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1. (a) |x+ y| < 1, i.e. −1 < x+ y < 1.
Thus it is the region in between the straight lines x+ y = 1 and
x+ y = −1.

(b) x+ 2y is integer, i.e. x+ 2y = n, n ∈ Z.
They are the straight lines in R2 given by x+2y = n where n ∈ Z.

(c) 1/(x+ y) is non zero integer, i.e. x+ y = 1/n where n ∈ Z \ {0}.
So the points are the straight lines x + y = 1/n where n is non
zero integer.

(d) x2 − 2xy + y2 = 9, i.e. (x − y)2 = 9. So the set is the pair of
straight lines given by x− y = 3 and x− y = −3.

(e) |x − 1| = |y − 1|, i.e. x − 1 = y − 1 or x − 1 = −y + 1. So the
points are the straight lines x = y and x+ y = 2.

(f) x = sin y, this the sine curve along y-axis.

(g) [x] it is the step function, the set say S can be described as
S = ∪n∈Z{(x, n− 1) : n− 1 ≤ x < n}.

(h)
√

x− [x]. For any x there exist n ∈ Z such that n ≤ x < n+ 1.
So [x] = n. Thus the set S of points can be described as
S = ∪n∈Z{(x,

√
x− [n]) : n ≤ x < n+ 1}.

(i) [1/x]. For x > 0 and if x > 1, then [1/x] = 0, else there exists
n ∈ N such that 1/n < x ≤ 1/(n− 1) ,so [1/x] = n− 1.
Similarly if x < 0 and if x ≤ −1 ,then [1/x] = −1, else there
exists n ∈ N such that −1/(n− 1) < x ≤ −1/n, so [1/x] = −n.

(j) {x}. For any x there exists n ∈ Z such that n−1/2 ≤ x < n+1/2
then {x} = n. So the set S of points is described as
S = ∪n∈Z{(x, n) : n− 1/2 ≤ x < n+ 1/2}

(k) {x}+ {2x}/2. For any x there exists n ∈ Z such that n− 1/2 ≤
x < n+ 1/2 then {x} = n, and 2n− 1 ≤ 2x < 2n+ 1, so

i. {2x} = 2n−1 when 2n−1 ≤ 2x < 2n−1/2 i.e {x}+{2x}/2 =
2n− 1/2

ii. {2x} = 2n when 2n−1/2 ≤ 2x < 2n+1/2 i.e {x}+{2x}/2 =
2n

iii. {2x} = 2n + 1 when 2n + 1/2 ≤ 2x < 2n + 1 i.e. {x} +
{2x}/2 = 2n+ 1/2

Thus the set S of points can be described as

S = ∪n∈Z {(x, 2n− 1/2) : n− 1/2 ≤ x < n− 1/4}
∪n∈Z {(x, 2n) : n− 1/4 ≤ x < n+ 1/4}
∪n∈Z {(x, 2n+ 1/2) : n+ 1/4 ≤ x < n+ 1/2}.
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2. Discussed in class.

3. Given |x− x0| < ϵ/2 and |y − y0| < ϵ/2. Then

|(x+ y)− (x0 + y0)| = |(x− x0) + (y − y0)|
< |x− x0|+ |y − y0|
< ϵ/2 + ϵ/2 = ϵ.

and

|(x− y)− (x0 − y0)| = |(x− x0)− (y − y0)|
< |x− x0|+ |y0 − y|
< ϵ/2 + ϵ/2 = ϵ

4. Given |x− x0| < min( ϵ
2(|y0|+1) , 1) and |y − y0| < ϵ

2(|x0|+1) .
Since

|xy − x0y0| = |xy − x0y + x0y − x0y0|
≤ |y||x− x0|+ |x0||y − y0|
≤ |y − y0||x− x0|+ |y0||x− x0|+ |x0||y − y0|
< |y − y0|(1 + |x0|) + |y0||x− x0| (Since |x− x0| < 1)

<
ϵ

2
+

ϵ|y0|
2(|y0|+ 1)

< ϵ.

5. Given y0 ̸= 0 and |y − y0| < min(|y0|/2, ϵ|y0|2/2).
Since

|y − y0| < |y0|/2 ⇒ −|y − y0| > −|y0|/2

and

|y0| = |y0 − y + y| ≤ |y − y0|+ |y0|

so

|y| ≥ |y0| − |y − y0|
> |y0| − |y0|/2 = |y0|/2.

Hence y ̸= 0, and 1
|y| <

2
|y0| . Now

|1
y
− 1

y0
| = |y − y0|

|y||y0|
<

2

|y0|
1

|y0|
(|y − y0|) < ϵ.
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6. Consider z = 1
y and z0 =

1
y0
, then |x/y − x0/y0| = |xz − x0z0|.

From Exercise 4, it follows that if |x − x0| < min( ϵ
2(|z0|+1) , 1) and

|z − z0| < ϵ
2(|x0|+1) , then |xz − x0z0| < ϵ.

