. INTEGER PARTITIONS - PRELIMINARIES 2

For an integrable function f : R 7→ C, define its Fourier transform f̂ : R 7→ C as f̂(λ) =∫
R f(x)e−2πiλxdx.

Theorem 1 (Poisson summation formula). Assume that f is smooth (C2 suffices) and that f, f ′ decay
fast (O(|x|−2) suffices) at ±∞. Then ∑

n∈Z
f(n) =

∑
n∈Z

f̂(n).

Proof. Define g : R 7→ C by g(x) =
∑

n∈Z f(x+ n). Since ‖f‖sup[n,n+1] is summable by assumption
on the decay of f , the series defining g converges uniformly and thus g is a continuous 1-periodic
function. Further, the same series with f ′ in place of f also converges uniformly for the same
reason (assumption on the decay of f ′). This allows us to differentiate term by term and see that
g′(x) =

∑
n∈Z f

′(x+ n) and that it is also a continuous, 1-periodic function.
As {e2πnt : n ∈ Z} forms an orthonormal basis for L2(S1), we have the L2 expansion

g(x)
L2

=
∑
n∈Z

g̃(n)e2πinx, where g̃(n) =

∫ 1

0
g(x)e−2πinxdx.
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However, g is continuously differentiable, and by an integration by parts one sees that g̃′(n) =

2πing̃(n). Since Fourier coefficients of g′ are square summable, we must have
∑

n |g̃(n)|2n2 < ∞.
By Cauchy-Schwarz inequality,

(
∑
n 6=0

|g̃(n)|)2 ≤

∑
n6=0

n2|g̃(n)|2
∑

n6=0

1

n2


and thus g̃(n) is absolutely summable. Consequently, the Fourier series of g converges to g uni-
formly (Weierstrass’ M-test). In particular, for each x ∈ R, we have∑

n∈Z
g̃(n)e2πinnx = g(x).(1)

Now we claim that g̃(n) = f̂(n). Indeed, using Fubini’s to interchange sum and integral,

g̃(n) =
∑
k∈Z

∫ 1

0
f(x+ k)e−2πinxdx =

∑
k∈Z

∫ k+1

k
f(x)e−2πinxdx

=

∫ ∞
−∞

f(x)e−2πinxdx

which is just f̂(n). Substituting this and the definition of g in (1) we get∑
n∈Z

f̂(n)e2πinx =
∑
n∈Z

f(x+ n).

Set x = 0 to get Poisson summation formula. �

Corollary 2. For a, b ∈ C with Re(b) > 0, let H(a, b) =
∑

n∈Z e
−π(bn2+2an). Then,

H(a, b) =
eπ

a2

b

√
b
H

(
ia

b
,
1

b

)
.

Proof. Let f(x) = e−π(bx2+2ax). Then

f̂(λ) =

∫
R
e−π(bx2+2ax)−2πiλxdx

= eπb(
a+iλ
b

)2
∫
R
e−πb(x+a+iλ

b
)2 =

eπ
a2

b

√
b
e−π( 1

b
λ2+ 2ia

b
λ).

Applying the Poisson summation formula, we get the identity in the corollary. �

Example 3. Theta function: An immediate application of the corollary is the transformation rule
for the theta function θ(z) =

∑
n∈Z q

n2
with q = e2πiz . Then θ(z + 1) = θ(z) obviously. Further, by

the Poisson summation formula (see the corollary with b = 1

Exercise 4. Define the theta function θ(z, w) =
∑

n∈Z e
iπwn2

e2πizn. Then show that θ(z+1, w) = θ(z)

and θ(−1
z ,

w
z ) =
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8. INTEGER PARTITIONS - ASYMPTOTICS VIA THE CIRCLE METHOD

We first give an overview of the whole proof and then deal with the individual steps.

(1) Find the generating function of p(n) as
∑∞

n=0 p(n)qn =
∞∏
n=1

(1−qn)−1 =: f(q). Use Cauchy’s

integral formula and make the substitution q = e2πiz to get the contour integral formula

p(n) =
1

2πi

∫ i+1

i
F (z)e−2πi(n+1)zdz

where F (z) = f(q) for z ∈ H.

(2) Consider the Farey series of order N , say 0 = x1 < . . . < xkN = 1 (these xis are all the
fractions with denominator at mostN ). Deform the contour [i, i+1] to γx1,N + . . .+γxkN ,N ,
where γxk,N is the upper arc on the Ford circle Cxk traversed clockwise, from the point
of intersection of this circle with Cxk−1

to the point of intersection with Cxk+1
. This is the

description for all except the first and last. For the first, the starting point of γ0,N is taken
to be i and for the last the ending point of γ1,N to be i+ 1. Conclude that

p(n) =
1

2πi

kN∑
j=1

∫
γxj,N

F (z)e−2πiz(n+1)dz.

(3) Let N → ∞ and observe that the arc γx, N increases to C∗x := Cx \ {x} (the whole circle
except the bottom point) for x ∈ Q ∩ (0, 1). Further, γ0,N increases to the right half of C0

from i to 0 and γ1,N increases to the left half of C1 from 1 to 1 + i. Argue that

p(n) =
1

2πi

∑
x∈Q∩[0,1)

∫
C∗x

F (z)e−2πiz(n+1)dz.

Here, we have used the identity F (z) = F (z + 1) to replace the arc of C1 from 1 to 1 + i by
the arc from 0 to i on C0, which combines with the arc from i to 0 to give C∗0 .

(4) Establish the transformation formulas: F (z + 1) = F (z) which is trivial and

F (z) =
√
−iz e

iπ
12(z+ 1

z )F

(
−1

z

)
.

Herew = −iz is in the right half plane, and the square root is defined by
√
w =

√
|w|e

i
2
Arg(w)

where −π < Arg(w) < π.

(5) Consider the action of G = SL2(Z) on H given by g.z = az+b
cz+d (in fact this defines an action

by SL2(R)). Show that the action of any element can be written as a composition of the
maps z 7→ z + 1 and z 7→ −1

z . Consequently, we get the more general transformation
formula

F (g.z)e−
iπg.z
12 = ε(g)(cz + d)−

1
2F (z)e−

iπz
12 .

where ε(g) is a certain 12th root of unity (can be written more explicitly).
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(6) Now fix a fraction 0 ≤ x = a
c < 1 and find integers b, d such that ad−bc = 1 (take a rational

number smaller than a/c whose Ford circle touches the Ford circle of a/c. Then by writing

g =

[
a b

c d

]
and writing

g.z =
az + b

cz + d
=
a

c
− 1

c2(z + d
c )
,

we see that the action of g maps C∗∞ onto C∗x (recall that C∞ = (R + i) ∪ {∞}, by C∗∞ we
just mean R + i). The derivative of this action is d

dzg.z = 1
(cz+d)2

. Therefore,∫
C∗x

F (z)e−2πiz(n+1)dz =

∫
C∗∞

F (g.z)e−2πi(n+1)g.z 1

(cz + d)2
dz

= ε(g)

∫
C∗∞

F (z)e
iπ
12

(g.z− 1
z

)e−2πi(n+1)g.z 1

(cz + d)
5
2

dz

(7) Put together the previous steps to see that

p(n) =
1

2πi

∑
x=a

c
∈[0,1)∩Q

ε(g)

∫
C∗∞

F (z)e
iπ
12

(g.z− 1
z

)e−2πi(n+1)g.z 1

(cz + d)
5
2

dz

.

90



CHAPTER 6

Moment problems

1. MOMENT PROBLEMS

If µ is a measure on R, the number αk =
∫
xkdµ(x) is said to be its kth moment, if it exists.

Throughout this section, we work with measures for which all moments do exist. In particular, all
measures will be finite, and often we normalize them to be probability measures.

The moment problem: Given a sequence α = (α0, α1, . . .) of real numbers, does there exist a Borel
measure on R whose nth moment is αn? Is it unique? What if the measure is restricted to the
half-line [0,∞) or to an interval?22

Necessary condition: The integral of a positive function against a measure is positive. Suppose α
is the moment sequence of a measure µ whose support is the closed set I ⊆ R. Then, for any (real)
polynomial p(x) =

∑n
j=0 cjx

j such that p(x) ≥ 0 for all x ∈ I , we must have
∫
p(x)dµ(x) ≥ 0.

Since
∫
p(x)dµ(x) =

∑n
j=0 cjαj , writing L(p) :=

∑n
j=0 cjαj , we see that

L(p) ≥ 0 whenever p(x) ≥ 0 for all x ∈ I.(1)

The first main theorem is that this condition is also sufficient.

Theorem 1 (Existence part of the moment problem). Let I be a closed subset of R and let α =

(α0, α1, . . .) be a sequence of real numbers. There exists a measure µ on I such that
∫
xkdµ(x) = αk

for all k ≥ 0 if and only if the positivity condition (1) holds.

We shall prove this in the next section. For now, we take I to be an interval and find more
tractable conditions for (1) to hold. The question is, what polynomials are positive on I?

The whole line: Let I = R. Write

p(x) = an

k∏
j=1

(x− tj)
∏̀
j=1

(x− zj)(x− z̄j)

where k, ` ≥ 0 and tj ∈ R and zj ∈ C \R. Let q(x) =
∏`
j=1(x− zj) (a complex polynomial), so that

p(x) = an|q(x)|2
∏k
j=1(x − tj). Thus p is positive on R if and only if an > 0 (take x → +∞ to see

22There are various names, such as the Hamburger moment problem, the Stieltjes’ moment problem, Hausdorff

moment problem, etc.
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this) and each distinct real root of p occurs with even multiplicity. Then, letting q = q1 + iq2 and
r(x)2 =

∏k
j=1(x− tj),

p = (
√
anrq1)2 + (

√
anrq2)2.

Conversely, any such polynomial is positive on R.
Thus, in condition (1) it suffices to take p to be the square of another polynomial and thus the

condition becomes L(p2) ≥ 0 for all p ∈ P . Writing p(x) =
∑n

j=0 cjx
j , this can be written in terms

of the sequence α as

0 ≤
n∑

j,k=0

cjckαj+k for all n ≥ 1 and c0, . . . , cn ∈ R.(2)

This can also be phrased as saying that the infinite matrixHα = (αi+j)i,j≥0 is positive semi-definite
(meaning that det[(Hα(i, j))0≤i,j≤n] ≥ 0 for all n ≥ 0).

Half-line: Let I = [0,∞). Going by the same logic as before, we see that if p is positive on [0,∞),
then all its real roots in (0,∞) must have even multiplicity, but the negative roots are not restricted.
Hence

p(x) = q(x)
m∏
j=1

(x+ tj)

where q(x) ≥ 0 for all x ∈ R. Expanding the product further, and writing q = q2
1 + q2

2 , we see
that p(x) is a positive linear combination of polynomials of the form xkr(x)2 where r is a real
polynomial and k ≥ 0. Since even powers of x can be absorbed into r, we see that any polynomial
positive on [0,∞) is a linear combination (with positive coefficients) of polynomials of the form r2

and xr2(x). Thus the condition (1) is equivalent to

L(p2) ≥ 0 and L(xp2(x)) ≥ 0 for all p ∈ P.

Again, writing p(x) =
∑n

j=0 cjx
j , we can write these conditions as

0 ≤
n∑

j,k=0

cjckαj+k and 0 ≤
n∑

j,k=0

cjckαj+k+1 for all n ≥ 1 and c0, . . . , cn ∈ R.

This is equivalent to positivity of the determinants of (Hα(i, j))0≤i,j≤n and (Hα(i, j))0≤i≤n,1≤j≤n+1.

Compact interval: Let I = [0, 1]. We claim that if p ≥ 0 on I , then it can be written as a positive
linear combination of the polynomials xk(1 − x)` for k, ` ≥ 0. Accepting this claim, the condition
(1) becomes equivalent to

L(xk(1− x)`) ≥ 0 for all k, ` ≥ 0.

Expanding (1− x)`, this is the same as

∑̀
j=0

(
`

j

)
(−1)jαk+j ≥ 0
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There is a nice way to express this. Define the difference operator from sequences to sequences by
(∆c)k = ck+1 − ck. Then the above conditions can also be written succinctly as (−1)p(∆pα)k ≥ 0

for all p, k (the original sequence is positive, the differences are negative, second differences are
positive, etc.).

Exercise 2. (1) Prove the claim. (2) Prove the equivalence of the derived condition to alternating
signs of successive differences.

2. SOME THEOREMS SIMILAR IN SPIRIT TO THE MOMENT PROBLEMS

There are other theorems that one sees in analysis that are similar in spirit to the moment prob-
lem. We mention a couple of them in this section. These will not be required in future sections.

Theorem 3 (Riesz’s representation theorem.). Let X be a locally compact Hausdorff space. Let L :

Cc(X) 7→ R be a linear functional. Then, there exists a (regular) Borel measure µ on X such that Lf =∫
fdµ for all f ∈ Cc(X) if and only if L is positive (i.e., L(f) ≥ 0 whenever f ≥ 0).

Presumably Riesz had the solutions to the moment problems in mind when he formulated this
theorem. But the solutions to the moment problems cannot be deduced directly from Riesz’s
representation.

Other questions with the same flavour as the moment problem are as follows: We are given
a linear functional on a subspace of continuous functions. The problem being to determine if it
comes from a measure. Here are two concrete problems of interest.

Example 4. For a measure µ on S1, we define its Fourier coefficients µ̂(k) =
∫
e−kdµ. The question

“what sequences of complex numbers can arise as the Fourier coefficients of a measure?” is clearly
very similar in spirit to the moment problem.

Given α = (αk)k∈Z, a necessary condition for α to be the Fourier coefficients of a measure is that
for any trigonometric polynomial p =

∑n
k=−n ckek,

0 ≤
n∑

j,k=−n
cj c̄kαj−k.

We leave it to you to figure why. The non-trivial point is that these conditions are also sufficient.
Here uniqueness of the measure comes for free!

Example 5. For a finite measure µ on R, define its Fourier transform µ̂ : R 7→ C by µ̂(t) =
∫
R e−tdµ

where et(x) = eitx. Given a function f : R 7→ C, is it the Fourier transform of a finite measure?
Two necessary conditions are

(1) f is continuous

(2)
∑n

j,k=1 cj c̄kµ̂(tj − tk) ≥ 0 for all n ≥ 1, all c1, . . . , cn ∈ C and all t1, . . . , tn ∈ R.

Bochner’s theorem asserts that these conditions are also sufficient. Again, uniqueness holds, in
contrast to moment problem on the whole line.
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Given the similarity between the moment problems, the theorems on Fourier transforms, and
the Riesz representation theorem, one might prefer a more abstract statement that captures the
general situation. We give one such theorem due to M. Riesz.

3. MARCEL RIESZ’S EXTENSION THEOREM

Before we state the theorem, recall that a cone in a real vector space is a set that is closed under
multiplication by positive scalars. A convex cone is a cone that is closed under convex combination
of its elements. This is the same as a cone that is closed under addition of its elements. For
example, the first quadrant is a convex cone in R2.

Theorem 6 (M. Riesz’s extension theorem). Let W be a subspace of a real vector space X . Let K be a
convex cone in X such that span(K) +W = X K +W = X . Let L : W 7→ R be a linear functional such
that L(v) ≥ 0 for all v ∈W ∩K. Then, there exists a linear functional L̃ : X 7→ R such that L̃(v) = L(v)

for all v ∈W and L̃(v) ≥ 0 for all v ∈ K.

The proof will be reminiscent of the proof of Hahn-Banach theorem that you have seen in Func-
tional analysis class. Historically, perhaps both that proof and this were arrived at in stages, by
polishing and making more abstract the solutions of the moment problems.

Proof. If K ⊆ W , then W = X and there is nothing to prove. Otherwise, pick u ∈ K \W and let
W ′ = W + Ru, a subspace strictly larger than W . We show that it is possible to extend L to W ′ so
that it is positive onK∩W ′. There is no choice but to define the extension asL′(w+αu) = L(w)+αt

for some t ∈ R. The only freedom is in t, and we must choose it so that L(w) + αt ≥ 0 whenever
w ∈ W and w + αu ∈ K. It is enough to check this condition for α = ±1, since K and W are both
closed under multiplication by |α|. Thus, the conditions for positivity of L′ are precisely that

L(w) + t ≥ 0 for w ∈W ∩ (K − u), and L(w)− t ≥ 0 for w ∈W ∩ (K + u).

We may rewrite this as

−L(w1) ≤ t ≤ L(w2) for all w1 ∈W ∩ (K − u) and w2 ∈W ∩ (K + u).

Such a choice of t is possible if and only if −L(w1) ≤ L(w2) for all w1 ∈ W ∩ (K + u) and
w2 ∈ W ∩ (K − u). But if w1 ∈ W ∩ (K − u) and w2 ∈ W ∩ (K + u), then w2 + w1 ∈ K ∩W and
hence L(w2) + L(w1) = L(w2 + w1) ≥ 0 by the positivity of L. This completes the proof that a
positive (on K) linear functional on a subspace can be extended to a subspace got by adding one
new element.

