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Solutions to Exercises 2
by Sayani Bera

lr+y|<1l,ie —1<z+y<l.
Thus it is the region in between the straight lines x +y = 1 and
r+y=-—1.
x + 2y is integer, i.e. z+2y =n, n € Z.
They are the straight lines in R? given by x+2y = n where n € Z.
1/(x +y) is non zero integer, i.e. x +y = 1/n where n € Z\ {0}.
So the points are the straight lines x + y = 1/n where n is non
zero integer.
2?2 — 22y +y? =9, ie (r—19y)? =9. So the set is the pair of
straight lines given by x —y =3 and x —y = —3.
lt—1=ly—1],ie. z—1=y—1lorz—1= —y+ 1. So the
points are the straight lines x = y and = + y = 2.
x = siny, this the sine curve along y-axis.
[z] it is the step function, the set say S can be described as
S=Upez{(z,n—1):n—1<z <n}.
V& — [z]. For any x there exist n € Z such that n <z <n + 1.
So [z] = n. Thus the set S of points can be described as
S =Upez{(z,/x —[n]) :n <z <n+1}.
[1/z]. For x > 0 and if > 1, then [1/x] = 0, else there exists
n € N such that 1/n <2z <1/(n—1) ;80 [1/z] =n— 1.
Similarly if z < 0 and if < —1 ,then [1/z] = —1, else there
exists n € N such that —1/(n — 1) <z < —1/n, so [1/x] = —n.
{z}. For any x there exists n € Z such that n—1/2 < x <n+1/2
then {z} = n. So the set S of points is described as
S =Upez{(z,n) :n—-1/2<z<n+1/2}
{z} 4+ {22}/2. For any z there exists n € Z such that n — 1/2 <
x <n+1/2then {z} =n,and 2n — 1 <2x <2n+1, so
i. {2z} =2n—1when2n—1 <2z < 2n—1/21ie{z}+{22}/2 =
o —1/2
ii. {22} =2n when 2n—1/2 <2z < 2n+1/2ie {z}+{22}/2 =
2n
ili. {22} = 2n+ 1 when 2n +1/2 < 2z < 2n+ 1 ie. {z} +
(22)/2 =20+ 1/2
Thus the set S of points can be described as
S=Upez {(z,2n —1/2):n—-1/2 <x <n-—1/4}
Unez {(,2n) :n—1/4 <z <n+1/4}
Unez {(z,2n+1/2):n+1/4 <x <n+1/2}.



2. Discussed in class.

3. Given |z — x| < €/2 and |y — yo| < €/2. Then

[(z +y) — (zo +yo)| = [(z — 20) + (¥ — ¥0)|
< |z —xo| + [y — Yol
<€/24+¢€/2=c¢.

and

[(z =) = (zo — wo)| = [(z — o) — (¥ — w0)|
< |z —xo| + |yo — y|
<e€/2+¢/2=c¢

4. Given |z — x| < min(m, 1) and |y — yo| < T ETIESE
Since

lzy — xoyo| = |zy — oy + Toy — Toyol
< |yllz — zo| + |xol|ly — ol
< |y — wollz — 20| + |yol|z — xo| + |zo||y — Yol

< |y = yol (1 + |zo|) + oz — ol (Since [z — zo| < 1)
€ €[yol
—+ < e
2 2(lyol +1)

5. Given yo # 0 and |y — yo| < min(|yo|/2, €|yo|?/2).

Since
[y — ol <lyol/2 = =y — yol > —|yol/2
and
lvol = lyo — v+ yl < |y — ol + |vol
SO

[yl > |yol — |y — vol
> |yol — |vol/2 = |yol/2.

1 - 2
Hence y # 0, and Wl < Tool" Now

1 1, |y—wl 2 1
= < ——(ly —wol) <e
Yy Y lyllyol  lyol lyol




6. Consider z = % and zp = y%’ then |z/y — xo/yo| = |xz — xo20].
From Exercise 4, it follows that if |z — z¢| < min(m,l) and

|z — 20| < 57 then |xz — x020| < €.

__€
lzo|+1)°

Let ¢ WD)y then from  Exercise 5, if ly — yo| <

min(|yo| /2, eolyo|?/2), we have |z — 20| = [1/y — 1/yo| < co.

