Homework 3 (due 9/Sep/2013)

Try all the exercises. Submit only those marked with an asterisk (*).

- 1. (*) Let $A_1, A_2, A_3, ...$ be events in a probability space. Write the following events in terms of $A_1, A_2, ...$ using the usual set operations (union, intersection, complement).
 - (1) An infinite number of the events A_i occur.
 - (2) All except finitely many of the events A_i occur.
 - (3) Exactly k of the events A_i occur.
- **2.** (Feller, I.8.1) Let A_1, \ldots, A_n be events in a probability space (Ω, p) and let $0 \le m \le n$. Let B_m be the event that at least m of the events A_1, \ldots, A_n occur. Mathematically,

$$B_m = \bigcup_{1 \le i_1 < i_2 < \dots < i_m \le n} (A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_m}).$$

Show that

$$\mathbf{P}(B_m) = S_m - \binom{m}{1} S_{m+1} + \binom{m+1}{2} S_{m+2} - \binom{m+2}{3} S_{m+3} + \dots$$

where
$$S_k = \sum_{1 \le i_1 < i_2 < ... < i_k \le n} \mathbf{P}(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}).$$

- **3.** Recall the problem of matching two shuffled decks of cards, but with n cards in each deck, so that $\Omega_n = S_n \times S_n$ and $p_{(\pi,\sigma)} = \frac{1}{(n!)^2}$ for each $(\pi,\sigma) \in \Omega$. Let A_m be the event that there are exactly m matches between the two decks¹.
 - (1) For fixed $m \ge 0$, show that $\mathbf{P}(A_m) \to e^{-1} \frac{1}{m!}$ as $n \to \infty$.
 - (2) Assume that the approximations above are valid for n = 52 and $m \le 10$. Find the probability that there are at least 10 matches.

[**Remark:** You may use the result of the previous problem to solve this one].

- **4.** Place r_n distinguishable balls in n distinguishable urns. Let A_n be the event that at least one urn is empty².
 - (1) If $r_n = n^2$, show that $\mathbf{P}(A_n) \to 0$ as $n \to \infty$.
 - (2) If $r_n = Cn$ for some fixed constant C, show that $\mathbf{P}(A_n) \to 1$ as $n \to \infty$.
 - (3) Can you find an increasing function $f(\cdot)$ such that if $r_n = f(n)$, then $\mathbf{P}(A_n)$ does not converge to 0 or 1? [**Hint:** First try $r_n = n^{\alpha}$ for some α , not necessarily an integer]³.
- **5.** (*) (submit first two parts only). A box contains N coupons labelled 1, 2, ..., N. Draw m_N coupons at random, with replacement, from the box. Let A_N be the event that every coupon from the box has appeared at least once in the sample.
 - (1) If $m_N = N^2$, show that $\mathbf{P}(A_N) \to 1$ as $N \to \infty$.
 - (2) If $m_N = CN$ for some fixed constant C, show that $\mathbf{P}(A_N) \to 0$ as $N \to \infty$

¹Strictly speaking, we should write $A_{n,m}$, since the $A_{n,m} \subseteq \Omega_n$ but for ease of notation we omit the subscript n. Similarly, it would be appropriate to write p_n and \mathbf{P}_n for the probabilities, but again, we simplify the notation when there is no risk of confusion.

²Similar to the previous comment, here it would be appropriate to write $P_n(A_n)$ as the probability spaces are changing, but we keep the notation simple and simply write $P(A_n)$.

³The third parts of this question and the next may be challenging. Even if you cannot solve them, try to understand what the problem is asking for.

- (3) (Do not submit this part!). Can you find an increasing function $f(\cdot)$ such that if $m_N = f(N)$, then $P(A_N)$ does not converge to 0 or 1? [**Hint:** See if you can relate this problem to the previous one].
- **6.** (*) A random experiment is described and a random variable observed. In each case, write the probability space, the random variable and the pmf of the random variable.
 - (1) Two fair dice are thrown. The sum of the two top faces is noted.
 - (2) Deal thirteen cards from a shuffled deck and count (a) the number of red cards (i.e., diamonds or hearts), (b) the number of kings.
- 7. (*) Find $\mathbf{E}[X]$ and $\mathbf{E}[X^2]$ for the following random variables.
 - (1) $X \sim \text{Geo}(p)$.
 - (2) $X \sim \text{Hypergeo}(N_1, N_2, m)$.
- **8.** Let *X* be a non-negative integer-valued random variable with CDF $F(\cdot)$. Show that $\mathbf{E}[X] = \sum_{k=0}^{\infty} (1 F(k))$.
- **9.** A coin has probability p of falling head. Fix an integer $m \ge 1$. Toss the coin till the mth head occurs. Let X be the number of tosses required.
 - (1) Show that X has pmf

$$f(k) = {k-1 \choose m-1} p^m (1-p)^{k-m}, \quad k = m, m+1, m+2, \dots$$

(2) Find $\mathbf{E}[X]$ and $\mathbf{E}[X^2]$.

[Note: When m = 1, you should get the Geometric distribution with parameter p. We say that X has *negative-binomial distribution*. Some books define Y := X - m (the number of tails till you get m heads) to be a negative binomial random variable. Then, Y takes values $0, 1, 2, \ldots$]