

Solutions to Exercises 2

by Sayani Bera

1. (a) $|x + y| < 1$, i.e. $-1 < x + y < 1$.
Thus it is the region in between the straight lines $x + y = 1$ and $x + y = -1$.
- (b) $x + 2y$ is integer, i.e. $x + 2y = n$, $n \in \mathbb{Z}$.
They are the straight lines in \mathbb{R}^2 given by $x + 2y = n$ where $n \in \mathbb{Z}$.
- (c) $1/(x + y)$ is non zero integer, i.e. $x + y = 1/n$ where $n \in \mathbb{Z} \setminus \{0\}$.
So the points are the straight lines $x + y = 1/n$ where n is non zero integer.
- (d) $x^2 - 2xy + y^2 = 9$, i.e. $(x - y)^2 = 9$. So the set is the pair of straight lines given by $x - y = 3$ and $x - y = -3$.
- (e) $|x - 1| = |y - 1|$, i.e. $x - 1 = y - 1$ or $x - 1 = -y + 1$. So the points are the straight lines $x = y$ and $x + y = 2$.
- (f) $x = \sin y$, this the sine curve along y-axis.
- (g) $[x]$ it is the step function, the set say S can be described as
$$S = \bigcup_{n \in \mathbb{Z}} \{(x, n - 1) : n - 1 \leq x < n\}.$$
- (h) $\sqrt{x - [x]}$. For any x there exist $n \in \mathbb{Z}$ such that $n \leq x < n + 1$.
So $[x] = n$. Thus the set S of points can be described as
$$S = \bigcup_{n \in \mathbb{Z}} \{(x, \sqrt{x - [n]}) : n \leq x < n + 1\}.$$
- (i) $[1/x]$. For $x > 0$ and if $x > 1$, then $[1/x] = 0$, else there exists $n \in \mathbb{N}$ such that $1/n < x \leq 1/(n - 1)$, so $[1/x] = n - 1$.
Similarly if $x < 0$ and if $x \leq -1$, then $[1/x] = -1$, else there exists $n \in \mathbb{N}$ such that $-1/(n - 1) < x \leq -1/n$, so $[1/x] = -n$.
- (j) $\{x\}$. For any x there exists $n \in \mathbb{Z}$ such that $n - 1/2 \leq x < n + 1/2$ then $\{x\} = n$. So the set S of points is described as
$$S = \bigcup_{n \in \mathbb{Z}} \{(x, n) : n - 1/2 \leq x < n + 1/2\}$$
- (k) $\{x\} + \{2x\}/2$. For any x there exists $n \in \mathbb{Z}$ such that $n - 1/2 \leq x < n + 1/2$ then $\{x\} = n$, and $2n - 1 \leq 2x < 2n + 1$, so
 - i. $\{2x\} = 2n - 1$ when $2n - 1 \leq 2x < 2n - 1/2$ i.e $\{x\} + \{2x\}/2 = 2n - 1/2$
 - ii. $\{2x\} = 2n$ when $2n - 1/2 \leq 2x < 2n + 1/2$ i.e $\{x\} + \{2x\}/2 = 2n$
 - iii. $\{2x\} = 2n + 1$ when $2n + 1/2 \leq 2x < 2n + 1$ i.e. $\{x\} + \{2x\}/2 = 2n + 1/2$

Thus the set S of points can be described as

$$\begin{aligned} S = & \bigcup_{n \in \mathbb{Z}} \{(x, 2n - 1/2) : n - 1/2 \leq x < n - 1/4\} \\ & \bigcup_{n \in \mathbb{Z}} \{(x, 2n) : n - 1/4 \leq x < n + 1/4\} \\ & \bigcup_{n \in \mathbb{Z}} \{(x, 2n + 1/2) : n + 1/4 \leq x < n + 1/2\}. \end{aligned}$$

2. Discussed in class.

3. Given $|x - x_0| < \epsilon/2$ and $|y - y_0| < \epsilon/2$. Then

$$\begin{aligned} |(x + y) - (x_0 + y_0)| &= |(x - x_0) + (y - y_0)| \\ &< |x - x_0| + |y - y_0| \\ &< \epsilon/2 + \epsilon/2 = \epsilon. \end{aligned}$$

and

$$\begin{aligned} |(x - y) - (x_0 - y_0)| &= |(x - x_0) - (y - y_0)| \\ &< |x - x_0| + |y_0 - y| \\ &< \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

