
PROBLEMS IN BASIC STATISTICS

MANJUNATH KRISHNAPUR

Note: These are problems I gave as homeworks in the many times I taught the first course in UG
probability and statistics at IISc. They are taken from various sources and there are also some that
I made up.

Problem 1. (*) Suppose X1, X2, . . . , Xn are i.i.d. Geo(p).

(1) Find the MLE (maximum likelihood estimate) for p. Is it unbiased?

(2) In the file http://math.iisc.ernet.in/˜manju/UGstatprob/geodata2 there are
four columns and 100 rows. The first column has samples form i.i.d Geo(0.8) distribution
(the second, third and fourth columns are from Geo(0.4),Geo(0.1) and Geo(0.05) distribu-
tions, respectively). In each of these four cases and using n = 25, 50, 100 (by taking the first
n rows only), compute the MLE for p.

Problem 2. (*) In http://math.iisc.ernet.in/˜manju/UGstatprob/heightweight2.

txt you will find data on heights (second column) and weights (third column) of 200 individuals.

(1) Find the sample means, standard deviations and correlation between height and weight.

(2) Assume that the heights are normally distributed with mean µ and variance σ2. Find the
MLE for µ, σ2.

(3) Do the same for the weight, assuming normal distribution again.

Problem 3. Suppose X1, . . . , Xn are i.i.d. from Pois(λ) distribution.

(1) Find the MOM (method of moments) estimate and MLE for λ.

(2) Find the bias and mean squared error of your estimates.

(3) A historically popular data set (collected by von Bortkiewicz): Towards the end of 1800s,
data was collected on casualties in the Prussian army by horse kicks. In 200 corps, the
number of cavalrymen who died by horse kicks in a year was observed (actually it was 20

corps, but over 10 years). The data is as follows.
No. of casualties 0 1 2 3 4 5 6

No. of corps with observed casualties 109 65 22 3 1 0 0
Assume that the no. of casualties in a given corps in a year has Poisson distribution and

that across different corps and years the data are independent. Estimate λ and find the
expected frequencies of deaths to the actual observed values.
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Problem 4. Let X1, . . . , Xn be i.i.d. Unif[a, b]. The problem is to estimate a, b.

(1) Let An = min{X1, . . . , Xn} and Bn = max{X1, . . . , Xn}. Show that (An, Bn) is MLE for
(a, b).

(2) Based on An and Bn, find unbiased estimates for a and b respectively.

Problem 5. Let X1, . . . , Xn be i.i.d. Beta[a, b]. The problem is to estimate a, b.

(1) Find MLE for (a, b).

(2) Find the m.s.e for your estimates.

Problem 6. (*) Let X1, . . . , Xn be i.i.d. samples from a parametric family of discrete distributions.
In each of the following cases, find the MLE for the unknown parameter(s).

(1) Xi are i.i.d. Bin(N, p) where N is known and p is unknown.

(2) Xi are i.i.d. Pois(λ) where λ is unknown.

(3) Xi are i.i.d. Geo(p) where p is unknown.

Problem 7. Let X1, . . . , Xn be i.i.d. samples from a parametric family of densities. In each of the
following cases, find the MLE for the unknown parameter(s).

(1) Xi are i.i.d. Gamma(ν, λ) where ν is known and λ is unknown.

(2) Xi are i.i.d. Unif[a, b] where a, b are unknown.

(3) Xi are i.i.d. N(µ, σ2) where µ, σ2 are unknown.

Problem 8. (1) Let X1, . . . , Xn be i.i.d. Unif([0, 1]). If Mn is a sample median, show that
P{|Mn − 1

2 | > δ} → 0 for any δ > 0, as n→∞.

(2) IfXi are i.i.d from some density f(x) (assume that the median is uniquely defined), deduce
that the sample median Mn gets close to the population median m in the same sense, i.e.,
P{|Mn −m| > δ} → 0 for any δ > 0, as n→∞.

(3) More generally, for any 0 < q < 1, show that the sample q quantile M (q)
n is close to the

population q-quantile in the same sense.
[Hint: In the first part, observe that Mn ≤ t if and only if more than half of the Xis are below t.

As for the second part, try to deduce it from the first instead of re-doing the proof all over again!]

Problem 9. Let X1, . . . , Xn be i.i.d. Exp(λ). Let θ = log λ. Let γ =
∫∞
0 log t e−t dt.