Gap in the proof: We have not checked if W ∩ (K + u) is non-empty (note that W ∩ (K − u)

cannot be empty as it contains the zero vector). If W ∩ (K + u) is empty, it may happen that the
value of t obtained above is +∞. This is possible if we only assume that span(K) +W = X as we
originally did. But if we assume that K + W = X , then −u = w + k for some w ∈ W and k ∈ K,
and hence, w ∈W ∩ (K + u), ensuring the non-emptyness of W ∩ (K + u).
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The rest is the usual Zorn’s lemma ritual. Consider all positive (onK) extensions ofL, i.e., tuples
(Ŵ , L̂) such that Ŵ is a subspace containing W , L̂ is a positive (on K) linear functional on Ŵ that
extends L. This set is partially ordered by the order (W1, L1) ≤ (W2, L2) if W1 ⊆ W2 and L2 is
an extension of L1. Given a totally ordered subset (a chain) {(Wi, Li)}, it is clear that (∪iWi,∨iLi)
(how are they defined?) is a maximal element of the chain. Applying Zorn’s lemma, we get a
maximal element (W0, L0). If W0 6= X , then as above, it is possible to extend L0 to a strictly
larger subspace while preserving positivity on K, contradicting the maximality of (W0, L0). Thus,
W0 = X and the theorem is proved. �

Remark 7. Here is a standard example to show that the hypothesisK+W = X cannot be replaced
by span(K)+W = X . LetX = R2,W = {(x, 0) : x ∈ R}, andK = {(x, y) : y > 0}. Let L(x, 0) = x,
a linear functional positive on K (tautologically, since W ∩K = ∅). Any extension must look like
L̃(x, y) = x + ty for some t ∈ R. But then L̃(−2t, 1) = −t while L̃(0, 1) = t, showing that both
cannot be positive although (0, 1) and (−2t, 1) are both in K.

Remark 8. (For those who feel a pang of uneasiness when using Zorn’s lemma). If there are
countably many elements u1, u2, . . . in K such that X = W + span{u1, u2, . . .}, then a simple
induction argument may be used in place of Zorn’s lemma. In many applications this suffices.

As a corollary, we derive solutions to the moment problems. Just to illustrate the idea, we first
deal with the case when I is compact.

Theorem 9. Let I ⊆ R be a non-empty compact set, and let α = (α0, α1, . . .) be a sequence of real numbers
such that if a polynomial p(x) =

∑n
j=0 cjx

j ≥ 0 for all x ∈ I , then
∑n

j=0 αjcj ≥ 0. Then, there is a Borel
measure µ on I such that αn is the nth moment of µ for every n.

Proof. Let X = C[0, 1], W = P , K = {f ∈ C[0, 1] : f ≥ 0}. It is clear that W is a subspace of X and
K is a convex cone. To see thatW +K = X , write any f ∈ C[0, 1] as (f+‖f‖sup(I))−‖f‖sup(I). The
first summand is in K while the second is in P (being a constant!). Hence L extends to a positive
linear functional on C[0, 1], which, by Riesz’s representation theorem is represented by integration
with respect to a Borel measure on [0, 1]. �

Remark 10. In the above theorem, uniqueness of the measure is easy to prove. This is because
polynomials are dense in C(I), by Weierstrass’ theorem. Hence, the extension has to be unique
(two bounded linear functionals on a Banach space that agree on a dense subset must agree ev-
erywhere). Uniqueness is not true in general, and not easy to prove when it is, for non-compact
domains.

The use of Riesz’s representation was a little extravagant, but employed to make the point
quickly. We now give a direct argument that works for unbounded sets also.

Theorem 11. If I be a closed subset of R. Let α = (α0, α1, . . .) be a real sequence. Define L(p) =∑n
j=0 cjαj for any polynomial p(x) =

∑n
j=0 cjx

j . If L(p) ≥ 0 whenever p ≥ 0 on I , then there exists a
Borel measure µ such that αn =

∫
xndµ(x) for all n.
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Proof of the Theorem for the case I = R. Step 1: To apply M. Riesz’s extension theorem, let (here
1(−∞,∞] just means the constant function 1)

W = P, V = span{1(−∞,b] : b ∈ R ∪ {∞}}, X = W + V, K = {f ∈ X : f ≥ 0},

and L : W 7→ R as in the statement of the theorem. To apply the extension theorem, we need to
check that W + K = X . If f ∈ X , write f = p + g with g =

∑m
i=1 ai1Ai where Ai are disjoint

(left-open, right-closed) intervals, possibly including intervals of the form (−∞, b] and (b,∞). Let
a = min{a1, . . . , am} and write f = (p + a) + (g − a). Clearly g − a ∈ K and p + a ∈ W . Thus
W + K = X . Consequently, L extends to all of X as a positive linear functional. We continue to
denote it by L.
Step 2: To get a measure, define G(t) = L(1(−∞,t]). If s < t, then 0 ≤ 1(s,t] = 1(−∞,t] − 1(−∞,s] and
hence G(s) ≤ G(t) by the positivity of L. Thus, G is an increasing function on R. It is also clear
that 0 ≤ G(t) ≤ α0 for all t because 0 ≤ 1(−∞,t] ≤ 1.

We claim that G(−∞) = 0 and G(+∞) = α0. To see this, use the Chebyshev-like idea and write
1(−∞,−b](t) ≤ t2/b2 for b > 0. Applying L, we get G(−b) ≤ α2/b

2 which shows that G(t) → 0 as
t → −∞. Similarly, show that α0 − G(b) = L(1(b,∞)) ≤ α2/b

2 to see that G(b) → α0 as b → +∞.
The claim is proved.

It would be clean if we could show that G is right-continuous, but I was not able to (is it false in
general?). But we can easily modify it to be right continuous by defining F : R 7→ R+ by

F (t) = inf{G(s) : s ∈ Q, s > t}.

Clearly F is increasing and right-continuous. It also satisfies F (+∞) = α0 and F (−∞) = 0.
Therefore, there exists a unique Borel measure23 µ on R such that µ(a, b] = F (b) − F (a) for any
a < b.

LetD be the set of continuity points ofG. ThenDc is countable (sinceG is increasing) and hence
D is dense. We note for future use that F (t) = G(t) for all t ∈ D.
Step 3: We make some estimates on the tails of µ. Using 1|x|≥b ≤ b−2k|x|2k and positivity of L, we
get

L(1(−∞,−b]) + L(1[b,∞)) ≤ b−2kα2k

for every k ≥ 1. From this, it easily follows that (at least when b ∈ D)

µ(−∞, b] + µ[b,∞) ≤ α2kb
−2k.

23A quick proof if you have not seen this before. Define H : (0, α0) 7→ R by H(u) = inf{t ∈ R : F (t) ≥ u}. Then,

if λ is the Lebesgue measure on (0, α0), define µ = λ ◦ H−1. Check that H(u) ≤ t if and only if u ≤ F (t) or in other

notation H−1(−∞, t] = (0, F (t)]. Therefore, µ(−∞, t] = λ(0, F (t)] = F (t).
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From this we bound the tails of integrals with respect to µ as follows24.∫
|u|n1|u|>bdµ(u) =

∫ ∞
0

µ{|u|n1|u|≥b ≥ t}dt.

Observe that |u|n1|u|≥b ≥ t if and only if |u|n ≥ t and |u| ≥ b. For t ≤ bn this means |u| ≥ b while
for t > bn this means |u| ≥ t1/n. Therefore,∫

|u|n1|u|>bdµ(u) =

∫ bn

0
µ{u : |u| ≥ b}du+

∫ bn

0
µ{u : |u| ≥ t1/n}du

= bnµ([−bn, bn]c) +

∫ ∞
bn

µ([−t1/n, t1/n]c)dt

Using the usual Chebyshev idea, we write the bounds µ([−s, s]c) ≤ α2ms
−2m valid for any m,

apply it with m = 1 for the first term and m = n for the second term to get∫
|u|n1|u|>bdµ(u) ≤ α2b

−n + α2n

∫ ∞
bn

t−2dt

= (α2 + α2n)b−n.(3)

Moral: When in distress, remember Chebyshev’s inequality or the idea behind it: 1[b,∞)(t) ≤ t/b

or more generally 1[b,∞)(t) ≤ f(t)/f(b) for an increasing function f .
Step 4: Now fix a large M and N and let −M = t0 < t1 < . . . < tN = M be closely spaced points
(quantification later). Let n be odd so that un is increasing on the whole line. Therefore,

un1(−∞,−M ](u) +
N−1∑
j=0

tnj 1(tj ,tj+1](u) ≤ un ≤
N−1∑
j=0

tnj 1(tj ,tj+1](u) + un1[M,∞)(u)(4)

Integrate w.r.t µ and use (3) to get

−α2n

M
+
N−1∑
j=0

tnj (F (tj+1)− F (tj)) ≤
∫
undµ(u) ≤

N−1∑
j=0

tnj+1(F (tj+1)− F (tj)) +
α2n

M
(5)

Similarly, we want to get an inequality by applying L to (4). But un1[M,∞) is not in X , hence we
bound it by un+1/M . Similarly un1(−∞,−M ](u) ≥ −un+1/M . Thus,

− 1

M
un+1 +

N−1∑
j=0

tnj 1(tj ,tj+1](u) ≤ un ≤
N−1∑
j=0

tnj 1(tj ,tj+1](u) +
1

M
un+1

Now we can apply L and use positivity to get

−αn+1

M
+
N−1∑
j=0

tnj (G(tj+1)−G(tj)) ≤ αn ≤
N−1∑
j=0

tnj+1(G(tj+1)−G(tj)) +
αn+1

M

Compare this with (5). By taking M large, we can make the 1/M terms as small as we like. Then
by taking N large, we can make sure that tnj+1 − tnj are small. By perturbing the points slightly as

24If (X,µ) is a measure space and f : X 7→ R+ is a positive function, then
∫
X
f(x)dµ(x) =

∫∞
0
µ{f > t}dt by a

simple Fubini argument applied to the double integral
∫∫
X×R+

10<t<f(x)dtdµ(x). Some people call this the “bath-tub

principle”. In probability it is often written in the form E[X] =
∫∞
0

P{X > t}dt for a positive random variable X .
97



needed, we may assume that tj ∈ D for all j, and hence F (tj) = G(tj). Now it is clear that αn
and

∫
undµ(u) are sandwiched between two numbers that are very close to each other, and hence

must be equal.
So far we assumed that n was odd. For even n, a very similar argument can be given if one is

not too tired by now. �

We stated the last theorem only for intervals. What about general closed sets I? Observe that if
L(p) ≥ 0 for p that is positive on I , then it is certainly the case that L(p) ≥ 0 for p that is positive
on the whole line. From the above proof, we get a measure µ supported on R whose moments are
αn. To argue that it is supported on I is an exercise.

Exercise 12. Suppose [a, b] ⊆ Ic. Argue that in the above proof, when L is extended to X , the
resulting functional satisfies G(a) = G(b). Deduce that µ(Ic) = 0.

If you understood the above proof, the following should be easier.

Exercise 13. Prove Riesz’s representation theorem for Cc(R): If L is a positive linear functional on
Cc(R), then there exists a Borel measure µ such that L(f) =

∫
fdµ for all f ∈ Cc(R).

Remark 14. Can we prove Riesz’s representation theorem for general locally compact Haus-
dorff spaces? Presumably it will work, by extending L from Cc(X) to Cc(X) + W where W

is the span of indicators of all compact sets. Then we must define the measure µ by taking
µ(A) = sup{L(1K) : K ⊆ A and K is compact}. But then one must show that µ is a measure,
it is outer regular etc., and that it agrees with L on Cc(X). This starts looking like the lengthy
proof in Rudin’s Real and complex analysis. The proof is simpler for X = R (and in the moment
problem above), because we assumed the existence of Lebesgue measure and that an increasing
right continuous function is the CDF of a measure got by pushing forward the Lebesgue measure...

4. MEASURES, SEQUENCES, POLYNOMIALS, MATRICES

To be more precisely, we should have titled this section as “Measures on the line having all mo-
ments, positive semi-definite sequences, orthogonal polynomial sequences and Jacobi matrices”.
All these objects are intimately connected to each other and to the moment problem. This will also
lead to the resolution of the uniqueness part of the moment problem, but we may not completely
discuss it. Let us introduce all the four objects in the title.

(1) Measures. By this, in this section we shall mean positive Borel measures on the line whose
moments are all finite. It is convenient to consider two cases separately. Case 1: The mea-
sure is has infinite support, Case 2: The measure is supported on finitely many points, i.e.,
µ = p1δλ1 + . . . + pnδλn , where λi are distinct real numbers and pi are strictly positive
numbers.
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(2) Positive semi-definite sequences. By this we mean a sequence α = (α0, α1, . . .) such that
the infinite matrix Hα = (αi+j)i,j≥0 is a positive semi-definite matrix. This just means that
for any n ≥ 1, and any real numbers c0, . . . , cn,

n∑
i,j=0

cicjαi+j ≥ 0

Case 1: The sequence is positive definite. That is, equality holds above if and only if all cis
vanish. Case 2: The sequence is positive semi-definite but not positive definite. There is a
smallest n for which equality holds above for some cis, not all zero.

(3) Orthogonal polynomial sequence. By this we mean a sequence of polynomial ϕ0, ϕ1, . . .

such that -
(a) The degree of ϕj is exactly j for every j ≥ 0.

(b) If ϕj are declared to be an orthonormal set in P , then in the resulting inner product
space, the multiplication operator M : P 7→ P defined by Mf(x) = xf(x) is symmet-
ric: 〈Mf, g〉 = 〈f,Mg〉 for all f, g ∈ P .

For example, ϕj(x) = xj is not a valid choice for an orthogonal polynomial sequence,
because 〈Mϕ1, ϕ2〉 = 1 while 〈ϕ1,Mϕ2〉 = 0.

What we describe so far is Case 1. Case 2 is when we have a finite sequence ϕ0, . . . , ϕn−1

such that ... (details later)

(4) Jacobi matrix. A tridiagonal matrix is a finite or infinite matrix whose (i, j) entry is zero un-
less |j−i| ≤ 1 (only the main diagonal and the the diagonals immediately above and below
it, can contain non-zero entries). A Jacobi matrix is a tridiagonal matrix that is symmetric
and has strictly positive entries on the super-diagonal (hence also the sub-diagonal). The
main diagonal entries will be labelled a0, a1, . . . while the super-diagonal entries will be
labelled b0, b1, . . .. Case 1: Infinite Jacobi matrix T = T (a, b) = (ti,j)i,j≥0 such that ti,i = ai

and ti,i+1 = ti+1,i = bi for i ≥ 0. Case 2: Finite Jacobi matrix Tn×n whose main diagonal has
a0, . . . , an−1 and super-diagonal has b0, . . . , bn−1.

What we shall see is that these objects are very closely linked and almost (but not quite!) in one-
one correspondence with each other. The objects in Case 1 are related to each other and the objects
in Case 2 are related to each other. Rather than carrying the two cases all the time, let us first
describe the connections in the first case. Later we shall discuss the second case.

5. MEASURES, SEQUENCES, POLYNOMIALS, MATRICES: CASE 1

5.1. Measure to sequence. Given a measure µ whose support is not finite, let αn =
∫
xndµ(x) be

the nth moment of µ. We claim that the moment sequence α = (α0, α1, . . .) is positive definite.
This is because

m∑
i,j=0

cicjαi+j =

m∑
i,j=0

cicj

∫
xi+jdµ(x) =

∫ ( m∑
i=1

cix
i

)2

dµ(x) ≥ 0.
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Equality holds if and only if the polynomial
∑n

i=0 cix
i vanishes on the support of µ. As the latter

is an infinite set, this forces ci = 0 for all i. Thus, α is positive definite.
An alternate way to say the same thing is that the matrix Hα = (αi+j)i,j≥0 is positive definite,

meaning that all finite principal submatrices of Hα have strictly positive determinant.

5.2. Sequence to polynomial sequence. Given a positive semi-definite α, we can define an inner
product on P by defining 〈xi, xj〉 = αi+j for i, j ≥ 0 and extending by linearity. That is〈

n∑
i=0

cix
i,

m∑
j=0

djx
j

〉
=

n∑
i=0

m∑
j=0

cidjαi+j .

The bilinearity and symmetry are clear while the positive definiteness of α ensures that 〈p, p〉 > 0

for any p 6= 0.
Apply Gram-Shmidt process to x0, x1, x2, . . . (in that order) to get ϕ0, ϕ1, . . ., an orthonormal set

that spans the whole space P . It is also clear that ϕj is a polynomial of degree j and that it has
positive leading coefficient. There is another property of this sequence

Observation: Let M : P 7→ P be defined by (Mp)(x) = xp(x). Then,

〈Mxi, xj〉 = 〈xi+1, xj〉 = αi+1+j , 〈xi,Mxj〉 = 〈xi, xj+1〉 = αi+j+1

showing that M is symmetric: 〈Mp, q〉 = 〈p,Mq〉 for all p, q ∈ P .
By an orthogonal polynomial sequence we mean a sequence of polynomials ϕ0, ϕ1, ϕ2, . . . such that

ϕj has degree j, has positive leading coefficient, and such that if an inner product on P is defined
by declaring ϕjs to be orthonormal, then the multiplication operator is symmetric.

Remark 15. (Rameez) The symmetry of M can be equivalently stated as the condition that the
Gram matrix of x0, x1, x2, . . . is a Hankel matrix. This shows that x0, x1, x2, . . . is not an orthogonal
polynomial sequence (because the identity matrix is not Hankel!).

5.3. Polynomial sequence to Jacobi matrix. Let ϕ0, ϕ1, . . . be an orthogonal polynomial sequence.
Let 〈?, ?〉 denote the inner product on P got by declaring 〈ϕj , ϕk〉 = δj,k and extending by linearity
(possible since the span of {ϕj} is all of P). Two simple observations: 〈Mp, q〉 = 〈p,Mq〉 (by
definition of orthogonal polynomials) and 〈ϕk, p〉 = 0 if p has degree less than k.

