

Solutions to Exercises 10

by Mizanur Rahaman

1. Note that $\int \frac{1}{\sqrt{1-t^2}} = \sin^{-1} t$. So putting the upper limits and lower limits we get $\sin^{-1}(\sin x) - \sin^{-1}(-\cos x) = x + \frac{\pi}{2} - x = \frac{\pi}{2}$.
2. First of all observe that by FTC $f'(x) = \cos \cos x$, and that this is never zero (why not?). So f' is either always positive or negative (why?). Hence f is one one, and hence has inverse. Now $(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))}$. Note that $f^{-1}(0) = 1$, and so we have $\frac{1}{\cos \cos 1}$.
- 3.
4. Let us put $g(u) = \int_0^u f(t)dt$. Then the RHS becomes $\int_0^x g(u)du$. Now let us apply Integration by part observing that that g is differentiable and by FTC we have $g'(u) = f(u)$. Hence $\int_0^x g(u)du = \{ug(u) - \int ug'(u)du\}_0^x$. Now replace $g'(u) = f(u)$ and putting the limits we get the LHS.
5. $f(x) = \int_0^x \left(\int_0^y \left(\int_0^z \frac{1}{\sqrt{(1+\sin^2 t)}} dt \right) dz \right) dy$. By using FTC we have $f'(x) = \int_0^x \left(\int_0^z \frac{1}{\sqrt{(1+\sin^2 t)}} dt \right) dz$. Again $f''(x) = \int_0^x \frac{1}{\sqrt{(1+\sin^2 t)}} dt$, and $f'''(x) = \frac{1}{\sqrt{(1+\sin^2 x)}}$.
6. $g(t) = \frac{1}{t} + \frac{1}{2t\sqrt{t}}$ ($t > 0$) this will give the required conclusion.
7. Let $x = n + \{x\}$, where $n = [x] \geq 0$. Then $\int_0^x [t]^2 dt = 2x - 2$ gives us $0^2 + 1^2 + \dots + (n-1)^2 + n^2\{x\} = 2n + 2\{x\} - 2$ which implies $\left[\frac{n(n-1)(2n-1)}{6} - 2n \right] + \{x\}(n^2 - 2) + 2 = 0$. Verify that for $n \geq 3$, above eqn has no soln. For $n = 2$ above eqn reduces to $\{x\} = \frac{1}{2}$. For $n = 1$ we have $\{x\} = 0$. For $n = 0$ there is no soln. Hence the soln is $x = 1, 2.5$.
8. When $x \geq 0$ $t \in (0, x)$ and hence $|t| = t$ then the integrand is $4t^2$. So the integral is $\frac{4x^3}{3}$ which is equal to the RHS when $x \geq 0$. Similarly consider the case when $x \leq 0$.
9. Differentiate the equation both side and from FTC you will get the expression for $f(x) = 2x + \sin(2x) + 2x\sin(2x) + \sec(2x)\tan(2x)$. now differentiating again and putting the value $x = \frac{\pi}{4}$ we get the values.
10. Expanding we get $2f(x) = x^2 \int_0^x g(t)dt - 2x \int_0^x tg(t)dt + \int_0^x t^2 g(t)dt$. now by FTC we get $2f'(x) = x^2 g(x) + 2x \int_0^x g(t)dt - 2x^2 g(x) - 2 \int_0^x tg(t)dt + x^2 g(x)$. this gives the form of $f'(x)$. also we get by FTC again that $f''(x) = \int_0^x g(t)dt$. so $f''(1) = 2$ by the given value.