(1) Show that θ̂ = 1
n

∑n
i=1(γ − logXi) is an unbiased estimate for θ.

(2) Compute the m.s.e of θ̂.
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(3) Explain how you would give an (1 − α)-confidence interval for λ, based on θ̂. [Hint: If
X ∼ Exp(λ), the distribution of logX + log λ does not depend on λ.]

Problem 10. (*) In http://math.iisc.ernet.in/˜manju/UGstatprob/newcomb_lightspeed.
txt you will see the data from Simon Newcomb’s experiment on the time taken (in nanoseconds)
by light to travel 7442 meters at sea level.

(1) Compute the sample mean and sample standard deviation.

(2) Assuming normal distribution for the data, compute a confidence interval for the time
taken. What confidence interval does it give for the speed of light (in meters per second)?

(3) Repeat the same after dropping the smallest two measurements (declared ’outliers’).

Problem 11. This is the description of the data given in http://math.iisc.ernet.in/˜manju/
UGstatprob/horsekicks.txt. In each year from 1875 to 1894, the number of cavalrymen who
died due to horse-kicks in the Prussian army of the time was counted. The data was collected in
14 different army-units (of equal size), which is what is indicated in the 14 columns following the
year column.

Assume that the number of deaths per army-unit per year is a random variable having a
Poisson(λ) and that the number of deaths in different units or in different years are independent.

Estimate λ from the given data. Compute the expected frequencies of deaths per units per year
from your estimate (and compare with the actual figures).

Problem 12. In the file http://math.iisc.ernet.in/˜manju/UGstatprob/simulatednormaldata.
txt you will see data simulated on a computer from a normal distribution with unknown mean
and variance. The problem is to test the hypotheses H0 : µ = 2 versus H1 : µ 6= 0.

(1) Use only the first n data points for n = 20, 50, 100, 200, 400, 500, 800, 1000, and carry out the
test for each n at significance level 0.05. Report the p-values.

(2) Repeat the same tests but now assume that the variance is given to be 9.

Problem 13. Are real coins fair? Formulate this as a hypothesis testing problem and perform the
test at 0.01 level of significance using the following data. Report the p-value.

(1) In an experiment reported in http://www.stat.berkeley.edu/˜aldous/Real-World/
coin_tosses.html, a real coin was tossed 20000 times. The number of heads observed
was 10231.

(2) In another experiment reported on the same page, 10014 heads appeared in 20000 tosses.
Repeat the test with this data.
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Problem 14. In the file http://math.iisc.ernet.in/˜manju/UGstatprob/twomidtermgrades.
txt you see the scores obtained in two exams by your batch in the first and second midterms, re-
spectively. Test the hypothesis that the overall performance is worse in the second mid-term than
in the first.

Problem 15. In http://math.iisc.ernet.in/˜manju/UGstatprob/heightweight2.txt
you will find data on heights (second column) and weights (third column) of 200 individuals.

(1) Test the hypothesis that heights are normally distributed (this is the null hypothesis). Use
χ2-test with different choices of bins (i.e., do it with 10 bins and then with 15, etc. Each bin
should have at least 5 observations).

(2) Do the same for weights.

Problem 16. Benford’s law is the probability distribution with mass function given by f(k) =

log10(k + 1) − log10(k) for k = 1, 2, . . . , 9. It is observed that for various quantities that vary
over several orders of magnitude, the first digit follows Benford’s law. Here we give a few. In
each case, conduct a χ2-test at level 0.10, with the null hypothesis being that the distribution is
indeed Benford’s law. Compute the p-value in each case.

(1) Let F0, . . . , F999 be the first 1000 Fibonacci numbers. This is a (non-random!) sequence of
numbers defined by F0 = F1 = 1 and Fk = Fk−1 + Fk−2 for k ≥ 2. Although there is no
randomness, extract the first digits, and compare against Benford’s law by a χ2-test.

(2) Do the same for the sequence of factorials, 1, 2, 6, 24, . . . (go up to 100 or wherever your
computer stops to compute the first digit).

(3) In http://en.wikipedia.org/wiki/List_of_national_capitals_by_population
you will find the populations of the capitals of (almost) all countries in the world. For con-
venience, the list of populations is given in http://math.iisc.ernet.in/˜manju/

UGstatprob/population.txt. Again, compute the first digits and check the hypothe-
sis that Benford’s law applies. Report the p-value.