For k ≥ 0, Mϕk has degree k + 1 and hence there is a unique way to write it as Mϕk =∑k+1
j=0 ck,jϕj . For j < k − 1, by the symmetry of M , we see that ck,j = 〈ϕk,Mϕj〉 = 0 since

Mϕj has degree less than than k. Further,

ck,k+1 = 〈Mϕk, ϕk+1〉 = 〈ϕk,Mϕk+1〉 = ck+1,k.

Writing ak = ck,k and bk = ck,k+1, we see that (with the convention that b−1 = 0)

bk−1ϕk−1 + akϕk + bkϕk+1 = Mϕk.
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It will be convenient to collect the coefficients ak, bks as an infinite tridiagonal matrix

T = T (a; b) =


a0 b0 0 . . . . . .

b0 a1 b1 . . . . . .

0 b1 a2 b2 . . .
...

...
...

...
...

 .
To be a Jacobi matrix, we also require bk > 0 for all k. To see this, let Ak be the leading coefficient
of ϕk and observe that ϕk+1 − Ak+1

Ak
Mϕk has degree less than k and hence is orthogonal to ϕk+1.

Thus,

bk = 〈Mϕk, ϕk+1〉 =
Ak+1

Ak
> 0.

Remark 16. In terms of the Jacobi matrix, the three term recurrence can be written in the matrix
form

Tϕ•(x) = xϕ•(x)

where ϕ•(x) = (ϕ0(x), ϕ1(x), ϕ2(x), . . .)t. Formally, this looks like an eigenvalue equation. The
appearance is more than skin deep.

5.4. From Jacobi matrix to orthogonal polynomial sequence. Let T = T (a, b) be a finite or infinite
tridiagonal matrix with Ti,i = ai ∈ R and Ti,i+1 = bi > 0. We want to recover the orthogonal
polynomial sequence. The short answer is that we solve the “eigenvalue equation” Tv = λv for
any λ ∈ R and write the eigenvector as v = (ϕ0(λ), ϕ1(λ), . . .)t. These ϕks are the orthogonal
polynomials.

Let us examine this in more detail. Fix any λ ∈ R, set v0 = 1 and recursively solving for v1, v2, . . .

from the equations
a0v0 + b0v1 = λv0

b0v0 + a1v1 + b1v2 = λv1

b1v1 + a2v2 + b2v3 = λv2 . . . . . .

As bk > 0 for all k, this is possible and we get a vector v = (v0, v1, . . .) that satisfies Tv = λv.
Now let us change notation and show the dependence on λ by writing vk as ϕk(λ), starting with
ϕ0(λ) = 1. It is clear from the recursions that ϕk is a polynomial of degree k and that it has
positive leading coefficient. We must check one last point: If ϕk are declared to be orthonormal,
then the multiplication M must be symmetric. That is indeed the case, as we can check that
〈Mϕk, ϕ`〉 = 〈ϕk,Mϕ`〉 from the recursions

Mϕk = bk−1ϕk−1 + akϕk + bkϕk+1.

Important observation: We want to say that this mapping from Jacobi matrices to OP-sequences
and the mapping of the previous section from OP-sequences to Jacobi matrices are inverses of
each other. This is almost correct in that we recover the orthogonal polynomial sequence up to
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an overall constant factor. Indeed, in the recovery, we always get ϕ0 = 1. This is easily seen by
staring for a minute at the three-term recurrence.

It would have been cleaner if we had assumed all measures to be probability measures, all
positive definite sequences to have α0 = 1, all OP sequences to have ϕ0 = 1. Then the above
mapping would have been exactly the inverse of the one from OP sequences to Jacobi matrices.
Henceforth, let us adopt this convention.

5.5. From orthogonal polynomials to positive definite sequence. Given an orthogonal polyno-
mial sequence ϕ0, ϕ1, . . . and the associated inner product, we construct a positive definite se-
quence as follows. There is a unique way to write xk =

∑k
j=0 ck,jϕj from which we get

〈xk, x`〉 =

k∧∑̀
j=0

ck,jc`,j .

Since we already know thatM is symmetric in this inner product, it follows that the above quantity
must depend only on k + `. Denote this number by αk+`. This is a positive definite sequence
because Hα is the Gram matrix of x0, x1, x2, . . . and these are linearly independent.

It is also a easy to see that this mapping is the inverse of the mapping that we gave earlier from
positive definite sequences to orthogonal polynomial sequences.

It may look a little unsatisfactory that the mapping given here is not explicit. It can be made
explicit. Fix k ≥ 0 and write αk = 〈xk, x0〉 = ck,0, the constant term in ϕk. This can be put in
a more interesting form in terms of the Jacobi matrix (recall that we already know how to move
between OP-sequences and Jacobi matrices).

5.6. From Jacobi matrix to positive definite sequence. Let T = T (a, b) be a Jacobi matrix. Define
βk = 〈T ke0, e0〉 for k ≥ 0. We claim that this is a positive semi-definite sequence and that this is the
inverse of the mapping we have see from positive semi-definite sequence to tridiagonal matrices
(via orthogonal polynomial sequence and three term recurrence).

As we have seen how to recover orthogonal polynomials from T , let us write

Tϕ•(x) = xϕ•(x)

where ϕ•(x) = (ϕ0(x), ϕ1(x), ϕ2(x), . . .)t. Therefore, T kϕ•(x) = xkϕ•(x) or in terms of the co-
ordinate vectors e0, e1, . . .

∞∑
j=0

ϕj(x)T kej =
∞∑
j=0

xkϕj(x)ej .

Take inner product with e0 (this is inner product in `2) to get
∞∑
j=0

ϕj(x)〈T kej , e0〉 = xk.

This gives the expansion of xk in terms of the orthogonal polynomials that we needed above (it
should not worry you that the sum here is infinite, indeed 〈T kej , e0〉 = 0 as can be seen from
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the tridiagonal structure of T ). In particular ck,0 = 〈T ke0, e0〉. Combining with the previous
observation of how to recover the αks from ck,0, this shows that T 7→ (β0, β1, . . .) mapping Jacobi
matrices into positive definite sequence is the inverse of the mapping in the other direction that
we have seen earlier (going through OP-sequences).

Remark 17. A better way as pointed out by Sayantan Khan in class. The mapping ϕj ↔ ej , j ≥ 0,
is an isomorphism withP (with {ϕj} as ONB) and V = span{e0, e1, . . .}where ej is the vector with
1 at the jth place and 0s elsewhere. Under this isomorphism, M : P 7→ P becomes T : V 7→ V . As
we saw earlier, αk = 〈xk, x0〉 = 〈Mkϕ0, ϕ0〉which, by the isomorphism, equals 〈T ke0, e0〉.

5.7. The picture so far.

Measure→ PD sequence� OP sequence� Jacobi matrix

The key question was whether a positive definite sequence is the moment sequence of a unique
measure. We have not touched that question but introduced two other objects that are in one-one
correspondence with positive definite sequences. We shall return to this question after talking
about some nice consequences of the rich interactions between these objects in the next two sec-
tions.

5.8. Exercises. In these exercises, the relationship between the positive definite sequences, or-
thogonal polynomials and Jacobi matrices is further strengthened.

Exercise 18. Let α be a positive definite sequence. Let Dm = det (αi+j)0≤i,j≤m−1. Show that the
corresponding orthogonal polynomials are given by ϕ0(x) = 1 and for m ≥ 1,

ϕm(x) =
(−1)m−1

√
Dm−1Dm

det


1 x . . . xm

α0 α1 . . . αm
...

...
...

...
αm−1 αm . . . α2m−1


Exercise 19. Let T = T (a, b) be the Jacobi matrix corresponding to the positive definite sequence
α. Let Dn be the determinant of (αi+j)0≤i,j≤n−1. Show that

bk =

√
Dk−1Dk+1

Dk

for k ≥ 1 and b0 =
√
D1
D0

. If αn = 0 for all odd n (for eg., if it is the moment sequence of a symmetric
measure), show that an = 0 for all n. [Remark: There is also a formula for ans in general, but we
skip it for now]

Exercise 20. Let the OP sequence ϕ0, ϕ1, . . . correspond to the Jacobi matrix T = T (a, b). If Tn is
the top n × n sub-matrix of T , show that ϕn is (up to a constant) the characteristic polynomial of
Tn. Deduce that,
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(1) The roots of ϕn are all real and distinct.

(2) The roots of ϕn and ϕn−1 interlace.

6. QUADRATURE FORMULAS

Let µ be a measure on the line with all moments finite. Assume that µ is not supported on
finitely many points. Fix n ≥ 1. We seek n distinct points λ1, . . . , λn and poisitive weights
w1, . . . , wn such that ∫

Q(x)dµ(x) =
n∑
k=1

wkQ(λk)

for as many polynomials Q as possible. Since we have a choice of 2n parameters for the points
and weights, we may expect that this can be done for all polynomials of degree 2n − 1 or less (it
has 2n coefficients).

Why care? It has to do with numerical integration. Once we fix n and choose λis and wis, given
any f : R 7→ R, we numerically compute its integral with respect to µ by∫

f(x)dµ(x) ≈
n∑
k=1

wkf(λk).

This gives the exact answer for polynomials of degree up to 2n − 1. Hence, if f is nice enough
that it is well approximated by its Taylor expansion to order 2n− 1, then the above approximation
gives a reasonably close answer to

∫
fdµ.

How to find the points and weights? Note that what we are asking for is a measure µn =∑n
k=1wkδλk whose first 2n− 1 moments agree with those of µ.
Assume that µ is a probability measure, without loss of generality. From µ, we go to the infinite

tridiagonal matrix T = T (a, b) (via moments, orthogonal polynomials and the three-term recur-
rence). Let Tn be the top n × n principal submatrix of T . Let µn be the measure corresponding to
Tn, i.e., the spectral measure of Tn at the vector e0. Recall that this is given by

µn =

n∑
k=1

wkδλk

where λk are the eigenvalues of Tn andwk = Q2
1,k, where Tn = QΛQt is the spectral decomposition

of Tn, with Λ = diag(λ1, . . . , λn) and Q an orthogonal matrix.
Recall that the moment sequence α can be recovered from the tridiagonal matrix µ by the equa-

tions αk = 〈T ke0, e0〉. This is just the (0, 0) entry of T k, which can also be written as∑
i1,...,ik−1≥0

T0,i1Ti1,i2 . . . Tik−1,0.

Since T is tridiagonal, the non-zero terms must have i1, . . . , ik−1 ≤ bk/2c. Hence,

〈T ke0, e0〉 = 〈(Tn)ke0, e0〉
104



FIGURE 9. Plot of the function ex cos(2x) log(1 + x2)

for k ≤ n− 1. This shows that the first 2n− 1 moments of µn and µ are identical.

Remark 21. It is also possible to express the points and weights in terms of the orthogonal poly-
nomials for µ. Indeed, λ1, . . . , λn are the roots of ϕn, and (ϕ0(λk) . . . ϕn−1(λk))

t is an eigenvector
corresponding to the eigenvalue λk. After normalizing, this becomes the kth column of R. Hence,

wk =
ϕ0(λk)

2∑n−1
j=0 ϕj(λk)

2
=

1∑n−1
j=0 ϕj(λk)

2
.

An example - Lebesgue measure on [−1, 1]: If µ is the Lebesgue measure on [−1, 1], then the cor-
responding orthogonal polynomials are called Legendre polynomials. There are explicit formulas
to express them. The zeros of the Legendre polynomial can be computed and so can the weights.
This gives us a way to numerically integrate functions over [−1, 1]. Just to illustrate, here is an
example:

If we want four points, the points and weights are given by (computations on Mathematica)

λ = (−0.861136,−0.339981, 0.339981, 0.861136), w = (0.347855, 0.652145, 0.652145, 0.347855).

The function f(x) = ex cos(2x) log(1 + x2) (chosen without fear or favour) has integral 0.0350451

and the numerical approximation using the above points and weights gives 0.036205. With five
points, it improves to 0.0348706 and with 10 points, the agreement is up to 7 decimal places! In
contrast, with equispaced points and equal weights, the approximations are 0.0255956 for 100
points, 0.0327198 for 1000 points and 0.0349526 for 10000 points. In general, what is the error like?
Let f ∈ C(n) (on an open set containing [−1, 1]) and write f(x) = Qn(x) + Rn(x), where Qn is the
2n− 1 order Taylor expansion of f . The remainder term Rn can be estimated by

sup
x∈[−1,1]

|Rn(x)| ≤ 1

(2n)!
‖f (2n)‖sup[−1,1].

Since
∑n

j=1wjQn(λj) =
∫ 1
−1Qn(x)dx, we get

∣∣ ∫ 1

−1
f(x)dx−

n∑
k=1

wkf(λk)
∣∣ ≤ ∫ 1

−1
|Rn(x)|dx+

1

n

n∑
k=1

wkRn(λk)

≤ 2

(2n)!
‖f (2n)‖sup[−1,1]
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For instance, if the derivatives are uniformly bounded in [−1, 1] (or grow at most exponentially
etc.) then the error term is O(e−cn logn). In contrast, for n equispaced points, the error goes down
like O(1/n) and for n randomly chosen points the error goes down like 1/

√
n.

Similarly, one uses zeros of Chebyshev polynomials, Hermite polynomials (OPs for Gaussian
measure), Laguerre polynomials (OPs for e−xdx on R+), etc., to integrate against 1√

1−x2 , e−x
2
, e−x,

respectively. They carry names such as Chebyshev quadrature, Gaussian quadrature etc.
This may be a good occasion to say something explicit about orthogonal polynomials for special

measures. The few examples are, the uniform measure (Legendre polynomials), the Gaussian
measure (Hermite polynomials), Exponential measure (Laguerre polynomials), arcsine measure
(Chebyshev polynomials). The uniform and arcsine fall into the family of Beta measures (whose
orthogonal polynomials are called Jacobi polynomials) and the exponential is part of the Gamma
family of distributions.

Exercise 22. Define Pn(x) = dn

dxn (1− x2)2n. Show that Pn are orthogonal on [−1, 1] with respect to
Lebesgue measure. Find cn so that cnPn become orthonormal. These are the Legendre polynomi-
als.

The expression for Legendre polynomials in the exercise is called Rodrigues’ formula. Similarly,
one can show that

Hn(x) := ex
2/2 d

n

dxn
e−x

2/2

are orthogonal with respect to the standard Gaussian measure on R.

7. ANOTHER PROOF THAT POSITIVE SEMI-DEFINITE SEQUENCES ARE MOMENT SEQUENCES

Let α be a positive semi-definite sequence with α0 = 1 (without loss of generality). We want to
show that there is a measure µ such that αn =

∫
xndµ(x) for all n.

The idea of this proof is to solve a sequence of problems approximating our problem, and then
extract a limit solution that will solve the actual problem. At this level of generality, this is a very
repeatable (and natural) idea. In addition, it will illustrate one of the theorems we learned in
functional analysis class.

If α is positive semi-definite but not positive definite, we shall see a simple proof that it is the
moment sequence of a unique measure which in fact has finite support. Hence, let us assume that
α is positive definite below.

Step-1: For any n, there exists a measure µn such that αk =
∫
xkdµn(x) for 0 ≤ k ≤ n− 1.

We saw this in the previous section. From α, construct the OP sequence and then the Jacobi
matrix T . Let µn be the spectral measure at e0 of Tn, where Tn is the top n× n principal submatrix
of T , that is, µn =

∑n
j=1Q

2
1,jδλj where Tn = QΛQt is the spectral decomposition of Tn with

Λ = diag(λ1, . . . , λn). Then, µn has the first 2n− 1 moments equal to those of µ.
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Step-2: There is a subsequence nk such that µnk converges weakly to a probability measure µ.
This is a direct consequence of Helly’s theorem,25 since µn(R) = α0 for all n.

Step-3: We claim that µ has the moment sequence α.
Fix an even number 2k and write∫

x2kdµn(x) =

∫ ∞
0

µn{x : x2k > t}dt

=

∫ ∞
0

µn(−∞,−t1/2k)dt+

∫ ∞
0

µn(t1/2k,∞)dt.

Consider the first integral, take n = nj and let j →∞. For a.e. x (according to Lebesgue measure),
the integrand converges to µ(−∞,−t1/2k). If we can justify the hypothesis of DCT, it follows that
the integral converges to

∫∞
0 µ(−∞,−t1/2k)dt. Similarly for the second integral. Taking the sum,

we get
∫
x2kdµ(x), showing that the even moments of µnj converge to those of µ. But for every

k, the kth moment of µnj is αk for large enough j. Therefore, the 2kth moment of µ is α2k. Argue
similarly for odd moments.

To justify DCT, use the bounds (Chebyshev again!)

µn(−∞,−t1/2k) ≤ 1

t2

∫
x4kdµn(x) = α4kt

−2,

the last inequality being for large enough n. Of course we also have the bound α0 for the left side,
which we use for t < 1. Thus, the integrand is dominated by α0 + α4kt

−21t≥1 which is integrable.
This completes the proof.

Remark 23. We shall have occasion to use Helly’s theorem again. It is a compactness criterion for
measures on the line (with the topology of weak convergence). It is instructive to compare it and
its proof with other compactness theorems that you have seen, like the Arzela-Ascoli theorem or
Montel’s theorem in complex analysis.

Helly’s theorem can be seen as a special case of Banach-Aloglu theorem as follows: The space
C0(R) of continuous functions vanishing at infinity is a Banach space under the sup-norm, and
its dual is the space of all signed measures that are Radon. The weak-* topology on the dual
is precisely the topology of weak convergence. Thus, a sequence {µn} as in Helly’s theorem is
contained in a ball in (C0(R))∗ and hence pre-compact.