Thus substituting the values of ¢y and zg in terms of ¢ and vy,
we get the required condition as, if
Yol 6\90’2

: €|yo :
x — xo| < min(—————,1), |y — yo| < min(——, ———).

Then |z/y — z0/yo| < €.

7. (a) lim,_ g+ |2z|/x.

For given some € > 0 choose any § > 0, such that 0 < x < 0.
Then |z|/z =1, i.e |(|z|/x) — 1] =0 < e.
Hence lim,_,o+ |z|/z = 1.

(b) Tim,_o-[1/2].
Limit does not exists. To prove this we need to show that
lim, ,o-[1/z] # [, for any | € R. i.e there exists an € > 0
such that for every § > 0 there is some z such that |z|] < ¢
but |[1/z] — 1| > €.
So let I € R, then there exists ng € N such that —ng <1+ 1. Now
for any § > 0 there exists n; € N such that 1/n; < d. Now choose
n € N such that n > max{ng,n1}. Then let x = —1/n. So we
have |z| <6 , but [1/2] = —n < —ng <!+ 1ie. [[1/z] =1 > 1.

(¢) limyo(sinz — sina)/(z — a)

(sinz —sina)  sin(z —a)cosa + cos(x — a)sina — sina
(x —a) (r —a)

cosasin(z —a) sina(l — cos(z — a)) v
@ —a) Goar 7Y

Then by part (d) for every € > 0 there exists § > 0 such that

]—Sina(t;fzs)(ffa)) — %\ < min{e/6, 1} whenever
|z —a| < d. Now if |z — a] < min{e/4,0} then by Exercise 4,
|w(az —a) — 0] < ¢/2. Also for € > 0 there exist

@—a)’

si

01 > 0 such that |% — 1] < €/2 whenever |z — a| < §;. Now
|cosal <1, so
‘cosasin(w —a) sina(l — cos(z — a))
(z —a) (x —a)?

whenever |xr — a| < min{e/4,6,0:}

(x —a) —cosal < e



8.

10.

Hence lim,_,o(sinz —sina)/(z — a) = cosa.

(d) limg_o(1 — cosx)/x2.

(1 —cosz) _ 2sin2(x/2) 1 sin(z/2)

x? z? 2( x/2 )y

Now given lim,_,¢sinz/z = 1 implies that for a given € > 0 there
exists 0 > 0 such that

sin(z/2)

I( o2

)—1| < min(%, 1), whenever |z/2| < §/2

Then by Exercise 4 ,

i 2
]{%}2 — 1] < 2e whenever |z| < ¢
x/2
1—
i.e. ]7( cosz) _ 1/2| < e whenever |z| < 4.

)
Hence lim, (1 — cosz)/x? = 1/2.

Given lim,_,og(z) = 0, i.e for ever € > 0 there exists § > 0 such
that |g(x)| < € whenever |z| < 0. Since |sin(1/x)] < 1 for any =,
|sin(1/x)g(x)| < |sin(1/z)||g(x)|| < € whenever |z| < 4.

Hence lim, o sin(1/z)g(z) = 0.

Given f(x) < g(x) for all z. Let lim,_,, f(z) = a1 and lim,_,, g(x) =
as. We have to show that oy < a. Suppose not, i.e a3 > o then
there exists 6 > 0 such that |f(z) —ai1| < (a1 —a2)/2 and |g(x) —az| <
(a1 — a2)/2 whenever |z — a| < §. Solving in terms of a; and aq

(a1 + az)
2

(30[1 — Oég) (30&2 — 041) (041 + 012)

< f(z) < 5 , 5 <g(z) < 5

So we get g(z) < f(z) whenever |z — a| < 4, which is a contradiction!
Hence a1 < as.

Let g(x) = f(z)+|x| on R\{0} and ¢g(0) = f(0)+1. Then f(z) < g(x)
but lim, 0 f(z) = lim,;—0 g(x). Thus it is not true that lim,_,, f(z) <
lim, 4 g(z).

Given f(z) < g(z) < h(x) and lim,_,, f(z) = limg_q h(z) = [, then
for some € > 0 there exists ¢ > 0 such that |f(z)—I| < eand |h(x)—I| <
e whenever |z — a| < 4. So

| —c< f(@) < gle) < h(z) <L+,

Hence |g(z) — | < € whenever |z — a] < § i.e limy_,, g(x) = L.