4. Given $|x - x_0| < \min(\frac{\epsilon}{2(|y_0|+1)}, 1)$ and $|y - y_0| < \frac{\epsilon}{2(|x_0|+1)}$.
Since

$$\begin{aligned} |xy - x_0y_0| &= |xy - x_0y + x_0y - x_0y_0| \\ &\leq |y||x - x_0| + |x_0||y - y_0| \\ &\leq |y - y_0||x - x_0| + |y_0||x - x_0| + |x_0||y - y_0| \\ &< |y - y_0|(1 + |x_0|) + |y_0||x - x_0| \quad (\text{Since } |x - x_0| < 1) \\ &< \frac{\epsilon}{2} + \frac{\epsilon|y_0|}{2(|y_0| + 1)} < \epsilon. \end{aligned}$$

5. Given $y_0 \neq 0$ and $|y - y_0| < \min(|y_0|/2, \epsilon|y_0|^2/2)$.
Since

$$|y - y_0| < |y_0|/2 \Rightarrow -|y - y_0| > -|y_0|/2$$

and

$$|y_0| = |y_0 - y + y| \leq |y - y_0| + |y_0|$$

so

$$\begin{aligned} |y| &\geq |y_0| - |y - y_0| \\ &> |y_0| - |y_0|/2 = |y_0|/2. \end{aligned}$$

Hence $y \neq 0$, and $\frac{1}{|y|} < \frac{2}{|y_0|}$. Now

$$\left| \frac{1}{y} - \frac{1}{y_0} \right| = \frac{|y - y_0|}{|y||y_0|} < \frac{2}{|y_0|} \frac{1}{|y_0|} (|y - y_0|) < \epsilon.$$

6. Consider $z = \frac{1}{y}$ and $z_0 = \frac{1}{y_0}$, then $|x/y - x_0/y_0| = |xz - x_0z_0|$.
 From Exercise 4, it follows that if $|x - x_0| < \min(\frac{\epsilon}{2(|z_0|+1)}, 1)$ and $|z - z_0| < \frac{\epsilon}{2(|x_0|+1)}$, then $|xz - x_0z_0| < \epsilon$.

Let $\epsilon_0 = \frac{\epsilon}{2(|x_0|+1)}$, then from Exercise 5, if $|y - y_0| < \min(|y_0|/2, \epsilon_0|y_0|^2/2)$, we have $|z - z_0| = |1/y - 1/y_0| < \epsilon_0$.

Thus substituting the values of ϵ_0 and z_0 in terms of ϵ and y_0 , we get the required condition as, if

$$|x - x_0| < \min\left(\frac{\epsilon|y_0|}{2(|y_0|+1)}, 1\right), |y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\epsilon|y_0|^2}{4(|x_0|+1)}\right).$$

Then $|x/y - x_0/y_0| < \epsilon$.

7. (a) $\lim_{x \rightarrow 0^+} |x|/x$.

For given some $\epsilon > 0$ choose any $\delta > 0$, such that $0 < x < \delta$.

Then $|x|/x = 1$, i.e $|(|x|/x) - 1| = 0 < \epsilon$.

Hence $\lim_{x \rightarrow 0^+} |x|/x = 1$.

- (b) $\lim_{x \rightarrow 0^-} [1/x]$.

Limit does not exists. To prove this we need to show that $\lim_{x \rightarrow 0^-} [1/x] \neq l$, for any $l \in \mathbb{R}$. i.e there exists an $\epsilon > 0$ such that for every $\delta > 0$ there is some x such that $|x| < \delta$ but $|[1/x] - l| > \epsilon$.

So let $l \in \mathbb{R}$, then there exists $n_0 \in \mathbb{N}$ such that $-n_0 < l+1$. Now for any $\delta > 0$ there exists $n_1 \in \mathbb{N}$ such that $1/n_1 < \delta$. Now choose $n \in \mathbb{N}$ such that $n > \max\{n_0, n_1\}$. Then let $x = -1/n$. So we have $|x| < \delta$, but $[1/x] = -n < -n_0 < l+1$ i.e. $|[1/x] - l| > 1$.

- (c) $\lim_{x \rightarrow 0} (\sin x - \sin a)/(x - a)$

$$\begin{aligned} \frac{(\sin x - \sin a)}{(x - a)} &= \frac{\sin(x - a) \cos a + \cos(x - a) \sin a - \sin a}{(x - a)} \\ &= \frac{\cos a \sin(x - a)}{(x - a)} - \frac{\sin a(1 - \cos(x - a))}{(x - a)^2}(x - a) \end{aligned}$$

Then by part (d) for every $\epsilon > 0$ there exists $\delta > 0$ such that $|\frac{\sin a(1 - \cos(x - a))}{(x - a)^2} - \frac{\sin a}{2}| < \min\{\epsilon/6, 1\}$ whenever