In general, compactness does not imply sequential compactness (note that the weak-* topology
is not metrizable in general), but the separability of C0(R) can be used to show the sequential

25Helly’s theorem: If µn is a sequence of Borel measures on R such that µn(R) ≤ A for some A for all n, then there is

a subsequence nk and a measure µ such that µn[a, b]→ µ[a, b] for all a, b such that µ{a, b} = 0.

Proof: For each x, the sequence µn(−∞, x] has a subsequential limit. Enumerate rationals in a sequence, take

subsequences of subsequences etc., and use a diagonal argument to get a single subsequence along which G(x) :=

limk→∞ µnk (−∞, x] exists for all x ∈ Q. Now define F (x) = inf{G(y) : y > x}, an increasing, right-continuous,

bounded function. Let µ be the measure such that µ(−∞, x] = F (x) for all x. Check that µnk [a, b] → µ[a, b] at least if

µ{a} = µ{b} = 0.
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compactness as required in Helly’s theorem. The best way to understand this is to assume that a
Banach space is separable and prove Banach-Alaoglu theorem for its dual by imitating the proof
of Helly’s theorem (take a countable dense set in X ...).

8. SOME SPECIAL ORTHOGONAL POLYNOMIALS

We have talked about general measures and not actually worked out any examples. Here we
present a few.

Gaussian measure: Let dµ(x) = 1√
2π
e−

1
2
x2dx on the line. The odd moments are zero while the

even moments are

α2n =
2√
2π

∫ ∞
0

x2ne−x
2/2dx =

2√
2π

∫ ∞
0

(2t)ne−t
dt√
2t

=
2n√
π

Γ(n+
1

2
)

= 2n(n− 1

2
)(n− 1− 1

2
) . . . (1− 1

2
) = (2n− 1)× (2n− 3)× . . .× 3× 1.

This has the nice interpretation as the number of matchings of the set {1, 2, . . . , 2n} into n pairs26.
I do not know how to derive the orthogonal polynomials using Gram-Schmidt or the determi-

nant formula that we gave in an earlier exercise. We simply define for n ≥ 0,

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2

which is clearly a polynomial of degree n. Also,∫
HnHmdµ =

(−1)m+n

√
2π

∫ ∞
−∞

[
dn

dxn
e−x

2/2

]
Hm(x)dx

=
(−1)m+2n

√
2π

∫ ∞
−∞

e−x
2/2

[
dn

dxn
Hm(x)

]
dx

by integrating by parts n times (the boundary terms vanish because of the rapid decay of e−x
2/2). If

m < n, the integrand is zero (since Hm has degree m) and if m = n, we observe that Hn(x) = xn +

. . . to see that dn

dxnHn(x) = n!. The rest of the integral is one, and we arrive at
∫
H2
n(x)dµ(x) = n!,

from which we get the OPs as

ϕn(x) =
1√
n!
Hn(x).

These form an ONB for L2(R, µ). As a corollary, 1
4√2π
√
n!
ϕn(x)e−x

2/4, n ≥ 0, form an ONB for
L2(R). Completeness may require an argument.

The Jacobi matrix corresponding to this is given by T = T (a, b) where

an =

∫
xϕn(x)2dµ(x), bn =

∫
xϕn(x)ϕn+1(x)dµ(x).

26This is not mere numerology. If (X1, . . . , X2n) are jointly Gaussian with zero means and covariance E[XiXj ] =

σi,j , then E[X1 . . . X2n] is equal to
∑
M w(M), where the sum is over all matchings of {1, 2 . . . , 2n} and the weight of a

matching M = {{i1, j1}, . . . , {in, jn}} is given by w(M) = σi1,j1σi2j2 . . . σinjn . This is sometimes called Wick formula

or Feynman diagram formula.
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It is easy to see that Hn (and hence ϕn) is even or odd according as n is even or odd. Hence
an = 0, being the integral of an odd function. Further, if we write xϕn(x) = Cnϕn+1(x) +

[lower order terms], then it is clear that bn = Cn. But it is easy to work out that

Cn =
[xn]ϕn(x)

[xn+1]ϕn+1(x)
=

1/
√
n!

1/
√

(n+ 1)!
=
√
n+ 1.

Thus, the Jacobi matrix for this measure is

T =


0
√

1 0 . . . . . .
√

1 0
√

2 . . . . . .

0
√

2 0
√

3 . . .
...

...
...

...
...



Uniform measure: Let µ be the uniform probability measure on [−1, 1]. The moments are

αn =

0 if n is odd,
1

n+1 if n is even.

Observe that the Hankel matrix Hα is very similar to the Hilbert matrix. Again, rather than work-
ing out the orthogonal polynomials, we simply present the answer. Define the Legendre polynomials

Pn(x) :=
1

2nn!

dn

dxn
(x2 − 1)n, for n ≥ 0.

Clearly Pn is a polynomial of degree n and [xn]Pn(x) = (2n)!
2n(n!)2

. We leave it as an exercise to check
that ∫ 1

−1
Pn(x)Pm(x)

dx

2
=

1

2n+ 1
δn,m.

Thus, ϕn(x) =
√

2n+ 1Pn(x), n ≥ 0, are the orthogonal polynomials.
To get the Jacobi matrix, we compute an and bn as before. Again, ϕn are alternately odd and

even, hence an = 0. Further,

bn =

∫ n

−1
xϕn(x)ϕn+1(x)

dx

2
=

[xn]ϕn(x)

[xn+1]ϕn+1(x)
=

n+ 1√
2n+ 1

√
2n+ 3

.

Exercise 24. Let dµ(x) = e−xdx on R+. Find the moments, orthogonal polynomials and the Jacobi
matrix corresponding to this measure.

Hint: Consider the Laguerre polynomials

Ln(x) =
1

n!
ex

dn

dxn
[xne−x].

Other special orthogonal polynomials: In a similar fashion, it is possible to obtain explicitly the
orthogonal polynomials and the Jacobi matrix for the Beta family of distributions (that includes
the uniform measure and also the arcsine measure) and the Gamma family of distributions (a
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special case being the exponential measure e−xdx on R+). The corresponding orthogonal poly-
nomials are called Jacobi polynomials and generalized Laguerre polynomials. In addition to the
general properties shared by all orthogonal polynomials, these special ones also satisfy differential
equations, recursions involving the polynomials and the derivatives etc. They arise in a variety of
problems. For example, the Legendre polynomials arise naturally in the representation theory of
the orthogonal group.

9. THE UNIQUENESS QUESTION: SOME SUFFICIENT CONDITIONS

Now suppose we have a positive definite sequence α. We also have the associated OP sequence
ϕ0, ϕ1, . . . and the Jacobi matrix T = T (a, b). The question is whether there is a unique measure
having moment sequence α? If not, what are all the measures that have this moment sequence?

First we give examples to show that uniqueness need not always hold. A standard example is
the measure dµ(t) = f(t)dt where

f(t) =
1√
2πt

e−
1
2

(log t)2dt for t > 0.

In probabilistic language, if X has N(0, 1) distribution, then eX has density f . The moments of µ
are given by

αn =

∫ ∞
0

tnf(t)dt =
1√
2π

∫ ∞
−∞

enxe−
1
2
x2dx = e

1
2
n2 1√

2π

∫ ∞
−∞

e−
1
2

(x−n)2dx = e
1
2
n2
.

To get some other measures, consider the sum∑
k∈Z

e−
1
2

(k−n)2 = e−
1
2
n2
∑
k∈Z

e−
1
2
k2ekn.

The left hand side does not depend on n (index the sum by k − n instead of k)! Denoting it as Z
and pk = e−

1
2
k2/Z, we see that ∑

k∈Z
pke

kn = αn.

Thus, the discrete measure ν =
∑

k∈Z pkδek and µ have the same moment sequence. Instead of
summing k over integers, if we sum over Z + t for some t ∈ (0, 1), we would get other measures
with the same moment sequence.

Here is another kind of example. Observe that∫
0
tnf(t) sin(2π log t)dt =

∫ ∞
−∞

enxe−
1
2
x2 sin(2πx)dx

= e
1
2
n2

∫ ∞
−∞

e−
1
2

(x−n)2 sin(2πx)dx

= e
1
2
n2

∫ ∞
−∞

e−
1
2
x2 sin(2πx)dx
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where the last line used sin(2π(x+n)) = sin(2πx). The above integral is zero because the integrand
is an odd function. Thus if gc(t) = f(t)(1 + c sin(2πt)), with |c| ≤ 1, then gc ≥ 0 and∫

tngc(t)dt =

∫
tnf(t)dt for all f.

Exercise 25. Fix 0 < λ < 1. For a suitable choice of β, show that
∫
xne−|x|

λ
sin(β|x|λsgn(x))dx = 0

for all n. Produce many measures having a common moment sequence.

Sufficient conditions for uniqueness: For practical purposes, it is useful to have sufficient condi-
tions for recovery. Here are three (progressively stronger) sufficient conditions that are sufficient
for most purposes.

(1) If µ is compactly supported, it is determined by its moment sequence. In terms of the
moment sequence, this is equivalent to α2n ≤ Cn for some C <∞ (i.e., lim sup

n→∞
α

1/2n
2n <∞).

(2) If µ has finite Laplace transform in a neighbourhood of zero, i.e., if Lµ(t) =
∫
etxdµ(x) <∞

for t ∈ (−δ, δ) for some δ > 0, then µ is determined by its moment sequence. This condition
is equivalent to α2n ≤ (Cn)n for some C <∞ (i.e., lim sup

n→∞
1
nα

1/2n
2n <∞).

(3) If
∑∞

n=1 α
−1/2n
2n =∞ (and α is positive definite), there is a unique measure whose moment

sequence is α. This is known as Carleman’s condition.

We just justify the first condition. First, observe that if µ is supported on [−M,M ], then α2n ≤M2n.
Conversely, if α2n ≤ C2n, observe that µ([−M,M ]c) ≤ M−2nα2n which goes to zero as n → ∞,
provided M > C. Thus µ is supported on [−C,C].

Now if a moment sequence α satisfying α2n ≤ M2n is given, and µ and ν are two measures on
[−M,M ] having the moment sequence α, we see that

∫
p(x)dµ(x) =

∫
p(x)dν(x) for all polyno-

mials p. Use Weierstrass’ approximation to conclude that
∫
fdµ =

∫
fdν for all f ∈ C[−M,M ].

For any [a, b] ⊆ [−M,M ], it is easy to find continuous functions that decrease to 1[a,b]. Monotone
convergence theorem implies that µ[a, b] = ν[a, b] and thus µ = ν.

10. THE UNIQUENESS QUESTION: FINITELY SUPPORTED MEASURES

In this section, we consider finitely supported measures, positive semi-definite sequences (that
are not positive definite), finite sequences of orthogonal polynomials, and finite Jacobi matrices.
As before, we show how to go from one to the next, but crucially, we can also go back from
Jacobi matrices to finitely supported measures, completing the cycle. This will also motivate our
next discussion on the importance of the spectral theorem in going from a positive semi-definite
sequence to a measure. Since the steps are analogous, we keep this account brief.

Let µ = p1δλ1 + . . . + pnδλn where n ≥ 1, λ1 < . . . < λn and pi > 0 with p1 + . . . + pn = 1 be a
measure supported on finitely many points of the real line.
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The kth moment of µ is αk =
∫
xkdµ(x) =

∑n
j=1 pjλ

k
j . Clearly α0 = 1. As before, the matrix

Hα = (αi+j)i,j≥0 is positive semi-definite, because for any m ≥ 0 and c0, . . . , cm ∈ R,

0 ≤
∫ ∣∣∣ m∑

i=0

cix
i
∣∣∣2dµ(x) =

N∑
i,j=1

cicj

∫
xi+jdµ(x) =

N∑
i,j=1

cicjαi+j .

Equality holds in the above inequality if and only if
∑m

i=0 cix
i = 0 a.e.[µ] which is the same as

saying that
∑m

i=0 ciλ
i
k = 0 for 1 ≤ k ≤ n. Writing in matrix form, this is equivalent to

λ0
1 λ1

1 . . . λm1
...

...
...

...
λ0
n λ1

1 . . . λmn



c0

...
cm

 = 0.

If m = n− 1, the matrix on the left is square and has determinant
∏
i<j(λj − λi) which is non-zero

as the λis are distinct. For m ≥ n, clearly there exist cjs such that the equation is satisfied, since
the matrix has rank at most n. Thus, Hα has rank n, and more specifically, its top k × k principal
sub-matrix is non-singular for k ≤ n − 1 and singular for k ≥ n. Thus, α is positive semi-definite
but not positive definite.

Applying Gram-Schmidt to 1, x, x2, . . ., we get polynomials ϕ0, ϕ1, . . . , ϕn−1, where ϕj has de-
gree j. We cannot proceed further, as xn is linearly dependent on 1, x, . . . , xn−1 in the given inner
product (i.e., in L2(µ)). This is the orthogonal polynomial sequence.

To get the three term recurrence, we again write, for k ≤ n− 2,

xϕk(x) = ck,k+1ϕk+1(x) + . . .+ ck,0ϕ0(x).

Using the inner product of L2(µ) (since M : L2(µ) 7→ L2(µ) is symmetric), we reason as before
that ck,j = 0 for j ≤ k − 2, ck,k+1 = ck+1,k and writing ak = ck,k and bk = ck,k+1 (this is positive,
why?) thus get the three term recurrence

xϕ0(x) = a0ϕ0(x) + b0ϕ1(x),

xϕk(x) = bk−1ϕk−1(x) + akϕk(x) + bkϕk+1(x) for 1 ≤ k ≤ n− 2.

Lastly, it also holds that (we leave the reasoning to you)

xϕn−1(x)
L2(µ)

= bn−2ϕn−2(x) + an−1ϕn−1(x).

Equality in L2(µ) means that the difference has zero norm in L2(µ), or equivalently, equality holds
for x ∈ {λ1, . . . , λn}. The equality cannot be for all x as the left side is a polynomial of degree n
but the right side has lower degree.

The three term recurrences can be written in matrix form as
a0 b0 0 . . . 0

b0 a1 b1 . . . 0
...

...
...

...
...

0 . . . 0 bn−2 an−1




ϕ0(x)
...

ϕn−1(x)

 L2(µ)
= x


ϕ0(x)

...
ϕn−1(x)


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The equality is in L2 because the very last equation holds only when x ∈ {λ1, . . . , λn}. Let Tn
denote the Jacobi matrix on the left.

The previous equality holds for x ∈ {λ1, . . . , λn}, showing that λk is an eigenvalue of Tn with
eigenvector (ϕ0(λk), . . . , ϕn−1(λk))

t. Thus, if we are given the Jacobi matrix, we recover the sup-
port of µ, it is precisely the spectrum of Tn. We can also recover the weights as follows (we have
seen very similar reasoning earlier). Observe that T is the matrix for the multiplication operator
on L2(µ). Therefore,

〈Tme0, e0〉 = 〈xm, x0〉L2(µ) = αm =
n∑
k=1

λmk pk.

On the other hand, the spectral decomposition of the Jacobi matrix is Tn = QΛQt where Λ =

diag(λ1, . . . , λn) and

Qi,j =
ϕi(λj)

2∑n−1
`=0 ϕi(λj)

2
.

Therefore, it is clear that

〈Tmn e0, e0〉 = 〈QΛmQte0, e0〉 =

n∑
j=1

λmj Q
2
0,j .

Equating with the earlier identity, we have recovered the measure as

µ =

n∑
k=1

pkδλk

where λk are the eigenvalues of Tn and pk = Q2
0,k are the squared entries of the first row of the

eigenvector matrix of Tn.

Conclusion: From a finitely supported measure, we can compute its moments. From the moment
sequence we can recover the measure by going first to the orthogonal polynomials, then to the
Jacobi matrix describing the three-term recurrence, and from there to the measure, via the spectral
decomposition of the Jacobi matrix. In summary, the measure is just the spectral measure of the Jacobi
matrix at the vector e0.

11. THE UNIQUENESS QUESTION: CONNECTION TO SPECTRAL THEOREM

If α is a positive definite sequence, we construct its Jacobi matrix T = T (a, b). Going by the
finite support case, we may expect that the measure (or one measure) with moment sequence α
can be recovered from T by taking spectral measure at e0. There are many subtleties on the way.

First w regard T as an operator on sequences by mapping (Tx)n = bn−1xn−1 + anxn + bnxn+1.
While this is well-defined for any x ∈ RN, to talk about spectral theorem, we must work inside a
Hilbert space. Here the natural Hilbert space is `2 = {(x0, x1, x2, . . .) :

∑
n x

2
n <∞}.

A special case is when the entires of T are bounded. In this case, by Cauchy-Schwarz inequality

|(Tx)n|2 ≤ (a2
n + b2n−1 + b2n)(x2

n−1 + x2
n + x2

n+1)
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and hence ‖Tx‖2`2 ≤ 3M2‖x‖2`2 where M is a bound for |an|s and |bn|s. Thus T : `2 7→ `2 is a
bounded operator. It also satisfies 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ `2, which makes it self-adjoint.

The spectral theorem for bounded self-adjoint operators tells us that we can write T =
∫
λdE(λ)

where E is a projection valued measure. This representation is also unique etc. As a consequence,
there is a measure µ (it is defined by µ(A) = 〈E(A)e0, e0〉 for A ∈ BR) such that or any m,

〈Tme0, e0〉 =

∫
xmdµ(x).

Recall that the positive definite sequence can be recovered from the Jacobi matrix asαn = 〈Tne0, e0〉
to see that µ has the moment sequence α.