Quite challenging problems/theorems - optional!

We give two problems addressing two issues that we did not consider in class. One is that in many
examples (eg., i.i.d. Exp(λ) data), the sample mean is the UMVU (uniformly minimum variance
unbiased estimate). Second is that the maximum likelihood estimate is a reasonable choice, at least
in the sense that for large sample of data, the MLE is close to the actual value of the parameter
with high probability.
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Problem 17. Let fθ(x) is a collection of densities parameterized by a real number θ. Suppose
X1, X2, . . . be i.i.d. samples from fθ0 where θ0 is fixed (we pretend it is unknown and give esti-
mates for it). Let θ̂n be the MLE based on X1, . . . , Xn, i.e., θ̂n maximizes `n(θ) =

∑n
i=1 log fθ(Xi)

(we write `n for simplicity but note that it depends on X1, X2, . . . , Xn).

(1) Fix Define `∗(θ) = Eθ0 [log fθ(X1)]. Show that `∗(θ) < `∗(θ0) with equality if and only if
θ = θ0. (This last statement is true only if we assume that the densities fθ are distinct for
distinct values of θ, which is a very reasonable assumption!). [Hint: For any two densities
f and g, show that

∫
R

log
(
f(x)
g(x)

)
g(x)dx ≤ 0.]

(2) Show that 1
n`n(θ)

P→ `∗(θ) for all θ where the convergence is in the sense that P{| 1n`n(θ) −
`∗(θ)| ≥ δ} → 0 as n→∞, for every δ > 0.

(3) θ̂ maximizes 1
n`n(θ) and θ0 maximizes `∗(θ). Further the two functions 1

n`n(θ) and `∗(θ)

are close to each other. Convince yourself that under some conditions (but not always) this
implies that θ̂ and θ0 must be close to each other. [Note: Obviously this last part is vague.
The point is that one can impose various conditions on the densities fθ which ensure that
it works. It is enough to get the heuristic idea here.]

Problem 18. Let X1, . . . , Xn be i.i.d. Ber(p). We want to show that among all unbiased estimates
of p, the one with least variance (for any value of p) is X̄n. Let T : {0, 1}n → [0, 1] be any unbiased
estimate (i.e., if we see the data (X1, . . . , Xn), the guess for p would be T (X1, . . . , Xn)).

(1) Define S(x1, . . . , xn) = 1
n!

∑
π∈Sn

T (xπ1 , . . . , xπn), i.e., permute the arguments xis in all possi-

ble ways and average out the values of T obtained. Show that
(a) S(X1, . . . , Xn) is an unbiased estimate of p.

(b) S(X1, . . . , Xn) depends on X̄n only. That is, S(x1, . . . , xn) = S(y1, . . . , yn) if x̄ = ȳ.

(c) Var(S(X1, . . . , Xn)) ≤ Var(T (X1, . . . , Xn)).

(2) From the second part above, we may write S(X1, . . . , Xn) as g(X̄n) for some function g :

[0, 1] → [0, 1]. By the unbiasedness, Ep[g(X̄n)] = p for all p ∈ [0, 1]. Show that this implies
that g(X̄n) = X̄n). [Hint: Recall that X1 + . . .+Xn has binomial distribution.]

(3) Conclude that X̄n is the UNMVU for this problem.

[Remark: The proof that X̄n (or other specific estimates) are UMVU in other problems is somewhat
more difficult, although the same as above once one understands conditional probability well.]

Problem 19. A large box contains 10000 marbles, of which some are red and the others are blue.
To estimate the unknown proportion p of red balls, a sample of 100 marbles is drawn at random
(with replacement) and it is observed that the number of red balls in the sample is 30. Construct
a 1 − α confidence interval for p when (1) α = 0.01, (2) α = 0.05, (3) α = 0.10 . Repeat the same
exercise when the number of red marbles in the sample is 40.
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Problem 20. Let X1, . . . , Xn be i.i.d. N(µ, σ2), where µ, σ2 are both unknown. Summary statistics
of the data obtained in an experiment are given as follows:

n = 20,

n∑
i=1

Xi = 60,

n∑
i=1

X2
i = 240.

(1) Find a two-sided confidence interval for µ with confidence level 0.90.

