

UM 101 : Analysis and Linear Algebra I

August - December 2012

Indian Institute of Science

Exercises 1

13 August, 2012

1. Show that there exist infinitely many rational numbers between two distinct rational numbers.
2. Let A_i , $i = 1, 2, \dots$, be countable sets. Let $A = \bigcup_{i=1}^{\infty} A_i$. Show that A is countable. Deduce that \mathbb{Q} , the set of rational numbers, is countable.
3. Prove that every infinite set contains a countable set.
4. Give an example of a countable bounded subset A of \mathbb{R} whose supremum and infimum are both in A^c .
5. If A is a nonempty bounded subset of \mathbb{R} , and the infimum for A is equal to the supremum for A , what can you say about A ?
6. Let $\{x_n\}$ and $\{y_n\}$ be two convergent sequences. Show that:
 - (a) $\lim_{n \rightarrow \infty} (x_n + y_n) = \lim_{n \rightarrow \infty} x_n + \lim_{n \rightarrow \infty} y_n$;
 - (b) $\lim_{n \rightarrow \infty} (x_n - y_n) = \lim_{n \rightarrow \infty} x_n - \lim_{n \rightarrow \infty} y_n$;
 - (c) $\lim_{n \rightarrow \infty} x_n y_n = \lim_{n \rightarrow \infty} x_n \lim_{n \rightarrow \infty} y_n$.
 - (d) Suppose further that $\lim_{n \rightarrow \infty} y_n \neq 0$. Then show that

$$\lim_{n \rightarrow \infty} \frac{x_n}{y_n} = \frac{\lim_{n \rightarrow \infty} x_n}{\lim_{n \rightarrow \infty} y_n}.$$

- (e) Let c be a real number. Show that

$$\lim_{n \rightarrow \infty} (cx_n) = c \lim_{n \rightarrow \infty} x_n.$$

7. Find $N \in \mathbb{N}$ such that

$$\left| \frac{2n}{n+3} - 2 \right| < \frac{1}{5}, \quad n \geq N.$$

8. For each of the following sequences, prove that either the sequence has a limit or that the sequence does not have a limit.

- (a) $\left\{ \frac{n^2}{n+5} \right\}$.
- (b) $\left\{ \frac{3n}{n+7\sqrt{n}} \right\}$.
- (c) $\left\{ \frac{3n}{n+7n^2} \right\}$.

9. Show that if a sequence is convergent, then its limit is unique.
10. Let $\{x_n\}$ be a sequence of real numbers and

$$\lim_{m \rightarrow \infty} x_{2m} = l, \quad \lim_{m \rightarrow \infty} x_{2m-1} = l$$

for some real number l . Prove that $x_n \rightarrow l$ as $n \rightarrow \infty$.