Let ϵ0 = ϵ
2(|x0|+1) , then from Exercise 5, if |y − y0| <

min(|y0|/2, ϵ0|y0|2/2), we have |z − z0| = |1/y − 1/y0| < ϵ0.

Thus substituting the values of ϵ0 and z0 in terms of ϵ and y0,
we get the required condition as, if

|x− x0| < min(
ϵ|y0|

2(|y0|+ 1)
, 1), |y − y0| < min(

|y0|
2

,
ϵ|y0|2

4(|x0|+ 1)
).

Then |x/y − x0/y0| < ϵ.

7. (a) limx→0+ |x|/x.
For given some ϵ > 0 choose any δ > 0, such that 0 < x < δ.
Then |x|/x = 1, i.e |(|x|/x)− 1| = 0 < ϵ.
Hence limx→0+ |x|/x = 1.

(b) limx→0− [1/x].
Limit does not exists. To prove this we need to show that
limx→0− [1/x] ̸= l, for any l ∈ R. i.e there exists an ϵ > 0
such that for every δ > 0 there is some x such that |x| < δ
but |[1/x]− l| > ϵ.
So let l ∈ R, then there exists n0 ∈ N such that −n0 < l+1. Now
for any δ > 0 there exists n1 ∈ N such that 1/n1 < δ. Now choose
n ∈ N such that n > max{n0, n1}. Then let x = −1/n. So we
have |x| < δ , but [1/x] = −n < −n0 < l + 1 i.e. |[1/x]− l| > 1.

(c) limx→0(sinx− sin a)/(x− a)

(sinx− sin a)

(x− a)
=

sin(x− a) cos a+ cos(x− a) sin a− sin a

(x− a)

=
cos a sin(x− a)

(x− a)
− sin a(1− cos(x− a))

(x− a)2
(x− a)

Then by part (d) for every ϵ > 0 there exists δ > 0 such that

| sin a(1−cos(x−a))
(x−a)2

− sin a
2 | < min{ϵ/6, 1} whenever

|x − a| < δ. Now if |x − a| < min{ϵ/4, δ} then by Exercise 4,

| sin a(1−cos(x−a))
(x−a)2

(x − a) − 0| < ϵ/2. Also for ϵ > 0 there exist

δ1 > 0 such that | sin(x−a)
(x−a) − 1| < ϵ/2 whenever |x− a| < δ1. Now

| cos a| ≤ 1, so

|cos a sin(x− a)

(x− a)
− sin a(1− cos(x− a))

(x− a)2
(x− a)− cos a| < ϵ

whenever |x− a| < min{ϵ/4, δ, δ1}
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Hence limx→0(sinx− sin a)/(x− a) = cos a.

(d) limx→0(1− cosx)/x2.

(1− cosx)

x2
= 2

sin2(x/2)

x2
=

1

2
(
sin(x/2)

x/2
)2

Now given limx→0 sinx/x = 1 implies that for a given ϵ > 0 there
exists δ > 0 such that

|(sin(x/2)
x/2

)− 1| < min(
ϵ

2
, 1), whenever |x/2| < δ/2

Then by Exercise 4 ,

|{sin(x/2)
x/2

}2 − 1| < 2ϵ whenever |x| < δ

i.e. |(1− cosx)

x2
− 1/2| < ϵ whenever |x| < δ.

Hence limx→0(1− cosx)/x2 = 1/2.

8. Given limx→0 g(x) = 0, i.e for ever ϵ > 0 there exists δ > 0 such
that |g(x)| < ϵ whenever |x| < δ. Since | sin(1/x)| ≤ 1 for any x,
| sin(1/x)g(x)| ≤ | sin(1/x)||g(x)|| < ϵ whenever |x| < δ.
Hence limx→0 sin(1/x)g(x) = 0.

9. Given f(x) ≤ g(x) for all x. Let limx→a f(x) = α1 and limx→a g(x) =
α2. We have to show that α1 ≤ α2. Suppose not, i.e α1 > α2 then
there exists δ > 0 such that |f(x)−α1| < (α1−α2)/2 and |g(x)−α2| <
(α1 − α2)/2 whenever |x− a| < δ. Solving in terms of α1 and α2

(α1 + α2)

2
< f(x) <

(3α1 − α2)

2
,

(3α2 − α1)

2
< g(x) <

(α1 + α2)

2

So we get g(x) < f(x) whenever |x− a| < δ, which is a contradiction!
Hence α1 ≤ α2.
Let g(x) = f(x)+|x| on R\{0} and g(0) = f(0)+1 . Then f(x) < g(x)
but limx→0 f(x) = limx→0 g(x). Thus it is not true that limx→a f(x) <
limx→a g(x).

10. Given f(x) ≤ g(x) ≤ h(x) and limx→a f(x) = limx→a h(x) = l, then
for some ϵ > 0 there exists δ > 0 such that |f(x)−l| < ϵ and |h(x)−l| <
ϵ whenever |x− a| < δ. So

l − ϵ < f(x) ≤ g(x) ≤ h(x) < l + ϵ,

Hence |g(x)− l| < ϵ whenever |x− a| < δ i.e limx→a g(x) = l.