If the entries of T are not bounded, it is no longer the case that T defines a bounded linear
operator on `2. By restricting the domain to D = {x ∈ `2 : xn = 0 eventually}, we see that
T : D 7→ `2 is linear. Since D is dense in `2, if we had ‖Tx‖`2 ≤ C‖x‖`2 for x ∈ D, then it would
extend to all of `2 as a bounded linear operator. That is not the case when the entries of T are
unbounded. These operators are called unbounded operators

Example 26. Let an = n and bn = 0. Then of T acts on D by (Tx)n = nxn. We could also have
defined T on a larger domain D1 = {x :

∑
nx2

n < ∞} because then T clearly maps D1 into `2. It
is better to denote tis operator as T1 and regard it as an extension of T .

In functional analysis class one learns how to associate an adjoint operator T ∗ which is de-
fined on another proper subspace D∗. For our T , the symmetry of the Jacobi matrix forces that
D∗ ⊇ D and that T ∗

∣∣
D

= T . We say that T is symmetric. This is not sufficient to get a spectral
decomposition. What one needs is self-adjointness, i.e., for D and D∗ to coincide and T and T ∗ to
coincide. Once T is self-adjoint, spectral theorem can be proved in full force (the only difference
is that when T is bounded, the projection valued measure E and the spectral measure µ are both
compactly supported, while they need no be so now).

Example 27. Take T : D 7→ `2 and T1 : D1 7→ `2 as in the previous example. It is easy to work
out that D∗ = D∗1 = D1. Further, T ∗, T ∗1 and T coincide on D1. Thus (in the language introduced
next), T is symmetric, while T1 is self-adjoint.

To achieve this one tries to extend T to a larger domain D1 ⊇ D and get an operator T1 : D1 7→
`2. Then it turns out that D∗1 ⊆ D∗ and T ∗1 : D∗1 7→ `2 is the adjoint of T1. General theorems assert
the existence of self-adjoint extensions (at least for our Jacobi matrices), but there can be several
self-adjoint extensions. This has repercussions in the moment problem.

Theorem 28. Let T be the Jacobi matrix of a positive definite sequence α (with α0 = 1). Regard it as an
operator T : D 7→ `2 where D is the set of sequences that are eventually 0.

(1) If T̃ : D̃ 7→ `2 is a self-adjoint extension of T , then the spectral measure of T̃ at the vector e0 is a
probability measure whose moment sequence is α. If the self-adjoint extension is unique, this is the
unique measure having this moment sequence.
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(2) If there are distinct self-adjoint extensions, then they have distinct spectral measures at e0, each
having the same moment sequence α.
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12. CONVEXITY APPROACH TO GENERALIZED MOMENT PROBLEMS

12.1. The generalized moment problem on an interval. Let E be a metric space and let ui, i ∈ I ,
be (complex-valued) continuous functions onE. Given α : I → C, does there exist a Borel measure
µ on E such that

∫
E uidµ = α(i) for all i ∈ I .

Many problems are of this nature.

(1) Classical moment problems. Let E = [0, 1] and uk(x) = xk, k ∈ N. This is the Hausdorff
moment problem. Changing E to R or [0,∞) lead to the Hamburger and Steiltjes’ moment
problems.

(2) Trigonometric moment problem. Let E = S1 ∼= [0, 2π) and uk(θ) = eikθ, k ∈ Z. This is the
problem of characterizing Fourier series of measures on S1, i.e., what functions α : Z → C
are of the form α(k) =

∫
eikθdµ(θ)? If one prefers real-valued functions, one may replace

the pair uk, u−k by cos(kθ), sin(kθ), for k ≥ 0.

(3) Bochner’s theorem. E = R and uλ(x) = eiλx, for λ ∈ R. The question here is of characterizing
Fourier transforms of measures on R. That is, what functions α : R → C are of the form
α(λ) =

∫
eixλdµ(x)? Bochner’s theorem provides the answer.

(4) Riesz’s representation theorem. {ui} = C(E). The answer is that a functional α : C(E) → R
is attainable if and only if it is a positive linear functionals on C(E) (when E is locally
compact).

(5) Poisson integral formula for positive harmonic functions on the disk. Let E = S1 and uz(λ) =

Re λ+z
λ−z = 1−r2

1−2r cos(θ−t)+r2 where z = reiθ ∈ D and λ = e−it ∈ S1. This is basically the
Poisson kernel (when thought of as a function of (z, λ)). The question here is to determine
functions α : D → R that are of the form α(z) =

∫
S1 uz(t)dµ(t) for a probability measure µ

on S1. The answer turns out to be precisely positive harmonic functions.

(6) Herglotz representation theorem. Let E = S1 and uz(λ) = λ+z
λ−z for z ∈ D (the unit disk),

λ ∈ S1. In this case, the functions α : D → C that are representable in the form α(z) =∫
S1 uz(λ)dµ(λ) turn out to be precisely the collection of holomorphic functions from D into

the right half-plane H+ = {w : Rew > 0}with the additional condition that α(0) ∈ R+.

(7) Nevanlinna-Pick interpolation problem: Given z1, . . . , zn ∈ D and w1, . . . , wn ∈ D, does there
exist a holomorphic function f : D→ D such that f(zi) = wi, for i ≤ n? This does not look
like it has anything to do with measures, but because of the Herglotz representation above
(and the fact that we have an explicit conformal equivalence of H+ with D), we can realize
this as a generalized moment problem!

12.2. Finite index case. The main points are most easily conveyed when the index set is finite,
so we take u0, . . . , un : E → R (the complex case can be handled by separating each ui into its
real and imaginary parts) and α0, . . . , αn ∈ R. Let W = span{u0, . . . , un} be the space of all linear
combinations and let W+ = {u ∈W : u ≥ 0 on E} be the positive ones.
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Assume that {u0, . . . , un} are linearly independent. Then there is a unique linear functional
L : W → R such that L(uk) = αk, 0 ≤ k ≤ n.

In some cases, there may be linear dependence among uis, but then αi must obviously satisfy
the corresponding linear constraints, and we can reduce the problem to the above case by taking
a maximal linearly independent subset of {u0, . . . , un}.

Theorem 29. For linearly independent u0, . . . , un ∈ C(E), and α0, . . . , αn ∈ R, the following are equiv-
alent.

(1) There exists a measure µ such that
∫
ukdµ = αk for 0 ≤ k ≤ n.

(2) L(u) ≥ 0 for all u ∈W+.

12.3. Some ingredients from convex analysis. The heart of the matter is convexity. This was
implicit in the other approach, where we used Hahn-Banach like theorems, but is made more
explicit in this approach.

Definition 30. Let K ⊆ Rn. We say that K is convex if tx + (1 − t)y ∈ K whenever x, y ∈ K and
0 < t < 1. We say that K is conical if tx ∈ K whenever x ∈ K and t > 0. A wedge is a closed
convex conical set.

In other words, a closed set K is a wedge if and only if it is closed under addition of vectors
and under multiplication by positive scalars. A fundamental concept is that of the convex dual.

Definition 31. Let K be a wedge. Its (convex) dual is the set

K† := {a ∈ Rn : 〈a, x〉 ≥ 0 ∀x ∈ K}.

It is easy to see that K† is a wedge (this is true even if K is an arbitrary set, not necessarily a
wedge). In fact K† is the intersection of all Hx, x ∈ K, where Hx is the closed half-space of vectors
that have positive inner product with x. The crucial fact, and the reason for the word “dual”, is as
follows.

Proposition 32. If K is a wedge, then (K†)† = K.

Proof. By definition of K†, we have 〈a, x〉 ≥ 0 for all a ∈ K†, x ∈ K. Hence it follows that
K ⊆ (K†)†. If the inclusion was strict, then let y ∈ (K†)† \ K. We can find an affine linear
functional L(x) = 〈b, x〉 − c with c ∈ R, b ∈ Rn, such that L(x) ≥ 0 for x ∈ K and L(y) < 0

(this is the separating hyperplane theorem, you may call it Hahn-Banach too). This means that
〈y, b〉 < c ≤ 〈x, b〉 for all x ∈ K. Taking x = 0 (which belongs to K by closedness) in the second
inequality, c ≤ 0. Then 〈b, x〉 ≥ 0 for all x ∈ K, showing that b ∈ K†. But y ∈ (K†)†, hence
〈y, b〉 ≥ 0, contradicting the first inequality. �

12.4. Analysis of the generalized moment problem. Define the curve U : E → Rn+1 by U(x) =

(u0(x), . . . , un(x)). Let K be the smallest wedge containing the image of U (i.e., the intersection of
all wedges that contains the image). We need a description of K and K†.
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(1) K: Clearly, K must contain all finite convex combinations of the form p1U(x1) + . . . +

pmU(xm), m ≥ 1 and pi ≥ 0 with p1 + . . . + pm = 1. Approximating general probabil-
ity measures by discrete ones, and the closedness of K, we see that K must also contain∫
U(x)dµ(x) for any Borel probability measure µ on E. On the other hand, the collection

of all vectors
∫
Udµ, as µ varies, is a wedge. Therefore, K = {

∫
Udµ : µ ∈ P(E)}.

(2) K†: If a = (a0, . . . , an) ∈ K†, then 〈a, v〉 ≥ 0 for v ∈ Image(U), i.e., a0u0(x)+. . .+anun(x) ≥
0 for all x ∈ E. Conversely, if a0u0(x) + . . .+ anun(x) ≥ 0 for all x ∈ E, then the wedge (in
fact a half-space) {v : 〈a, v〉 ≥ 0} contains the image of U , and hence the whole of K. Thus,
we may identify K† with W+, i.e., K† = {(a0, . . . , an) : a0u0 + . . .+ anun ∈W+}.

Now the duality tells us that (K†)† = K. In other words, the following are equivalent for α =

(α0, . . . , αn) ∈ Rn+1:

(1) α ∈ K: This means that αk =
∫
ukdµ for all 0 ≤ k ≤ n, for some µ ∈ P(E).

(2) α ∈ (K†)†: This means that
∑

k αkak ≥ 0, whenever
∑

k akuk ∈ W+. In other words,
L(u) ≥ 0 for u ∈W+.

This completes the proof of Theorem 29.

12.5. Identifying W+ in special cases. The solution to the generalized moment problem given in
Theorem 29 is the first step. The main weakness is that the collection of positive functions W+ is
not very explicit, making the checking of the condition L(u) ≥ 0 for u ∈ W+ near-impossible. In
a few specific examples, one can find an explicit description of W+, thus leading to a more usable
solution to the problem.

Here is the representation of positive polynomials on intervals of the real line.

Proposition 33. Let p(x) be a real polynomial of degree n.

(1) If p ≥ 0 on R, then p is a sum of squares of polynomials.

(2) If p ≥ 0 on [0,∞), then p is a sum of polynomials of the form q2(x) and xq2(x).

(3) If p ≥ 0 on [0, 1], then p is a sum of polynomials of the form q2(x) and x(1− x)q2(x).

One can be more explicit about how many summands are needed, but that is not necessary for
our purpose.

Proof. As p is real, we can factorize it as p(x) = C
∏`
i=1(x− ti)mi

∏k
i=1(x−wi)(x− w̄i) where ti are

distinct real and Imwi > 0.

(1) Assume p ≥ 0 on R. If anymi is odd, then p(x) changes sign at ti, hence cannot be positive.
Writing mi = 2ni, we get p(x) = |Q(x)|2 with Q(x) =

√
C
∏m
i=1(x − si)ni

∏k
i=1(x − wi).

Here note that C > 0 as p(x) ∼ Cx`+2k as x→∞. IfQ = q+ ir, then |Q|2 = q2 +r2, making
p a sum of two squares.

(2) If p ≥ 0 on [0,∞), then the real zeros with odd multiplicity must all be in (−∞, 0], hence we
may write p(x) = |Q(x)|2

∏`′

i=1(x+si) where si ≥ 0 are distinct (if si has multiplicity 2k+1,
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then k of them are absorbed into Q(x)). Expand
∏

(x + si) and collect the even and odd
terms separately (all coefficients are positive as they are sums of products of s1, . . . , s`′).
A term of the form cx2k|Q(x)|2 = (

√
cxkq(x))2 + (

√
cxkr(x))2 is a sum of squares, while a

term of the form cx2k+1|Q(x)|2 = x(
√
cxkq(x))2 + x(

√
cxkr(x))2 are of the form x times a

square polynomial. Thus p has the claimed representation, with at most four summands.

(3) If p ≥ 0 on [0, 1], then the real zeros with odd multiplicity are in (−∞, 0] or in [1,∞), hence
we may write p(x) = |Q(x)|2

∏k
i=1(x + si)

∏`
j=1(ui + 1 − x), where si, ui ≥ 0. Expand

this product and observe that each term (keep the 1 − x term intact in the second factor)
is a product of a square polynomial with one of 1 or x or 1 − x or x(1 − x). But xq2(x) =

x(1− x)q2(x) + (xq(x))2 and (1− x)q2(x) = x(1− x)q2(x) + ((1− x)q(x))2, hence we only
have summands of the form q2(x) and x(1− x)q2(x). Clearly six summands suffice. �.

For trigonometric polynomials, we have the following analogous result which has an even sim-
pler form.

Proposition 34. Let T (θ) =
∑n

k=−n ake
ikθ be a trigonometric polynomial such that T (θ) ≥ 0 for θ ∈

[0, 2π). Then T (θ) = |S(θ)|2 for a trigonometric polynomial S.

Proof. Writing T (eiθ) instead of T (θ), we see that T is the restriction to the unit circle of the rational
function T (z) =

∑n
k=−n akz

k. Note that a0 ∈ R and a−k = ak for T to be real-valued on the unit
circle. As T (1/z) = T (z) for z = eiθ, the identity holds for all z ∈ C. This shows that the zeros
of the polynomial znT (z) are either on the unit circle, or occur in pairs of the form {w, 1

w}. The
zeros on the unit circle must occur with even multiplicity, otherwise T (eiθ) would change sign
at such a zero. Unpacking all this gives us the representation znT (z) = an

∏k
i=1(z − wi)(z −

1
w̄i

)
∏`
i=1(z − ξi)

2mi where ξi are distinct points on the unit circle. Thus znT (z) = |Q(z)|2 for
Q(z) =

∏k
i=1(z − wi)

∏`
i=1(z − ξi)mi . TO COMPLETE �

12.6. Solution to the moment problem in special cases. In the special cases, we shall be able
to express the condition of positivity of L on W+ in terms of positive semi-definiteness of certain
matrices. Everywhere, an infinite matrix (ai,j)i,j≥0 is said to be positive semi-definite if every finite
principal submatrix is. What this means is that ai,j = aj,i for all i, j and

n∑
i,j=0

cic̄jai,j ≥ 0 for any n ≥ 0 and c1, . . . cn ∈ C.

When ai,j are real, it suffices to take ci ∈ R.

Theorem 35. Let αk ∈ R, with α0 = 1. Then there exists a probability measure µ on R such that∫
xkdµ(x) = αk for all k if and only if the infinite matrix (αj+k)j,k≥0 is positive semi-definite.

Proof. Fix finite n and consider the moment problem with uk(x) = xk, 0 ≤ k ≤ n. Here W is the
space of polynomials of degree at most n L : W → R is defined by L(uk) = αk for 0 ≤ k ≤ n. and
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any p ∈W+ can be written as a sum of squares of polynomials. Hence, the condition L(u) ≥ 0 for
u ∈W+, is equivalent to L(q2) ≥ 0 for all q2 ∈W . But if q(x) = c0 + c1x+ . . .+ cmx

m, then

L(q2) = L

 m∑
j,k=0

cjckuj+k

 =
m∑

j,k=0

cjckαj+k.

Thus, the positivity of L on W+ is equivalent to positive semi-definiteness of (αj+k)0≤j,k≤m.
This proves the necessity of the positive semi-definiteness of (αj+k)j,k≥0.
To see sufficiency, by Theorem 29 it follows that for each n, there is a probability measure µn on

R such that
∫
xkdµn(x) = αk for 0 ≤ k ≤ n. By the fact that the second moments of

∫
x2dµn(x) =

α2 are bounded, we get the tightness of µn, and hence we can get a subsequential limit µ. As∫
x2pdµn(x) = α2p is also bounded (as n varies), by a similar argument, we conclude that the

moments of µn along the subsequence converge to those of µ. In other words,
∫
xkdµ(x) = αk for

all k ≥ 0. �

Moment problem on R+: By the same method of proof, but using the description of W+ as given
in Proposition 34, we arrive at the following theorem.

Theorem 36. Let αk ∈ R with α0 = 1. There exists a probability measure on R+ whose moments are αks
if and only if the infinite matrices (αj+k)j,k≥0 and (αj+k+1)j,k≥0 are positive semi-definite.

Proof. Given the description of elements of W+ as sums of q2(x) and xq2(x), writing q(x) = c0 +

. . .+ cmx
m, we see that

L(q2(x)) =
m∑

j,k=0

cjckαj+k, L(xq2(x)) =
n∑

j,k=0

cjckαj+k+1.

The rest of the proof is identical to the proof of Theorem 35. �

Moment problem on [0, 1]: Again, using the description of W+ as given in Proposition 34, we
arrive at the following theorem.

Theorem 37. Let αk ∈ R with α0 = 1. There exists a probability measure on [0, 1] whose moments are
αks if and only if the infinite matrices (αj+k)j,k≥0 and (αj+k+1 − αj+k+2)j,k≥0 are positive semi-definite.

