

UM 101 : Analysis and Linear Algebra I

August - December 2012

Indian Institute of Science

Exercises 13

12 November, 2012

1. Find all real t such that the two vectors $(1+t, 1-t)$ and $(1-t, 1+t)$ in \mathbb{R}^2 are independent.
2. Let $A = (1, 2)$, $B = (2, -4)$, $C = (2, -3)$ and $D = (1, -2)$ be four vectors in \mathbb{R}^2 . Display all non-empty subsets of $\{A, B, C, D\}$ which are linearly independent.
3. Given three linearly independent vectors A, B, C in \mathbb{R}^n , prove or disprove each of the following statements.
 - (a) $A + B, B + C, A + C$ are linearly independent.
 - (b) $A - B, B + C, A + C$ are linearly independent.
4. Prove that a set S of three vectors in \mathbb{R}^3 is a basis for \mathbb{R}^3 if and only if the linear span $L(S)$ contains the three unit vectors e_1, e_2, e_3 .
5. Find two bases for \mathbb{R}^3 containing the two vectors $(0, 1, 1)$ and $(1, 1, 1)$.
6. Consider the following sets of vectors in \mathbb{R}^3 :
$$S = \{(1, 1, 1), (0, 1, 2), (1, 0, -1)\}, T = \{((2, 1, 0), (2, 0, -2)\}, U = \{(1, 2, 3), (1, 3, 5)\}.$$
 - (a) Prove that $L(T) \subset L(S)$.
 - (b) Determine all inclusion relations that hold among the sets $L(S), L(T)$ and $L(U)$.
7. Let A and B be two subsets in \mathbb{R}^n . Prove each of the following statements.
 - (a) If $A \subset B$, then $L(A) \subset L(B)$.
 - (b) $L(A \cap B) \subset L(A) \cap L(B)$.
 - (c) Give an example in which $L(A \cap B) \neq L(A) \cap L(B)$.
8. Let \mathbb{R}_+ be the set of positive real numbers. Define the “sum” of two elements x and y in V to be their product xy (in the usual sense), and define “multiplication” of an element x in V by a scalar $c \in \mathbb{R}$ to be x^c . Prove that V is a vector space with 1 as the zero element.
9. Show that the vector space \mathbb{R} over the scalar field \mathbb{Q} is infinite dimensional.
10. Let V be a finite dimensional vector space and S a subspace of V . Prove that S is finite dimensional and $\dim(S) \leq \dim(V)$.