

PROBABILITY AND STATISTICS - HOMEWORK 2

DUE DATE: 30/AUG/2016 (IN TUTORIALS)

Homework problems are marked blue (but trying all problems is strongly recommended).

1. Let A_1, \dots, A_n be events in a common probability space. Let B be the event that *at least two* of the A_i s occur. Prove that

$$\mathbf{P}(B) = S_2 - 2S_3 + 3S_4 - \dots + (-1)^m(m-1)S_m$$

where $S_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} \mathbf{P}\{A_{i_1} \cap \dots \cap A_{i_k}\}$ for $1 \leq k \leq n$.

Not for submission: More generally, you may show that the probability that at least ℓ of the A_i s occur is equal to

$$(1) \quad S_\ell - \binom{\ell}{1}S_{\ell+1} + \binom{\ell+1}{2}S_{\ell+2} - \binom{\ell+2}{3}S_{\ell+3} + \dots$$

2. Continuing with the notation of the previous problem, assume the formula given in (1) holds. If C is the event that *exactly* ℓ of the events A_i s occur, then show that

$$(2) \quad \mathbf{P}(C) = S_\ell - \binom{\ell+1}{\ell}S_{\ell+1} + \binom{\ell+2}{\ell}S_{\ell+2} - \dots + (-1)^{n-\ell}S_n.$$

[**Hint:** If you want to prove this directly, without using (1), that is also okay.]

3. If r distinguishable balls are placed at random into m labelled bins, write an expression for the probability that each bin contains at least two balls.

4. A deck of cards is dealt to four players (13 cards each). Find the probability that at least one of the players has two or more *aces*.

5. Let p be the probability that in a gathering of 2500 people, there is some day of the year that is not the birthday of anyone in the gathering. Make reasonable assumptions and argue that $0.3 \leq p \leq 0.4$.

6. Consider the problem of a psychic guessing the order of a deck of shuffled cards. Assume complete randomness of the guesses. Use the formula in (2) to derive an expression for the probability that the number of guesses is exactly ℓ , for $0 \leq \ell \leq 52$. Use meaningful approximation to these probabilities and give numerical values (to 3 decimal places) of the probabilities for $\ell = 0, 1, 2, \dots, 6$.

7. Place r_m distinguishable balls in m distinguishable bins. Let A_m be the event that at least one bin is empty¹.

- (1) If $r_n = m^2$, show that $\mathbf{P}(A_m) \rightarrow 0$ as $m \rightarrow \infty$.
- (2) If $r_m = Cm$ for some fixed constant C , show that $\mathbf{P}(A_m) \rightarrow 1$ as $n \rightarrow \infty$.
- (3) Can you find an increasing function $f(\cdot)$ such that if $r_m = f(m)$, then $\mathbf{P}(A_m)$ does not converge to 0 or 1? [Hint: First try $r_m = m^\alpha$ for some α , not necessarily an integer].

¹Here it would be appropriate to write $\mathbf{P}_m(A_n)$ as the probability spaces are changing, but we keep the notation simple and simply write $\mathbf{P}(A_n)$.