Proof. of W+ are sums of polynomials of the form q2(x) and x(1 − x)q2(x). Writing q(x) = c0 +

. . .+ cmx
m, we see that

L(q2(x)) =
m∑

j,k=0

cjckαj+k, L(x(1− x)q2(x)) =
m∑

j,k=0

cjck(αj+k+1 − αj+k+2).

The rest of the proof is identical to the previous cases. �

Trigonometric moment problem:
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Theorem 38. Let γk ∈ C with γ0 = 1 and γ−k = γ̄k. Then there exists a probability measure µ on S1 with
Fourier coefficients γk if and only if (γj−k)j,k≥∈Z is positive semi-definite.

Proof. By Proposition 34, positive trigonometric polynomials are of the form |Q|2. Writing Q(θ) =∑m
j=−m cjuj where uj(θ) = eijθ, we see that

L(|Q|2) =
m∑

j,k=−m
cj c̄kL(uj−k) =

m∑
j,k=−m

cj c̄kγj−k.

Thus the positivity of L on W+ is the same as positive definiteness of (γj−k)j,k≥∈Z. The rest of the
proof is similar to the previous cases: Consider {uj}|j|≤m, get a measure µm with

∫
ujdµ = γj , use

compactness of S1 to get a subsequential limit µ and argue that its Fourier coefficients are γks. �

Nevanlinna-Pick interpolation problem: Let D = {z ∈ C : |z| < 1} and H+ = {z : Re z > 0}.

Theorem 39. Let zi ∈ D and wi ∈ H+, 1 ≤ i ≤ n. Then there exists a holomorphic function f : D→ H+

that maps f(zi) = wi for 1 ≤ i ≤ n if and only if the matrix
(
wj+w̄k
1−zj z̄k

)
1≤j,k≤n

is positive semi-definite.

A priori this does not look related to the generalized moment problem as we are not asking for
a measure. That connection comes from the following representation of holomorphic functions
from the disk to the right half-plane.

Theorem 40 (Herglotz representation theorem). Let f : D → H+ be holomorphic. Then there is a
unique probability measure µ on S1 ∼= [0, 2π) and b ∈ R and a > 0 such that

f(z) = ib+ a

∫
S1

eit + z

eit − z
dµ(t).

Conversely, any function of the above form is a holomorphic function from D to H+.

Observe that a = Re f(0) and b = Im f(0) in this representation. As usual, the converse part is
easy, since for each t ∈ [0, 2π), the function ϕt(z) = eit+z

eit−z maps D to H+. The forward implication is
proved using Poisson integral representation for the harmonic function u = Re f . It is convenient
to do this first assuming that f is holomorphic in a neighbourhood of D so that boundary function
is nice. This can be done by approximating f by fr(z) = f(rz) as r ↑ 1. But it is also illuminating
to see the Herglotz representation itself as an expression of the generalized moment problem! This
heuristic is outlined in the remark below.

Remark 41. Let F denote the space of holomorphic function on D that are real on the real line.
Let K be the smallest wedge in F containing ϕt, t ∈ [0, 2π). This is easily seen to be all functions
of the form a

∫
S1 ϕtdµ, where a > 0 and µ is a probability measure on S1. We need to identify K†

(as we are in infinite dimensional space, the K† should be defined as the collection of all linear
functionals that are positive on K). It is easy to see that f 7→ Re f(z) = f(z) + f(z̄) is a linear
functional that is positive on K, for each z ∈ D. If we can argue that these are all (some closure is
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needed, in fact), then we essentially identify K† with D+ = {z : |z| ≤ 1, Im z ≥ 0}. By the duality
(K†)† = K (again, this is a heuristic, as we have not established duality in infinite dimensional
spaces), we get that holomorphic functions in F that map D to H+ (which are the elements of
(K†)†) are precisely those with the Herglotz integral representation (which are the elements of K).

Proof of Theorem 39. Without loss of generality, we may assume z1 = 0 and w1 = 1. This can be
done by replacing f by ψ ◦ f ◦ ϕ, where ϕ (respectively ψ) is a linear fractional transformation
that map D onto itself (respectively, H+ onto itself). Then the Herglotz representation says that
f(z) =

∫
ϕt(z)dµ(t) for some probability measure µ on S1. We need to show the existence of a µ

such that
∫
ϕt(zk)dµ(t) = wk, for 1 ≤ k ≤ n.

Consider the generalized moment problem on S1, with (a) u0 = 1 and uk(t) = ϕt(zk), 1 ≤ k ≤ n
and (b) L(uk) = wk Here we are working with complex valued functions. Positive functions (ele-
ments of W+) are those of the form

∑
k akuk ≥ 0. Thus, the existence of a measure µ is equivalent

to “If
∑

k akϕt(zk) ≥ 0 for all t ∈ S1, then
∑

k akwk ≥ 0”. �
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CHAPTER 7

Asymptotics of the eigenvalues of the Laplacian

1. WEYL’S LAW

The Laplacian, ∆ :=
∑n

i=1 ∂
2
i , where ∂i = ∂

∂xi
, is perhaps the most important linear operator in

mathematics. It shows up in many contexts in physics. For example, the law connection the charge
distribution ρ(·) to the electirc potential generated by it is ∆ϕ = ρ, the same if ρ is interpreted as
mass distribution and ϕ as the gravitational potential. One could give many other examples. Just
to mention two-

(1) Wave equation: ∂2

∂t2
u(x, t) = ∆u(x, t). Here u(x, t) represents the displacement of a stretched

membrane (say x ∈ Ω, a domain in R2), eg. a drum, where the ends are tied down,
u(x, t) = 0 for x ∈ ∂Ω.

(2) Heat equation: ∂
∂tu(x, t) = ∆u(x, t), where u(x, t) is the temperature at location x at time t.

In mathematics, the importance of the Laplacian comes from its symmetry with respect to ro-
tations and translations. If f, g : Rn 7→ R are smooth functions such that g(x) = f(Ax + b) where
An×n is an orthogonal matrix and b ∈ Rn, then

(∆g)(x) = (∆f)(Ax+ b).

In other words, the Laplacian commutes with isometries of Rn. It is only natural when a system is
described by second order derivatives, and there is symmetry of translation and rotation, that the
Laplacian should make an appearance.

Here we are interested in eigenvalues and eigenfunctions of the Laplacian on bounded regions
of the Euclidean space. The setting is that we have a nice bounded region Ω ⊆ Rn with piecewise
smooth boundary, and we consider functions f : Ω 7→ R satisfying f

∣∣
∂Ω

= 0 and some smoothness
requirements (eg., C2) inside Ω. Let us see some examples.

Example 1. Ω = (0, L) in R. Here ∆ = d2

dx2
. Clearly, ϕn(x) = sin(πnx/L) satisfy ∆ϕn =

−π2L−2n2ϕn and also ϕn(0) = ϕn(1) = 0. We could say that ϕn, n ≥ 1, are eigenfunctions of
the Laplacian on [0, 1] with Dirichlet boundary conditions.

There are no other eigenfunctions (we are not saying why, as yet). We see that the nth largest
eigenvalue of −∆ is π2n2L−2. Equivalently, if N(λ) is the number of eigenvalues not exceeding λ,
then N(λ) ∼ (L/π)

√
λ.

Example 2. Ω = (0, a) × (0, b) in R2. It is clear that ϕn,m(x, y) = sin(πnx/a) sin(πmy/b) satisfies
∆ϕn,m = −π2(n

2

a2
+ m2

b2
)ϕn,m.
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What is N(λ)? It is equal to the number of lattice points (m,n), m,n ≥ 1, that lie inside the
ellipse

x2

a2/π2
+

y2

b2/π2
= λ.

Hence, N(λ) is close to one-quarter of the area of the ellipse, which is (ab/π)λ = (|Ω|/π)λ. More
precisely, N(λ) ∼ (ab/4π)λ = 1

(2π)2
|Ω|λ.

Based on such calculations, and perhaps a few more explicit examples, physicists conjectured
(late 1800s) that the asymptotics of eigenvalues depends only on the volume of the domain (and
the dimension). That was proved by Weyl. Let ωd denote the volume of the unit ball in Rd.

Theorem 3 (Weyl). Let Ω be a domain in Rd with piecewise smooth boundary. Let N(λ) be the number of
eigenvalues of −∆ on Ω, with Dirichlet boundary conditions. Then,

N(λ) ∼ (2π)−dωd|Ω|λd/2.

This is only the most basic version of the theorem, in one setting. It can be extended by finding
further corrections. And similar theorems exist for other boundary conditions (eg., Neumann
boundary conditions), to related operators (eg., the Schrodinger operator−∆+V ), to the Laplace-
Beltrami operator on closed Riemannian manifolds, etc.

2. THE SPECTRUM OF THE LAPLACIAN

There are three ingredients: the domain, the operator and the boundary condition27.

The domain: We shall assume that Ω is a bounded, open set in Rd whose boundary is a union
of finitely many piecewise smooth closed curves. Let B = ∂Ω. Let n(x) denote the unit outward
normal to Ω at x ∈ B (it exists except at finitely many points).

Boundary conditions: Standard boundary conditions are as follows

(1) Dirichlet: u = 0 on B.

(2) Neumann: ∂
∂nu = 0 on B (except at the finitely many points where the normal is not well-

defined).

(3) Mixed: Fix a nice (continuous/smooth) function σ : B 7→ R and ask for ∂u
∂n + σu = 0 on B.

The operator: For u ∈ C2(Ω), we define ∆u(x) =
∑d

i=1 ∂
2
i u(x) for x ∈ Ω.

What we want are eigenvalues and eigenfunctions of −∆. In principle, this must simply be a
function u ∈ C2

c (Ω̄) (continuous on Ω̄ and smooth in Ω) and a number λ ∈ R such that −∆u = λu

27This section will be very sketchy, but gives an overview of many important ideas required to make sense of the

eigenvalues and eigenfunctions of the Laplacian.
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inside Ω and also require that u is not identically zero and that satisfies the boundary conditions
imposed.

But as we know, to talk about spectral theorem, we require the setting of a Hilbert space, al-
though the operator need not be defined on all of the space. Also, a reasonable spectral theorem
exists only for self-adjoint, or at least normal, operators. What is this Hilbert space for the Lapla-
cian? Although all this can be made sense of, we shall change the setting slightly and work with
quadratic forms. First, we introduce the required Hilbert spaces.

A simple integration by parts shows that for f, g ∈ Cc(R2), we have∫
Ω

(−∆f)(x)g(x)dx =

∫
Ω
∇f(x).∇g(x)dx.

The right side is the required quadratic form, or more precisely,
∫

Ω |∇f |
2. When we work in a

bounded open set Ω, then for f, g ∈ C2
c (Ω), the above identity is still valid. However, if f, g are

merely smooth (say on a neighbourhood of Ω̄), then we must be careful about the boundary terms
and the identity changes to∫

Ω
(−∆f)(x)g(x)dx =

∫
Ω
∇f(x).∇g(x)dx−

∫
∂Ω
g
∂f

∂n
.

For simplicity of language, let us stick to 2-dimensions. If f satisfies, Neumann boundary con-
dition, then the second term above vanishes. Thus, if f, g are smooth and f satisfies either the
Dirichlet or the Neumann boundary condition, then

∫
(−∆f)g =

∫
〈∇f,∇g〉. This leads us to

study the quadratic form

Q[f, g] =

∫
Ω
∇f.∇g.

What is the right class of functions for which this makes sense? It looks like we must require ∇f
to be in L2. This can be made sense of by the notion of weak derivative.

Weak derivative: If f, gi : Rd 7→ R are locally integrable functions such that∫
f∂ig = −

∫
giϕ

for all ϕ ∈ C∞c (Rd), then we say that gi is the weak ith partial derivative of f . If f ∈ C1(Rd), then
this is satisfied with gi = ∂if , the usual definition of derivative (integration by parts formula). In
general, if it exists, it is well defined a.e. If all the weak partial derivative g1, . . . , gd exist, we say
that (g1, . . . , gd) is the weak gradient of f .

Now we are ready to define the spaces that we want. Let Ω be a bounded open set in R2 (for
simplicity, stick to d = 2 henceforth).

H1(Ω) = {f ∈ L2(Ω) : ∇f exists in the weak sense and belongs to L2(Ω)}.

On H1(Ω), define the inner product (f, g) = 〈f, g〉+ 〈∇f,∇g〉.

Fact: H1(Ω) is complete under this inner product.
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Define H1
0 (Ω) to be the closure of C∞c (Ω) in H1(Ω). Then, H1

0 (Ω) is also a Hilbert space with
the same inner product. Functions in H1

0 are the ones that are meant to satisfy Dirichlet boundary
condition.

By the earlier discussion, once we move to the level of quadratic forms (instead of the Lapla-
cian), the boundary condition is no longer required in the Neumann problem. In short, the qua-
dratic form Q, when restricted to H1(Ω) and to H1

0 (Ω), represent the quadratic forms induced by
the Laplacian with the Neumann and Dirichlet boundary conditions, respectively.

Definition of eigenvalues and eigenvectors: Define

µ1 = min
f∈H1,‖f‖=1

Q[f, f ].

It is clear that µ1 = 0 (since Q[f, f ] ≥ 0 for all f and Q[1,1] = 0). The minimum is attained by
constant functions. Let ψ1 be one such, normalized in L2(Ω). We refer to µ1 and ψ1 as the first
eigenvalue and the first eigenfunction of the Neumann-Lapacian, respectively.

For k ≥ 1, let

µk = min
f∈H1,‖f‖=1

f⊥ψ1,...,ψk−1

Q[f, f ].

It is true, but no longer obvious, that the minimum is attained. Let ψk be a minimizer (normalize
it in L2(Ω)). We refer to µk and ψk as an eigenvalue-eigenfunction pair. Assuming the existence
of minimizers, we proceed inductively and obtain µ1 ≤ µ2 ≤ . . . and ψ1, ψ2, . . .. By definition,
{ψ1, ψ2, . . .} is an orthonormal set in L2(Ω). Observe also that

Q[ψk, ψj ] =

0 if k 6= j,

µk if k = j.

The second is clear by definition of ψk and µk. The first is also easy (if j > k, observe that Q[ψk +

tψj , ψk + tψj ] ≤ Q[ψk, ψk] for all t, since ψk + tψj is also considered in the minimum. Use that to
show that Q[ψk, ψj ] = 0).

Another important fact (requires proof) is that µk → ∞ as k → ∞. This ensures that the
eigenfunctions form an orthonormal basis for L2(Ω) (why?).

We have left two facts unproved: (a) Existence of minimizers and (b) That eigenvalues increase
without bound.

In a similar fashion, one can work with the same quadratic form on H1
0 (Ω) and define 0 < λ1 ≤

λ2 . . . and an orthonormal basis {ϕ1, ϕ2, . . .} for L2(Ω) such that

λk = min
f∈H1

0 ,‖f‖=1

f⊥ϕ1,...,ϕk−1

Q[f, f ].

These are defined to be the eigenvalues of the Dirichlet-Laplacian and the minimizers are the
eigenfunctions.

126



The above definition is essentially the Rayleigh-Ritz formulas that we are familiar with in the
case of symmetric matrices. We shall need the min-max theorem (actually max-min theorem, but
that sounds odd!) for these eigenvalues.

Theorem 4 (Min-Max theorem). Let Ω be as above. Then

µk = max
W⊆H1

dim(W )≤k−1

min
f∈H1,‖f‖=1

f⊥W

Q[f, f ] and λk = max
W⊆H1

0

dim(W )≤k−1

min
f∈H1

0 ,‖f‖=1

f⊥W

Q[f, f ].

3. PROOF OF WEYL’S LAW USING THE MIN-MAX THEOREM

Let Ω be as before. Let N0(λ) be the number of Dirichlet eigenvalues in the interval [0, λ] and let
N ′(λ) be the number of Neumann eigenvalues in the same interval. Now we are ready to prove
Weyl’s law. We shall stick to the simplest version of it only.

Theorem 5. N(λ) ∼ (2π)−d/2ωd|Ω|λd/2 and as λ→∞ where N(λ) = N0(λ) or N ′(λ).

The proof consists of three steps.

(1) Show the theorem for rectangles. This can be done because the eigenvalues of the Laplacian
under both Dirichlet and Neumann conditions can be computed explicitly.

(2) Show the theorem for a finite union of standard rectangles. This can be done by compari-
son theorems using the min-max criteria. The essential point is to show that N(λ) is nearly
additive in the domain, i.e., NΩ1tΩ2(λ) ≈ NΩ(λ) + NΩ2(λ). That makes the appearance of
|Ω| transparent.

(3) For a general Ω, sandwich it from inside and outside by regions that are finite unions of
standard rectangles. Again invoke comparison theorems.

Remaining notes to be written. No time now!

4. A DISCRETE APPROACH

Let G = (V,E) be a graph with vertex set V and edge set E. We assume that it is undirected,
simple, has no loops and is locally finite. The d(v) denote the degree of vertex v and write u ∼ v

to mean that u and v are connected by an edge. The Laplacian L : RV → RV is defined by

Lf(v) = d(v)f(v)−
∑
u:u∼v

f(u).

Let W ⊆ V be a finite set. There are multiple ways to “restrict” the Laplacian to RW .

(1) Dirichlet Laplacian: DefineDW : RW → RW byDW = L◦jW , where jW : RW → RV extends
a function f : W → R to a function jW (f) : V → R by defining it to be zero on V \W .

(2) Neumann Laplacian: Regard W as a graph in its own terms and let NW denote the corre-
sponding Laplacian from RW to RW .
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We write `2(W ) for RW to emphasize that we endow it with the usual inner product 〈f, g〉 =∑
u∈W f(u)g(u). It is easy to see that DW and NW are symmetric operators on `2(W ). In fact, they

are positive-semidefinite as shown by the following exercise.