(2) Find an upper bound for σ2 with confidence level 0.90.

Problem 21. Let X1, . . . , Xn be i.i.d. Exp(λ). Let θ = log λ. Let γ =
∫∞
0 log t e−t dt.

(1) Show that θ̂ = 1
n

∑n
i=1(γ − logXi) is an unbiased estimate for θ.

(2) Compute the m.s.e of θ̂.

(3) Explain how you would give an (1 − α)-confidence interval for λ, based on θ̂. [Hint: If
X ∼ Exp(λ), the distribution of logX + log λ does not depend on λ.]

Problem 22. In each of the following cases, find the bias and m.s.e of the given estimate. The
samples are X1, . . . , Xn, i.i.d. from the given distribution.

(1) Distribution is N(µ, σ2), both parameters unknown. The estimate (for µ) if µ̂ = X̄n.

(2) Distribution is Ber(p). The estimate for p is p̂ = X̄n.

(3) Distribution is Pois(λ). The estimate for λ is λ̂ = X̄n.

Problem 23. In the above problem, describe how you would construct a 1−α confidence interval
for the unknown parameter in terms of X̄n. You may assume that n is large enough that central
limit approximation is valid.

Problem 24. In http://math.iisc.ernet.in/˜manju/UGstatprob/newcomb_lightspeed.
txt you will see the data from Simon Newcomb’s experiment on the time taken (in nanoseconds)
by light to travel 7442 meters at sea level.

(1) Compute the sample mean and sample standard deviation.

(2) Assuming normal distribution for the data, compute a confidence interval for the time
taken. What confidence interval does it give for the speed of light (in meters per second)?

[Note: You are being asked to assume that the measured times have a normal distribution. It is dif-
ferent from assuming that the measured speeds (i.e., reciprocals of times essentially) are normally
distributed.]
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Problem 25. A box contains N marbles of which m are red in colour and N −m are blue. We are
interested in estimating the proportion p = m/N of red balls. A sample of size k is drawn from
the box and the number of red balls in the sample if observed, call it X . Then, X/k is a reasonable
estimate for p. What are its bias and m.s.e if

(1) the sampling is done with replacement?

(2) the sampling is done without replacement?

Before you do the calculations, can you guess in which case would the mean squared error be
smaller?

Problem 26. In the file http://math.iisc.ernet.in/˜manju/UGstatprob/simulatednormaldata.
txt you will see data simulated on a computer from a normal distribution with unknown mean
and variance. The problem is to test the hypotheses H0 : µ = 2 versus H1 : µ 6= 0.

(1) Use only the first n data points for n = 20, 50, 100, 200, 400, 500, 800, 1000, and carry out the
test for each n at significance level 0.05. Report the p-values.

(2) Repeat the same tests but now assume that the variance is given to be 9.

Problem 27. Are real coins fair? Formulate this as a hypothesis testing problem and perform the
test at 0.01 level of significance using the following data. Report the p-value.

(1) In an experiment reported in http://www.stat.berkeley.edu/˜aldous/Real-World/
coin_tosses.html, a real coin was tossed 20000 times. The number of heads observed
was 10231.

(2) In another experiment reported on the same page, 10014 heads appeared in 20000 tosses.
Repeat the test with this data.

Problem 28. In the file http://math.iisc.ernet.in/˜manju/UGstatprob/twomidtermgrades.
txt you see the scores obtained in two exams by a class of students in their first and second
midterms in the UM201 course, respectively. Test the hypothesis that the overall performance is
worse in the second mid-term than in the first.

The following problem may be omitted. It is a two sample test for Bernoulli (which we did
not cover in class). But if interested, it is a problem where we have X1, . . . , Xn i.i..d Ber(p1) and
Y1, . . . , Ym i.i.d. Ber(p2) and we test H0 : p1 = p2 versus H1 : p1 < p2.

Problem 29. This gallup poll conducted in the USA has data on support for capital punishment
for a person convicted of murder. In 2013, 60% of the 1028 people sampled favoured capital pun-
ishment. In a similar survey conducted in 2007, 1010 people were sample of which 69% favoured
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capital punishment. Based on just these two surveys, would you agree that support for capital
punishment in that country has gone down?

Set up the question as an appropriate hypothesis testing problem, carry out the test at α = 0.01

level of significance, and report the p-value.
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