$|x - a| < \delta$. Now if $|x - a| < \min\{\epsilon/4, \delta\}$ then by Exercise 4,

$|\frac{\sin a(1 - \cos(x - a))}{(x - a)^2}(x - a) - 0| < \epsilon/2$. Also for $\epsilon > 0$ there exist $\delta_1 > 0$ such that $|\frac{\sin(x - a)}{(x - a)} - 1| < \epsilon/2$ whenever $|x - a| < \delta_1$. Now $|\cos a| \leq 1$, so

$$\begin{aligned} &|\frac{\cos a \sin(x - a)}{(x - a)} - \frac{\sin a(1 - \cos(x - a))}{(x - a)^2}(x - a) - \cos a| < \epsilon \\ &\text{whenever } |x - a| < \min\{\epsilon/4, \delta, \delta_1\} \end{aligned}$$

Hence $\lim_{x \rightarrow 0} (\sin x - \sin a)/(x - a) = \cos a$.

- (d) $\lim_{x \rightarrow 0} (1 - \cos x)/x^2$.

$$\frac{(1 - \cos x)}{x^2} = 2 \frac{\sin^2(x/2)}{x^2} = \frac{1}{2} \left(\frac{\sin(x/2)}{x/2} \right)^2$$

Now given $\lim_{x \rightarrow 0} \sin x/x = 1$ implies that for a given $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left| \left(\frac{\sin(x/2)}{x/2} \right) - 1 \right| < \min\left(\frac{\epsilon}{2}, 1\right), \text{ whenever } |x/2| < \delta/2$$

Then by Exercise 4 ,

$$\begin{aligned} \left| \left\{ \frac{\sin(x/2)}{x/2} \right\}^2 - 1 \right| &< 2\epsilon \text{ whenever } |x| < \delta \\ \text{i.e. } \left| \frac{(1 - \cos x)}{x^2} - 1/2 \right| &< \epsilon \text{ whenever } |x| < \delta. \end{aligned}$$

Hence $\lim_{x \rightarrow 0} (1 - \cos x)/x^2 = 1/2$.

8. Given $\lim_{x \rightarrow 0} g(x) = 0$, i.e for ever $\epsilon > 0$ there exists $\delta > 0$ such that $|g(x)| < \epsilon$ whenever $|x| < \delta$. Since $|\sin(1/x)| \leq 1$ for any x , $|\sin(1/x)g(x)| \leq |\sin(1/x)||g(x)| < \epsilon$ whenever $|x| < \delta$.
Hence $\lim_{x \rightarrow 0} \sin(1/x)g(x) = 0$.

9. Given $f(x) \leq g(x)$ for all x . Let $\lim_{x \rightarrow a} f(x) = \alpha_1$ and $\lim_{x \rightarrow a} g(x) = \alpha_2$. We have to show that $\alpha_1 \leq \alpha_2$. Suppose not, i.e $\alpha_1 > \alpha_2$ then there exists $\delta > 0$ such that $|f(x) - \alpha_1| < (\alpha_1 - \alpha_2)/2$ and $|g(x) - \alpha_2| < (\alpha_1 - \alpha_2)/2$ whenever $|x - a| < \delta$. Solving in terms of α_1 and α_2

$$\frac{(\alpha_1 + \alpha_2)}{2} < f(x) < \frac{(3\alpha_1 - \alpha_2)}{2}, \quad \frac{(3\alpha_2 - \alpha_1)}{2} < g(x) < \frac{(\alpha_1 + \alpha_2)}{2}$$

So we get $g(x) < f(x)$ whenever $|x - a| < \delta$, which is a contradiction!
Hence $\alpha_1 \leq \alpha_2$.

Let $g(x) = f(x) + |x|$ on $\mathbb{R} \setminus \{0\}$ and $g(0) = f(0) + 1$. Then $f(x) < g(x)$ but $\lim_{x \rightarrow 0} f(x) = \lim_{x \rightarrow 0} g(x)$. Thus it is not true that $\lim_{x \rightarrow a} f(x) < \lim_{x \rightarrow a} g(x)$.

10. Given $f(x) \leq g(x) \leq h(x)$ and $\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} h(x) = l$, then for some $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) - l| < \epsilon$ and $|h(x) - l| < \epsilon$ whenever $|x - a| < \delta$. So

$$l - \epsilon < f(x) \leq g(x) \leq h(x) < l + \epsilon,$$

Hence $|g(x) - l| < \epsilon$ whenever $|x - a| < \delta$ i.e $\lim_{x \rightarrow a} g(x) = l$.