Exercise 6. For f ∈ `2(W ), show that

〈NW f, f〉 =
1

2

∑
u,v∈W :u∼v

(f(u)− f(v))2,

〈DW f, f〉 =
1

2

∑
u,v∈W :u∼v

(f(u)− f(v))2 +
∑

u∈W,v 6∈W :u∼v
f(u)2.

The sum is written over ordered pairs u, v, hence the factor of 1/2. Alternately, we can write both
as
∑

e={u,v}(f(u) − f(v))2, where the sum is over all edges connecting two vertices of W for the
Neumann Laplacian, and over all edges with at least one vertex in W for the Dirichlet Laplacian
(in addition to setting the function to be zero outside W ).

As symmetric positive-semidefinite operators on a finite dimensional Hilbert space, the spectral
theorem tells us that with n = |W |, there are 0 ≤ λ1 ≤ . . . ≤ λn and 0 ≤ µ1 ≤ . . . ≤ µn and
orthonormal bases {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} of `2(W ) such that

DW = λ1ϕ1ϕ
t
1 + . . .+ λnϕnϕ

t
n,

NW = µ1ψ1ψ
t
1 + . . .+ µnψnψ

t
n.

When necessary, we shall indicate the dependence of λi, ϕi etc. on W .

Example 7. Let G = Zd (with the usual edge-structure) so Lf(m) = 2df(m) −
∑d

j=1 f(m +

ej) + f(m − ej) for m ∈ Zd, where ej is the jth co-ordinate vector. Observe that if ϕx(m) =

exp{2πi〈m,x〉} for x ∈ Rd, then

Lϕx = 2

d− d∑
j=1

cos(2πxj)

 eλ =

4

d∑
j=1

sin2(πxj)

 ex.

Thus ϕx is formally an eigenvector of L with eigenvalue λx = 4
∑d

j=1 sin2(πxj). Observe that
replacing xj by −xj does not change the eigenvalue, i.e., for any ε.x = (ε1x1, . . . , εdxd) where
ε ∈ {−1, 1}d. Hence, their linear combinations are also formal eigenfunctions of L.

Let W = {1, . . . , n− 1}d. If ψx is a formal eigenfunction of L such that ψx(n) = 0 if one of the nj
is equal to 0 or n, then DWψx = λxψx. To get such vanishing, consider

ψx =
∑

ε∈{−1,1}d

d∏
j=1

εjϕε.x

Let us recall the following variational characterization of eigenvalues. We leave it as an exercise
(or consult a linear algebra book).
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Exercise 8. Let An×n be a symmetric matrix with eigenvalues λ1 ≤ . . . ≤ λn and correspond-
ing orthonormal eigenvectors u1, . . . , un (of course, there is a choice in eigenvectors, unless the
eigenvalues are distinct). Then

(1) Rayleigh-Ritz: λk = min{〈Au, u〉 : ‖u‖ = 1, u ⊥ {u1, . . . , uk−1} and uk attains this mini-
mum.

(2) Max-Min formula: λk = max
S:dim(S)=k−1

min{〈Au, u〉 : ‖u‖ = 1, u ⊥ S}. The max-min is at-

tained by choosing S = span{u1, . . . , uk−1} and u = uk.

Here is a quick illustration of the power of the max-min formula over the Rayleigh-Ritz.

Lemma 9. If A,B are n× n real symmetric matrices and B −A is positive semi-definite, then λAk ≤ λBk .

While λA1 ≤ λA2 following from Rayleigh-Ritz, for k ≥ 2 it is helpless as the minimization is over
different collections of vectors for A and for B.

Proof. Fix any subspace S with dimension k − 1. As 〈Au, u〉 ≤ 〈Bu, u〉 for all u, it follows that
min{〈Au, u〉 : ‖u‖ = 1, u ⊥ S} ≤ min{〈Bu, u〉 : ‖u‖ = 1, u ⊥ S}. Take maximum over all S and
use the max-min formula to see that λAk ≤ λBk . �

We collect a few observations about the Neumann and Dirichlet eigenvalues. Below, W,W ′,Wj

etc. denote finite non-empty subsets of the vertex set with cardinality n, n′, nj etc.

• From the quadratic forms, it is clear that DW ≥ NW . Hence

λWk ≥ µWk for 1 ≤ k ≤ n.(1)

• If W ⊆W ′ with cardinalities n, n′, then28

λW
′

k ≤ λWk for 1 ≤ k ≤ n.(2)

This is because λWk minimizes 〈Lf, f〉 over functions that vanish outsideW , and such func-
tions also vanish outsideW ′. Minimum over a larger class of functions is smaller. (Caution:
This comparison is not true for Neumann eigenvalues!)

• Let W ⊇ W1 t . . . tWp, a pairwise disjoint union. Let µk, k ≤ n, denote the Neumann
eigenvalues of W and let µjk, k ≤ nj , denote the Neumann eigenvalues of Wj (always the
eigenvalues are arranged in increasing order). Now arrange the collection {µjk : 1 ≤ j ≤
p, 1 ≤ k ≤ nj} in increasing order as µ∗1 ≤ . . . ≤ µ∗n∗ where n∗ = n1 + . . .+ np). Then

µk ≥ µ∗k for 1 ≤ k ≤ n∗.(3)

Proof: Let W0 = W \ (W1 t . . . tWp). Write `2(W ) = `2(W0) ⊕ `2(W1) ⊕ . . . ⊕ `2(Wp) in
the obvious way. Then µ∗i are the eigenvalues of N∗ := NW1 ⊕NW1 ⊕ . . . ⊕NWp . Further,

28One can avoid saying k ≤ n, by adopting the convention that λWk = µWk = +∞ for k > n.
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NW ≥ NW0 ⊕ N∗ ≥ N∗ in the sense of positive definite order. The second inequality is
clear, the first is seen by comparing the quadratic forms:

〈NW f, f〉 − 〈(NW0 ⊕N∗)f, f〉 =
∑
j 6=j′

∑
Wj3u∼v∈Wj′

(f(u)− f(v))2.

From NW ≥ N∗ and Lemma 9, we get µk ≥ µ∗k. �

• Let W ⊇ W1 t . . . tWp, a disjoint union. Further assume that no edge connects vertices
in distinct Wjs. Let λk, k ≤ n, denote the Dirichlet eigenvalues of W and let λjk, k ≤ nj ,
denote the Dirichlet eigenvalues of Wj (arranged in increasing order). Now arrange the
collection {λjk : 1 ≤ j ≤ p, 1 ≤ k ≤ nj} in increasing order as λ∗1 ≤ . . . ≤ λ∗n∗ where
n∗ = n1 + . . .+ np. Then

λk ≤ λ∗k for 1 ≤ k ≤ n∗.(4)

Observe two differences from the previous situation. The inequality is reversed and we
have an extra assumption on the Wjs.

Proof: Let W ∗ = W1 t . . . tWp. The condition that no edge connects two distinct Wjs
implies that DW ∗ = DW1 ⊕ . . .⊕DWp . Hence λ∗j are the eigenvalues of DW ∗ . As W ∗ ⊆W ,
from (2) we conclude that λk ≤ λ∗k. �

4.1. Asymptotics of eigenvalues in Zd. We know how to compute Dirichlet and Neumann eigen-
values explicitly for axis-parallel rectangles in Zd. If W = [0, N1]× [0, Nd], then we know that the
eigenvalues are of the form

4
d∑
j=1

sin2(πkj/Nj)

for kj ≥ 1. If Nj ∼ ajR where aj > 0 and R → ∞, then the above eigenvalue is asymptotic

to 4π2

R2

∑d
j=1

k2j
a2j

. Thus it makes sense to scale all the eigenvalues up by R2 to get the number

4π2(k2
1/a

2
1 + . . .+ k2

d/a
2
d) indexed by k ∈ Nd. How many of these numbers are in [0, t], if t is large?

That is the number of lattice points in the ellipse x2
1/a

2
1 + . . . + x2

d/a
2
d ≤ t/4π2, which is a scaling

of the ellipse x2
1/a

2
1 + . . . + x2

d/a
2
d ≤ 1 by

√
t/2π. Therefore (this is intuitively clear, but if not it is

proved later) the number of lattice points is asymptotic to (t/4π2)
d
2ωda1 . . . ad, where the ωd is the

volume of the unit ball in Rd and ωda1 . . . ad is a volume of the ellipse x2
1/a

2
1 + . . .+ x2

d/a
2
d ≤ 1.

In summary, if WR = Zd ∩RΩ, where Ω = [0, a1]× . . .× [0, ad] and R2λWR
k → λk for k = 1, 2 . . .

for some numbers 0 ≤ λ1 ≤ λ2 ≤ . . .. Further,

#{k : λk ≤ t} ∼ κdV (Ω)t
d
2

where κd = ωd(2π)−d and V (Ω) is the volume (Lebesgue measure) of Ω. By a similar analysis,
R2µWR

k → µk for some 0 ≤ µ1 ≤ µ2 ≤ . . . and

#{k : λk ≤ t} ∼ κdV (Ω)t
d
2 .
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We can ask exactly the same question with Ω replaced by another bounded open set in Rd. What
happens to the eigenvalues?

Theorem 10 (Weyl’s asymptotic law). Let Ω ⊆ Rd be a bounded open set. Let WR = Zd ∩ (RΩ). Then

(1) R2λRk → λk(Ω) for each k ≥ 1, for some numbers λ1(Ω) ≤ λ2(Ω) ≤ . . ..

(2) As t→∞,

#{k : λk(Ω) ≤ t} ∼ κdV (Ω)t−
d
2 , #{k : µk(Ω) ≤ t} ∼ κdV (Ω)t−

d
2 .

Proof. First consider the case when Ω = Ω1∪ . . .Ωp where each Ωi is an axis-parallel open rectangle
and Ωi are pairwise disjoint (so Ω is disconnected). Let Wi,R = Zd∩RΩi. Then for R large enough,
Wi,R are well-separated from each other and hence DWR = DWR

1
⊕ . . .⊕DWR

p
. Consequently, the

eigenvalues for WR are just the union of eigenvalues of Wi,R. From this, both statements follow
easily.

Now consider a general bounded open Ω. We can find Ω′ ⊆ Ω such that Ω′ is a union of axis-
parallel open rectangles whose closures are disjoint and such that V (Ω′) ≥ (1 − δ)V (Ω). For R
large enough,

µ∗k,R ≤ λ
WR
k ≤ λ∗k,R

where µ∗k,R (respectively λ∗k,R) is the increasing enumeration of the union of Neumann eigenvalues
(respectively Dirichlet eigenvalues) of Wi,R, i ≤ p. �
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CHAPTER 8

Nevanlinna’s value distribution theory and Picard’s theorem

Picard’s theorem states that in a neighbourhood of an essential singularity, a holomorphic func-
tion takes every value among complex numbers with at most one exception. A weaker version is
about the range of an entire function in the whole plane. If the function is a non-constant polyno-
mial, it takes every possible value. Otherwise∞ is an essential singularity and its range omits at
most one point (by the stronger statement of Picard, this is true in any neighbourhood of∞.

There are many proofs of Picard’s theorem. Here we present the approach via Nevanlinna’s
value distribution theory29.

1. POISSON-JENSEN FORMULA

We have stated the Jensen formula before, now we do it in a slightly more general form.
Let f be a meromorphic function on C and let a ∈ C. At first, assume that f has neither a pole

nor a zero at the origin. Fix r > 0 and enumerate the zeros and poles (all non-zero by assumption)
of f in rD as ζ1 . . . , ζn as ζ1, . . . , ζn and ξ1, . . . , ξm, respectively. Then we can write

f(z)− a = g(z)×
n∏
k=1

(z − ζk)
m∏
`=1

1

(z − ξ`)

where g is a meromorphic function with no zeros or poles in rD. Take absolute values, apply
logarithm and integrate over rT. By the last thing we shall always mean

∫
rT h = 1

2π

∫ 2π
0 h(reit)dt.

Use the fact that log |g| is harmonic in rD (what if there are zeros or poles on the circle of radius
r?) and that

∫
rT log | · −w| = log(|w| ∨ r). Therefore,

∫
rT

log |f − a| = log |g(0)|+ log |c|+
n∑
k=1

log r −
m∑
`=1

log r

= log |f(0)− a|+
n∑
k=1

log
r

|ζk|
−

m∑
`=1

log
r

|ξ`|
.

29Good references which we have used and which contain far more material are Hayman’s book Meromorphic func-

tions (a pre-book version is available online in the TIFR lecture notes series) and Ermenko’s lecture notes Lectures on

Nevanlinna theory (available online). Our presentation follows Eremenko’s notes, and streamlined given our limited

motivation. Interested readers should read his notes, for the many ideas nicely explained there.
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If f has a zero or pole at the origin, write f(z)− a = cf (a)zp +O(zp+1) as z → 0, apply the above
formula to f1(z) = (f(z)− a)z−p and get∫

rT
log |f − a| = log |cf (a)|+ p log r +

n∑
k=1

log
r

|ζk|
−

m∑
`=1

log
r

|ξ`|
.

We rewrite it in terms of certain counting functions. Let nf (r, a) denote the number of solutions
to f(z) = a for z ∈ rD, counted with multiplicity. We write n+

f (r, a) = nf (r, a) − nf (0, a). For
example, in the above situation, if p > 0 then nf (r, a) = n + p and nf (r,∞) = m while if p < 0

then nf (r, a) = n and nf (r,∞) = m + p. It turns out (in fact as the Poisson-Jensen formula above
shows) that it is easier to access a different “counting function”, known as the Nevanlinna counting
function, defined as

Nf (r, a) :=
∑

z∈f−1{a}∩rD

log
r

|z|
= nf (0, a) log r +

∫ r

0

n+
f (t, a)

t
dt.

The last line is got by writing log r
|z| as

∫ r
0

1|z|<t<r
t dt. With this, we arrive at the version of Poisson-

Jensen that we want. ∫
rT

log |f − a| = log |cf (a)|+Nf (r, a)−Nf (r,∞).(5)

It is convenient and easier for understanding to think of the case when f − a has no zeros or poles
at the origin. In that case, we can simply write cf (a) = f(0) − a and also have the less clumsy
looking expression Nf (r, a) =

∫ r
0
nf (t,a)

t dt. The reason why we could not define Nf (r, a) like this
in general is that the integral does not converge unless nf (0, a) = 0. For a given f , if 0 is not a
pole, then there is at most one a ∈ C (namely a = f(0)) for which we need the general expression
(5), in all other cases we may write f(0)− a in place of cf (a).

Here is an exercise to show how one may extract information about nf from Nf , at least for
large r.

Exercise 11. Show thatNf (r, a)−Nf (1, a) ≤ (nf (r, a)−nf (1, a)) log r and nf (r, a) log 2 ≤ Nf (2r, a).

Remark 12. In many books, the notation m(r, f) and N(r, f) are used for what we have denoted
mf (r,∞) and Nf (r,∞). This is quite reasonable, as mf (r, a) and Nf (r, a) can then be simply
written as m(r, 1

f−a) and N(r, 1
f−a).

2. THE FIRST FUNDAMENTAL THEOREM OF NEVANLINNA

We shall use quite often the positive part of the logarithm, log+ t = max{log t, 0} for t > 0. The
following elementary properties will be useful.

Exercise 1. For any z, w ∈ C, show that

(1) log+ |z + w| ≤ log+ |w|+ log+ |z|+ log 2.

(2) log+ |zw| ≤ log+ |z|+ log+ |w|.
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Let f be a meromorphic function and let a ∈ C ∪ {∞}. Introduce the proximity function

mf (r, a) :=


∫
rT log+ |f | if a =∞,∫
rT log+

1
|f−a| if a 6=∞.

It measures how close f is to a on average over the circle rT. In contrast nf (r, a) (or Nf (r, a), if
loosely interpreted), measure how often f is actually equal to a in the disk rD. The first funda-
mental theorem of Nevanlinna makes the paradoxical sounding assertion that the only way for f
to avoid taking the value a (or to keep Nf (r, a) small) is to come close to a (i.e., increase mf (r, a))
quite often!

The proof is merely a rephrasing of the Poisson-Jensen formula. Write log |w| = log+ |w| −
log+

1
|w| to see that∫

rT
log |f − a| =

∫
rT

log+ |f − a| −
∫
rT

log+

1

|f − a|

= mf (r,∞)−mf (r, a) +

[∫
rT

log+ |f − a| − log+ |f |
]
.

Plug this into (5) and rearrange terms to get

mf (r,∞) +Nf (r,∞) = mf (r, a) +Nf (r, a) + log |cf (a) +

∫
rT

log+ |f − a| − log+ |f |.

By the exercise, the integrand in the last summand is at most log+ |a|+ log 2, while the integral is
actually an average (we integrate against dt/2π over [0, 2π)), hence the same bound holds for the
integral. Thus, we arrive at

mf (r,∞) +Nf (r,∞) = mf (r, a) +Nf (r, a) +O(1)

where the O(1) term is at most | log |cf (a)||+ log+ |a|+ log 2 in absolute value. It remains bounded
as r →∞.

The quantity Tf (r, a) := mf (r, a) + Nf (r, a) is called the Nevanlinna characteristic function. The
conclusion above can be rewritten as follows.

Theorem 2 (Nevanlinna’s first fundamental theorem). Let f be a meromorphic function. Then Tf (r, a) =

Tf (r,∞) +O(1) as r →∞ for any a ∈ C (the constants implicit in O(1) do depend on a and on f ).

