

## **MID-TERM EXAMINATION (UM 201)**

03/OCTOBER/2018, 2:00-4:30 PM

### **INSTRUCTIONS TO STUDENTS**

- (1) Students are required to sit in their assigned seats only.
- (2) Mobile phones/any form of communication devices are strictly prohibited in the exam rooms. It is best to leave the mobile phone in the hostel itself before coming for the exam.
- (3) Mere possession of a mobile phone/communication device inside the examination hall or during the exam will be treated as a case of cheating (absolutely no excuses). In such cases, suitable action will be taken.
- (4) No form of unfair means (including talking to another student, copying from another student's paper, copying from any books, notes, cheat sheets, etc., use of mobile phone/communication devices) during the examination will be tolerated. A student found resorting to any form of unfair means during the examination, will be given F grade in that course as a minimum punishment. No appeals will be accepted.
- (5) Abetting a student to resort to any form of unfair means will also be considered as an unfair practice. In this instance as well, the student abetting another student will be given F grade in that course. No appeals will be accepted. In case the student who is abetting another student is from a different class/batch, suitable action will be taken on such a student.
- (6) Before answering the questions, the student must write his/her name and student registration number on the answer script.
- (7) When an additional sheet is taken by the student, the student must write his/her name and serial number, sign the additional sheet and must get it countersigned by the invigilator.
- (8) **Calculators are strictly prohibited.**
- (9) If a student is found with a mobile phone/communication device while taking a break to use the washroom when the exam is in progress, it will be treated as a case of cheating. Irrespective of whether the student is using the mobile phone/communication device or not, the same penalty as in item 4 will be applicable.

### **EXAM-SPECIFIC INSTRUCTIONS**

- **Start the answer to each of the five main questions on a new page.**
- **Answer as many questions as you wish - the maximum you can score is 50.**
- **Justify your answers but write succinctly. Marks will be cut if you write nonsense in addition to the correct answer.**
- **Ask for clarification in a question only if there is ambiguity in the wording - not to confirm if your answers are correct or to ask for definitions of terms already defined in class.**

**Problem 1. (12 marks)** For each statement, state whether it is true or false and justify.

- (1) If  $A_1, \dots, A_5$  are events such that  $\frac{1}{20} \leq \mathbf{P}(A_i) \leq \frac{1}{10}$  for all  $i$ , then  $\frac{1}{20} \leq \mathbf{P}\{A_1 \cup \dots \cup A_5\} \leq \frac{1}{2}$ .
- (2) If  $B_1, B_2$  are disjoint events having positive probability, then  $\mathbf{P}(A \mid B_1) + \mathbf{P}(A \mid B_2) = \mathbf{P}(A \mid B_1 \cup B_2)$  for any event  $A$ .
- (3) Suppose  $A, B, C$  are (mutually) independent events and  $D = A \cup B$ . Then  $C$  and  $D$  are independent events.
- (4) If  $X \sim \text{Bin}(10, \frac{1}{2})$  and  $Y \sim \text{Bin}(11, \frac{1}{2})$ , then  $\mathbf{P}\{X \geq 5\} \leq \mathbf{P}\{Y \geq 5\}$ .

**Problem 2. (12 marks)** Give the final answer to the following questions and justify.

- (1) What is the median of the *Rayleigh density*  $xe^{-\frac{1}{2}x^2}$  (for  $x > 0$ )?
- (2) If 5 distinguishable balls are thrown into 4 labelled bins uniformly at random, what is the probability that there are exactly two empty bins?
- (3) if  $A, B, C$  are events with probabilities 0.9, 0.8, 0.7, respectively, what is the minimum possible value of the probability of  $A \cap B \cap C$ ?
- (4) A fair die is thrown and if the number  $k$  turns up, a fair coin is tossed  $k$  times. If the total number of heads is 4, what is the chance that the die turned up 6 in the first place?

**Problem 3. (10 marks)** Balls are thrown one after another (uniformly at random) into two bins. The experiment stops when there is no empty bin. Let  $X$  be the total number of balls thrown.

- (1) Find the pmf and CDF of  $X$ .
- (2) Find the mean (expectation) and all the medians of  $X$ .

**Problem 4. (10 marks)** A random number generator gives random numbers according to  $\text{Exp}(1)$  distribution. Explain as explicitly as possible how you would use it to generate random numbers from the following distributions.

- (1)  $\text{Geo}(1/2)$  distribution.
- (2) The *logistic distribution* having density  $\frac{e^x}{(1+e^x)^2}$  for all  $x \in \mathbb{R}$ .

**Problem 5. (10 marks)** For  $\lambda > 0$ , let  $X_\lambda$  be a  $\text{Pois}(\lambda)$  random variable. For  $n \geq 1$ , let  $Y_n$  be a  $\text{Gamma}(n, 1)$  random variable. Show that  $\mathbf{P}\{X_\lambda \geq n\} = \mathbf{P}\{Y_n \leq \lambda\}$ .