

PROBABILITY AND STATISTICS - HOMEWORK 8

DUE DATE: 25/NOV/2016 (IN TUTORIALS)

Homework problems are marked blue (but trying all problems is strongly recommended).

1. A large box contains 10000 marbles, of which some are red and the others are blue. To estimate the unknown proportion p of red balls, a sample of 100 marbles is drawn at random (with replacement) and it is observed that the number of red balls in the sample is 30. Construct a $1 - \alpha$ confidence interval for p when (1) $\alpha = 0.01$, (2) $\alpha = 0.05$, (3) $\alpha = 0.10$. Repeat the same exercise when the number of red marbles in the sample is 40.
2. Let X_1, \dots, X_n be i.i.d. $N(\mu, \sigma^2)$, where μ, σ^2 are both unknown. Summary statistics of the data obtained in an experiment are given as follows:
$$n = 20, \quad \sum_{i=1}^n X_i = 60, \quad \sum_{i=1}^n X_i^2 = 240.$$
 - (1) Find a two-sided confidence interval for μ with confidence level 0.90.
 - (2) Find an upper bound for σ^2 with confidence level 0.90.
3. Let X_1, \dots, X_n be i.i.d. $\text{Exp}(\lambda)$. Let $\theta = \log \lambda$. Let $\gamma = \int_0^\infty \log t e^{-t} dt$.
 - (1) Show that $\hat{\theta} = \frac{1}{n} \sum_{i=1}^n (\gamma - \log X_i)$ is an unbiased estimate for θ .
 - (2) Compute the m.s.e of $\hat{\theta}$.
 - (3) Explain how you would give an $(1 - \alpha)$ -confidence interval for λ , based on $\hat{\theta}$. [Hint: If $X \sim \text{Exp}(\lambda)$, the distribution of $\log X + \log \lambda$ does not depend on λ .]

4. In each of the following cases, find the bias and m.s.e of the given estimate. The samples are X_1, \dots, X_n , i.i.d. from the given distribution.

- (1) Distribution is $N(\mu, \sigma^2)$, both parameters unknown. The estimate (for μ) if $\hat{\mu} = \bar{X}_n$.
- (2) Distribution is $\text{Ber}(p)$. The estimate for p is $\hat{p} = \bar{X}_n$.
- (3) Distribution is $\text{Pois}(\lambda)$. The estimate for λ is $\hat{\lambda} = \bar{X}_n$.

5. In the above problem, describe how you would construct a $1 - \alpha$ confidence interval for the unknown parameter in terms of \bar{X}_n . You may assume that n is large enough that central limit approximation is valid.

6. In http://math.iisc.ernet.in/~manju/UGstatprob/newcomb_lightspeed.txt you will see the data from Simon Newcomb's experiment on the time taken (in nanoseconds) by light to travel 7442 meters at sea level.

- (1) Compute the sample mean and sample standard deviation.
- (2) Assuming normal distribution for the data, compute a confidence interval for the time taken. What confidence interval does it give for the speed of light (in meters per second)?

[**Note:** You are being asked to assume that the measured times have a normal distribution. It is different from assuming that the measured speeds (i.e., reciprocals of times essentially) are normally distributed.]

7. A box contains N marbles of which m are red in colour and $N - m$ are blue. We are interested in estimating the proportion $p = m/N$ of red balls. A sample of size k is drawn from the box and the number of red balls in the sample if observed, call it X . Then, X/k is a reasonable estimate for p . What are its bias and m.s.e if

- (1) the sampling is done with replacement?
- (2) the sampling is done without replacement?

Before you do the calculations, can you guess in which case would the mean squared error be smaller?