
Solutions to Exercises− 11
by Sumit Kumar

1. (a)

f
′
(x) = e(

∫ x
0 e−t2dt)e−x2

.

(b)

f
′
(x) = (ln x)lnx(

ln ln x

x
+

1

x
).

(c)
f

′
(x) = xx(1 + ln x).

2. Put y := 1
x
. As x → ∞ y → 0. Thus

lim
x→∞

x sin
1

x
= lim

y→0

sin y

y
= 1.

3. Since f > 0 on [a, b], so log(f(a)) and log(f(b)) make sense. Hence
∫ b

a
f
′
(t)

f(t)
=

log(f(t))|ba = log(f(b))− log(f(a)).

4. Using the integration by parts we have, F (x) =
∫ x

2
1
ln t

dt = 1
ln t

t|x2 +
∫ x

2
1

(ln t)2
1
t
tdt =

x
lnx

− 2
ln 2

+
∫ x

2
1

(ln t)2
dt ≥ x

lnx
− 2

ln 2
.

But we know that the limit of the function x
lnx

diverges to infinity as x goes to infinity.
Hence the function F (x) =

∫ x

2
1
ln t

dt is unbounded.

5. Since
∫ π

0
f(x) sin(x)dx = −f(x) cos(x)|π0 +

∫ π

0
f

′
(x) cos(x)dx = −f(π)(−1) + f(0) +

f
′
(x) sin(x)|π0 −

∫ π

0
f

′′
(x) sin(x)dx = 1 + f(0) + 0 −

∫ π

0
f

′′
(x) sin(x)dx = 1 + f(0) −∫ π

0
f

′′
(x) sin(x)dx.

Given that
∫ π

0

[
f(x) + f

′′
(x)

]
sin(x)dx = 0. Hence from above we have 1 + f(0) = 0.

That is f(0) = −1.

6. Consider the integral
∫ b

a
f(x)dx. Put t = a + b − x. Then after putting this and

changing the limits the integral becomes
∫ b

a
f(x)dx = −

∫ a

b
f(t− a− b)dt.

Now using the fact that
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx. Then we have∫ b

a

f(x)dx = −
∫ a

b

f(t− a− b)dt =

∫ b

a

f(t− a− b)dt

7. First try to show that

f
′
(0) = 1, f

′′
(0) = 1, f

′′′
(0) = 0.
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We also know that the Taylor polynomial of function f(x) of degree 3 at 0 is given
by

f(0) + f
′
(0)x+ f

′′
(0)

x2

2!
+ f

′′′
(0)

x3

3!
.

So we have

1 + x+
x2

2!
.

8. First show that

sin4n+1(x) = cos(x), sin4n+2(x) = − sin(x), sin4n+3(x) = − cos(x), sin4n(x) = sin(x).

Then we have

sin4n+1(0) = 1, sin4n+2(0) = 0, sin4n+3(0) = −1, sin4n(0) = 0.

Now by using this we can write the Taylor polynomial of degree 2n + 1 for g(x) =
sin(x) as

g(0) + g
′
(0)x+ g

′′
(0)

x2

2!
+ g

′′′
(0)

x3

3!
+ ...+ g2n+1(0)

x2n+1

(2n+ 1)!
.

That is

x− x3

3!
+ ...+ (−1)n

x2n+1

(2n+ 1)!
.

So to get the result for f(x) = sin(x2) simply replace x by x2 in the above, then we
have

x2 − (x3)2

3!
+ ...+ (−1)n

(x2n+1)2

(2n+ 1)!
.

9. Use integration by parts and the fact that ex ≥ 1 + x to show that the inequality
hold for n = 0. Then use induction.

10. It is easy to see that ∫ x

0

tn

1 + t
dt = −

∫ 0

x

tn

1 + t
dt.

So

|
∫ x

0

tn

1 + t
dt| = |

∫ 0

x

tn

1 + t
dt|.

As −1 < x ≤ t ≤ 0, so 1 ≤ 1
1+t

≤ 1
1+x

. Now using the fact that |
∫ 0

x
f(t)dt| ≤

|
∫ 0

x
|f(t)|dt|, we have

|
∫ 0

x

tn

1 + t
dt| ≤ |

∫ 0

x

|t|n

|1 + t|
dt| ≤ |

∫ 0

x

(−t)n

|1 + x|
dt|.
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That is

|
∫ 0

x

(−t)n

|1 + x|
dt| = |(−1)n

1 + x

∫ 0

x

(t)ndt|.

But ∫ 0

x

(t)ndt =
tn+1

1 + n
|0x = − xn+1

1 + n
.

Hence by above we have

|
∫ 0

x

tn

1 + t
dt| ≤ |(−1)n

1 + x

∫ 0

x

(t)ndt| = |x|n+1

(1 + x)(1 + n)
.
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