In summary, we started out wanting to know about nf (r, a), the number of times the value a is
taken by f inside rD. Following where the equations lead, we shifted our goal post to understand-
ing Nf (r, a). Examples show that Nf (r, a) can be wildly different for different values of a. The key
insight is Nevanlinna’s introduction of the proximity function mf , which restores balance by cap-
turing whatever goes missing in Nf as a varies. In other words, their sum, Tf is a “conserved
quantity” (changes little as a varies).

Example 3. Let f be a polynomial of degree d. Then for large r, we have |f(z)| = crd+O(rd−1) and
hence mf (r,∞) ≈ d log r, Nf (r,∞) = 0. But for any finite value of a, we have Nf (r, a) ≈ d log r
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(once all the roots of f − a are inside the disk, their contributions keep growing like log r) while
mf (r, a) = 0 (since |f − a| > 1 everywhere on rT for large r). Thus, we see that as a varies over C,
both mf and Nf are individually conserved, while as a becomes∞, their contributions switch!

Example 4. Let f(z) = ez . If a = 0 or a = ∞, then Nf (r, a) = 0 while mf (r, 0) = 1
2π

∫ π/2
−π/2 r cos tdt

and mf (r,∞) = 1
2π

∫ 3π/2
π/2 r cos t dt are both equal to r

π . Overall Tf (r, 0) = Tf (r,∞) = r
π . Both 0 and

∞ are special as they are not in the range of f .
Now suppose a = 1. Then f − 1 has simple zeros at 2πin, n ∈ Z. Hence

Nf (r, 1) =

br/2πc∑
n=−br/2πc

log
r

2πn

=
r

π
− log r +O(1)

by Stirlings’ formula (exercise!). To calculate mf (r, 1), we must find z ∈ rT for which |ez − 1| < 1.
This happens only in arcs near ±ir (since |eir| = 1). Need to complete and get mf (r, 1) ≈ log r.

3. THE SPHERE AS C ∪ {∞}

The stereographic projection is the correspondence between C∞ := C ∪ {∞} and S2 (here re-
garded as the sphere of radius 1

2 centered at (0, 0, 1
2) in R2) given by

z = x+ iy 7→ ẑ =

(
x

x2 + y2 + 1
,

y

x2 + y2 + 1
,

x2 + y2

x2 + y2 + 1

)
and ∞ 7→ (0, 0, 1).

Its inverse is given by

(u, v, w) 7→ u+ iv

1− w
.

By the chordal distance on the sphere, we mean the Euclidean distance in R3. We shall write
d(z, w) = ‖ẑ − ŵ‖R3 for z, w ∈ C∞.

Exercise 1. Show that d(z, w) = |z−w|√
1+|z|2

√
1+|w|2

. By continuity, the right hand side is interpreted

as 1√
1+|z|2

if w =∞ and z 6=∞.

Exercise 2. Show that rotations of the sphere correspond to linear transformations z 7→ az+b
−bz+a on

C∞, where a, b ∈ C with |a|2 + |b|2 = 1.

Exercise 3. Show that the uniform measure on S2 (normalized to have total mass 1) corresponds
to the measure dµ(a) = dm(a)

π(1+|a|2)2
on C∞ where dm(a) is the Lebesgue measure on C (omitting a

point is irrelevant when considering absolutely continuous measures).

The following lemma will be useful. Let µ denote the Cauchy-like measure in the exercise
above.

Lemma 4.
∫
C log |w − a|dµ(a) = 1

2 log(1 + |w|2).
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It is possible to prove this in a pedestrian way by integrating in polar co-ordinates and using
the formula for

∫
rT log | · −a|. Here is a proof avoiding calculations.

Proof. We claim that for all w ∈ C,∫
C

log

[
|w − a|√

1 + |w|2
√

1 + |a|2

]
dµ(a) =

∫
C

log
1√

1 + |a|2
dµ(a).(1)

The integrand is the logarithm of the chordal distance, and the measure is the uniform measure
on S2, both invariant under rotations of the sphere. Hence the integral on the left has the same
value at ϕ(w) as at w for any conformal automorphism ϕ of S2, which implies that the left hand
side of (1) is independent of w. Now let w → ∞ and see that the integrand becomes log 1√

1+|a|2
,

giving the right hand side of (1).
Now, the left hand side of (1) is∫

C
log |w − a|dµ(a)− 1

2
log(1 + |w|2)

∫
C
dµ(a) +

∫
C

1√
1 + |a|2

dµ(a).

The last term is the same as right hand side, hence the first two terms must cancel each other. �

Remark 5. The mathematically correct analogue of Electrostatic potential in two dimensions, in-
duced by a unit charge at a location w is log | · −w|. Its similarity to the inverse distance potential
1/‖ · −w‖ in three dimensions (both in gravitation and electrostatics, up to a question of sign) is
that the Laplacian of the potential is (a multiple) of δw (interpreted appropriately in distributional
sense). In view of this, if we think of a measure µ as a charge distribution, then the potential in-
duced by it is w 7→

∫
log |z − w|dµ(z). This is called the Riesz potential of the measure µ and the

above lemma computes the Riesz potential of a particular measure. Another example where exact
computation can be done is the uniform distribution on the circle rT, whose potential is log(|z|∨r),
a fact we have used for instance in the proof of Jensen’s formula. Riesz potential is a fundamental
object in potential theory.

4. AN EXACT CONSERVATION FORMULA

We now present an observation of Ahlfors and Shimizu that one can modify the proximity
function so as to get an exact conservation of its sum with the Nevanlinna counting function. The
modification is quite geometric in flavour.

Let d(z, w) = |z−w|√
1+|z|2

√
1+|w|2

denote the chordal distance on C∞ got by identifying it with S2

via stereographic projection. We define the modified proximity function

m̂f (r, a) =

∫
rT

log
1

d(f(·), a)
.

The chordal distance is always between 0 and 1, hence there is no need to write log+ here, and m̂
is necessarily positive. By the lemma, we know that log 1

d(w,∞) =
∫
C log |w−a|dµ(a). Thus we may
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write

m̂f (r,∞) =

∫ 2π

0

[∫
C

log |f(reiθ)− a|dµ(a)

]
dθ

2π

=

∫
C

[∫
rT

log |f(reiθ)− a| dθ
2π

]
dµ(a) (interchange justified?).

The inner integral is equal to log |f(0)− a| −Nf (r,∞) +Nf (r, a) by Jensen’s formula. Integrating
over a (w.r.t. µ) gives

m̂f (r, a) =

∫
C

log |f(0)− a|dµ(a)−Nf (r,∞) +

∫
C
Nf (r, a)dµ(a)

=
1

2
log(1 + |f(0)|2)−Nf (r,∞) +

∫
C
Nf (r, a)dµ(a)

where we used the lemma again to compute the first term. The first term can be written as
m̂f (0,∞). The third term is a global average of the Nevanlinna counting function with respect
to µ and hence depends only on r. We denote it by T̂f (r) and call it the modified Nevanlinna
characteristic. Then rearranging terms we have

m̂f (r,∞) +Nf (r,∞) = T̂f (r) + m̂f (0,∞).

Now take any a ∈ C and fix ϕ, a conformal automorphism of S2 that maps a to ∞. Then if
g := ϕ ◦ f , clearly mg(r,∞) = mf (r, a) and Ng(r,∞) = Ng(r, a) and T̂g(r) = T̂f (r). Consequently,
applying the above formula to g, we arrive at

m̂f (r, a) +Nf (r, a) = T̂f (r) + m̂f (0, a)

In other words, [m̂f (r, a)− m̂f (0, a)]+Nf (r, a) = T̂f (r), a quantity that is independent of a. This is
an exact conservation law in contrast to mf (r, a) +Nf (r, a), which was only conserved up to some
additive bounded error.

5. SECOND FUNDAMENTAL THEOREM OF NEVANLINNA

Let dν(z) = ρ(z)dµ(z) be any probability measure on C∪{∞}with density ρ with respect to the
uniform measure on S2. Set λ(r) :=

∫
rT

|f ′(·)|2
(1+|f(·)|2)2

ρ(·).

Lower bound for λ: By Jensen’s inequality for convex functions,

log λ(r) ≥
∫
rT

log

[
|f ′(·)|2

(1 + |f(·)|2)2
ρ(·)
]

= 2

∫
rT

log |f ′| − 4

∫
rT

log
√

1 + |f |2 +

∫
rT

log ρ.

By the Poisson-Jensen formula, the first integral is log |f ′(0)| + Nf ′(r, 0) − Nf ′(r,∞) while the
second integral is equal to m̂f (r,∞), which we write as T̂f (r)−Nf (r,∞). Therefore,

1

2
log λ(r) ≥ N1,f (r)− 2T̂f (r) +

1

2

∫ 2π

0
log ρ(f(reiθ))

dθ

2π
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where N1,f (r) = Nf ′(r, 0) + 2Nf (r,∞)−Nf ′(r,∞). We claim that N1,f (r) ≥ 0, which implies that

1

2
log λ(r) ≥ −2T̂f (r) +

1

2

∫ 2π

0
log ρ(f(reiθ))

dθ

2π
.(2)

The non-negativity of N1,f is best seen from the fact that it is a “counting function”. Consider the
critical points of f and let n1,f (r) denote the number of critical points of f in rD (counted with
multiplicty, as always). Critical points mean zeros of the derivative, but here we should be careful
that there can be critical points at the poles of f too, as we shall explain below. We wish to show
that n1,f (r) = nf ′(r, 0) + 2nf (r,∞)− nf ′(r,∞).

To see this, observe that if f behaves like zp near 0 for some p ≥ 1, then f ′ behaves like zp−1 near
zero, hence the order of the critical point is p− 1. But that is exactly the contribution of the origin
to nf ′(0,∞) (while its contribution to nf (r,∞) and nf ′(r,∞) is nil). If f behaves like z−p for some
p ≥ 1, we make a change of co-ordinates g(z) = 1/f(z) to see that g(z) looks like zp near 0, hence
we have a critical point of order p−1, which can also be written as 2p−(p+1). Here p is the order of
the pole of f at 0 and p+1 is the order of the pole of f ′ at 0 (while nf (r, 0) gets no contribution from
the origin). Taking the two cases together, we see that n1,f (r) = nf ′(r, 0) + 2nf (r,∞) − nf ′(r,∞).
In short, n1,f (r) ≥ 0, as it counts something. Multiply by 1/r and integrate (or better, take care of
the possibility that the origin is also a critical point) to deduce that N1,f (r) =

∫ r
0

1
sn1,f (s)ds is also

non-negative.

Upper bound for λ: In the case when ρ = 1, we have seen that∫ s

0
λ(u)udu =

1

2

∫
sD

|f ′(z)|2

π(1 + |f(z)|2)2
dm(z) =

1

2

∫
C
nf (s, a)dµ(a)

whence
∫ r

0
1
s

∫ s
0 λ(u)udu = 1

2

∫
CNf (s, a)dµ(a) which is just T̂f (s). This motivates us to consider

the same quantity for general ρ. Let G(r) =
∫ r

0
1
s

[∫ s
0 λ(u)udu

]
ds. Then,

G(r) =

∫ r

0

1

s

∫
sD
nf (s, a)ρ(a) dµ(a)

=

∫
rD
Nf (r, a)ρ(a) dµ(a).

Since Nf (r, a) ≤ T̂f (r) and ρ(a)dµ(a) has total mass 1, we see that G(r) ≤ T̂f (r) for all r.
We must go from the bound on G to a bound on λ. It is in general not possible, since the

derivative can be arbitrarily large on a very short interval without affecting the function much.
But that is what we shall show, that the derivative can bounded using the function, except on a
small set.

Lemma 6. If g : R+ 7→ R+ is an increasing function such that g(x) → ∞ as x → ∞, then the set
E = {x ∈ R+ : g′(x) > g(x)(log g(x))2} has finite Lebesgue measure.
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For any increasing function ϕ : R+ 7→ R+ such that 1
ϕ(t)dt is integrable near infinity, the proof

below show that {x : g′(x) > ϕ(g(x))} has finite Lebesgue measure. We shall only use the case
ϕ(t) = t(log t)2.

Proof. By the well-known idea of Chebyshev, we write

m(E) ≤
∫
E

g′(x)

g(x)(log g(x))2
dx ≤

∫ ∞
0

g′(x)

g(x)(log g(x))2
dx =

∫ ∞
g(0)

1

t(log t)2
dt

which is finite (no need to worry about the case g(0) = 0, since we can omit a bounded interval
and apply the above reasoning on [a,∞) where g(a) > 0). Therefore m(E) is finite. �

Applying the Lemma to G, we see that the set E = {r : G′(r) ≥ T̂f (r)(log T̂f (r))2} has finite
Lebesgue measure. But G′(r) = 1

r

∫ r
0 λ(u)udu. Apply the Lemma again, this time to rG′(r) (which

is clearly increasing in r) to see that F = {r : rλ(r) ≥ rG′(r)(log(rG′(r)))2} has finite Lebesgue
measure. Clearly, for all r 6∈ E ∪ F , we have

λ(r) ≤ T̂f (r)(log T̂f (r))2(log r + log T̂f (r) + 2 log log T̂f (r))2

In summary, λ(r) ≤ 10T̂f (r)(log r + log T̂f (r))3 outside a set of r of finite Lebesgue measure.

A specific choice of ρ: Putting the upper and lower bounds on λ(r), we see that

−2T̂f (r) +
1

2

∫ 2π

0
log ρ(f(reiθ))

dθ

2π
≤ C(log T̂f (r) + log r) for r 6∈ E′(3)

where E′ has finite Lebesgue measure. Now we make a specific choice of ρ. The goal is to get a
control on

∑q
k=1mf (r, ak) where a1, . . . , aq are fixed distinct points in C ∪ {∞}.

Apparently the first to do this was F. Nevanlinna (not R. Nevanlinna whose theory we are
discussing but his brother!) and his idea was to take ρ to be the (density of) hyperbolic measure
on C \ {a1, . . . , aq}. What this means is that ρ must satisfy (here ∆ is the Laplacian)

∆ρ(z) = −ρ(z) or is it ∆

[
ρ(z)

(1 + |z|2)2

]
= − ρ(z)

(1 + |z|2)2
??

for z ∈ C \ {a1, . . . , aq}. However, the solution is not given by an explicit formula, and one
must approach it indirectly. Ahlfors simplified the approach by using an explicit density that is
explicit and easy to analyse, but retains the essential features of the Hyperbolic measure, mainly
its behaviour near the points a1, . . . , aq (it is not necessary here to know that it has these properties,
the proof is self-contained).

Fix β > 0 and let ρ(z) = Cβ
q∏

k=1

1
d(z,ak)β

, where the constant Cβ is chosen so that
∫
ρdµ = 1.

To make this normalization possible, we assume that β < 2 (note that 1
|z|β is integrable in a disk

around the origin in C if and only if β < 2). Then∫ 2π

0
log ρ(f(reiθ))

dθ

2π
= β

n∑
k=1

m̂f (r, ak) + logCβ.
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Plugging this into (3), and rearranging, we arrive at
q∑

k=1

m̂f (r, ak) ≤
4

β
T̂f (r) +O(log T̂f (r) + log r)(4)

except for a set of finite measure of r. Since β can be taken arbitrarily close to 2, we deduce that
q∑

k=1

m̂f (r, ak) ≤ 2T̂f (r)(1 + o(1)) for r 6∈ E′.(5)

The o(1) term is unspecified here. If one is more careful, one can get the error term as before. We
state this as a theorem.

Theorem 7 (Second fundamental theorem). Let f be a meromorphic function on C and let a1, . . . , aq be
distinct points in C∪{∞}. Then,

∑q
k=1 m̂f (r, ak) ≤ 2T̂f (r)+Sf (r) where Sf (r) = O(log T̂f (r)+log r)

for r outside a subset of finite Lebesgue measure.

For the applications below, our less precise statement (5) is sufficient. But first let us remark
how the more precise form can be obtained. If we were allowed to set β = 2, then (4) would
immediately give the second fundamental theorem. We cannot set β = 2 because ρ would then
be not integrable. However, we can introduce logarithmic corrections to make it integrable. More
precisely, set

ρ(z) = C

q∏
k=1

1

d(z, ak)2 (log d(z, ak))2
.

The log d(z, ak) terms ensure integrability, but are mild enough that their contributions to the term∫ 2π
0 log ρ(f(reiθ))dθ can be absorbed into the error terms. We do not give these details here.

6. PICARD’S THEOREM

Let f be a meromorphic function whose range misses three points a1, . . . , aq in C ∪ {∞}. Then
Nf (r, ak) = 0 for all r > 0 and k ≤ q. Therefore, m̂f (r, ak) = T̂f (r). But then the second fundamen-
tal theorem forces that qT̂f (r) ≤ 2T̂f (r)(1 + o(1)) (except for a finite Lebesgue measure set of r).
Since T̂f (r)→∞ as r →∞, this forces q ≤ 2. In particular, the range of an entire function (which
already misses∞) can miss at most one point in the complex plane. This is Picard’s theorem!

More generally, define the defect of a point a as δf (a) := lim inf
r→∞

m̂f (r,ak)

T̂f (r,ak)
. Then for any meromor-

phic function ∑
a∈C∞

δf (a) ≤ 2.

This means that for most values of a, we must have that Nf (r, a) is almost the whole of T̂f (r).
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CHAPTER 9

Discrete harmonic functions

Bounded and positive harmonic functions on Zd and other graphs. Buhovsky-Sodin-Logunov-
Malinnikova result.
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