

PROBABILITY AND STATISTICS - HOMEWORK 6

DUE DATE: 26/OCT/2016 (IN TUTORIALS)

Homework problems are marked blue (but trying all problems is strongly recommended).

1. Find the expectation and variance for a random variable with the following distributions.
(a) $\text{Bin}(n, p)$, (b) $\text{Geo}(p)$, (c) $\text{Pois}(\lambda)$, (d) $\text{Hypergeo}(N_1, N_2, m)$. [Note: Although the computations are easy, the answers you get are worth remembering as they occur in various situations.]
2. Find the expectation and variance for a random variable with the following distributions.
(a) $N(\mu, \sigma^2)$, (b) $\text{Gamma}(\nu, \lambda)$, (c) $\text{Beta}(p, q)$. [Note: Although the computations are easy, the answers you get are worth remembering as they occur in various situations.]
3. Place r balls in n bins uniformly at random. Let X_k be the number of balls in the k^{th} bin. Find $\mathbf{E}[X_k]$, $\text{Var}(X_k)$ and $\text{Cov}(X_k, X_\ell)$ for $1 \leq k, \ell \leq n$. [Hint: First do the case when $r = 1$. Then think how to use that to get the general case].
4. Let X be a non-negative random variable with CDF $F(t)$.
 - (1) Show that $\mathbf{E}[X] = \int_0^\infty (1 - F(t))dt$ and more generally $\mathbf{E}[X^p] = \int_0^\infty pt^{p-1}(1 - F(t))dt$. [Hint: In showing this, you may assume that X has a density if you like, but it is not necessary for the above formulas to hold true]
 - (2) If X is non-negative integer valued, then $\mathbf{E}[X] = \sum_{k=1}^\infty \mathbf{P}\{X \geq k\}$.
5. A deck consists of cards labelled $1, 2, \dots, N$. The deck is shuffled well. Let X be the label on the first card and let Y be the label on the second card. Find the means and variances of X and Y and the covariance of X and Y .
6. A box contains N coupons labelled $1, 2, \dots, N$. A sample of size m is drawn from the population and the sample average \bar{X}_m is computed. Find the mean and standard deviation of \bar{X}_m in both the following cases.
 - (1) The m coupons are drawn with replacement.
 - (2) The m coupons are drawn without replacement (in this case, assume $m \leq N$).

Date: November 1, 2016.

7. Let $X \sim N(0, 1)$. Although it is not possible to get an exact expression for the CDF of X , show that for any $t > 0$,

$$\mathbf{P}\{X \geq t\} \leq \frac{1}{\sqrt{2\pi}} \frac{e^{-t^2/2}}{t}$$

which shows that the tail of the CDF decays rapidly. [Hint: Use the idea used in the proof of Markov's inequality]

The following problem is for the more mathematically minded students. You may safely skip this.

8. *The coupon collector problem.* A box contains n coupons labelled $1, 2, \dots, n$. Coupons are drawn at random from the box, repeatedly and with replacement. Let T_n be the number of draws needed till each of the coupons has appeared at least once.

- (1) Show that $\mathbf{E}[T_n] \sim n \log n$ (this just means $\frac{1}{n \log n} \mathbf{E}[T_n] \rightarrow 1$).
- (2) Show that $\text{Var}(T_n) \leq 2n^2$.
- (3) Show that $\mathbf{P}\left(\left|\frac{T_n}{n \log n} - 1\right| > \delta\right) \rightarrow 0$ for any $\delta > 0$.

[Hint: Consider the number of draws needed to get the first new coupon, the further number of draws needed to get the next coupon and so on].