MA 321 - ANALYSIS III (AUG-DEC, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

August 29, 2016

- 1. Show that f = log|x| is locally integrable and hence defines a distribution. Calculate $\frac{d}{dx}log|x|$.
- 2. Define $\langle PV(\frac{1}{x}) \rangle$, $\phi \rangle = \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} dx$. Show that $PV(\frac{1}{x})$ defines a distribution and find $\frac{d}{dx} PV(\frac{1}{x})$.
- 3. Show that the following are distributions. Define $fp(\frac{1}{x^2})$ and $fp(\frac{H}{x^2})$ as

$$< fp(\frac{1}{x^2}), \quad \phi >= \lim_{\epsilon \to 0} [\int_{|x| \ge \epsilon} \frac{\phi(x)}{x^2} dx - 2\frac{\phi(0)}{\epsilon}] \text{ and}$$
$$< fp(\frac{H}{x^2}), \quad \phi >= \lim_{\epsilon \to 0} [\int_{|x| \ge \epsilon} \frac{H(x)\phi(x)}{x^2} dx - \frac{\phi(0)}{\epsilon} + \phi'(0)log\epsilon]$$

for all $\phi \in \mathcal{D}(\mathbb{R})$, where H is the Heaviside function given by

$$H(x) = \begin{cases} 1 & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- 4. Let δ be the Dirac δ concentrated at 0. Show that there does not exists an L^2 function f such that $\delta = T_f$. In fact, δ cannot be identified with a locally integrable function. Similarly show that δ' cannot be given by a Radon measure.
- 5. Let f be a continuous function on \mathbb{R}^n such that $\int f\phi = 0$ for all $\phi \in \mathcal{D}(\mathbb{R}^n)$. Show that $f \equiv 0$.
- 6. Let $T \in \mathcal{D}'(\mathbb{R})$ such that $\frac{dT}{dx} = 0$. Show that T is constant. (Hint: First show that, if $\phi \in \mathcal{D}(\mathbb{R})$ then $\phi = \psi'$ for some $\psi \in \mathcal{D}(\mathbb{R})$ if and only if $\int \phi(x) dx = 0$.)

7. Find all distribution solutions to the equation $\frac{dT}{dx} + aT = 0$, $a \in \mathbb{R}$.

- 8. Let $\delta(x) = C \exp(-\frac{1}{(x-1)^2})$ if |x| < 1, = 0 if |x| > 1. Find C so that $\int_{-1}^{1} \delta(x) dx = 1$. Define $\delta_n(x) = \epsilon^{-n} \delta(\frac{x}{\epsilon})$. Sketch δ_n and calculate $\int_{-1}^{1} \delta_n(x) dx$. Prove that if f is continuous, then $\int_{-\infty}^{\infty} f(x) \delta_n(x) dx \to f(0)$.
- 9. Show that $u(x,t) = f(x-kt), f \in L^1_{loc}(\mathbb{R})$ is a distribution solution of the differential equation

$$\frac{\partial^2 u}{\partial t^2} - k^2 \frac{\partial^2 u}{\partial x^2} = 0$$

10. Show that $u(x_1, x_2) = \log |x|^2$ is the distribution solution of

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} = 4\pi\delta.$$

- 11. Give an example of a sequence $\{\phi_j\}$ which converges to 0 in $C^{\infty}(\Omega)$, but not in $\mathcal{D}(\Omega)$.
- Find the order and support of the following distributions
 log|x|, 2. δ^(k), 3. P.V.(¹/_x)

Give an example of a locally integrable function whose support is different from its support as a distribution.

13. Let $f \in C^1(\mathbb{R})$ except at finitely many points, say a_1, \dots, a_n , having simple discontinuities. Denote DT_f and f' respectively, the distributional and classical derivatives of f. Assume f' is locally integrable. Show that

$$DT_f = T_{f'} + \sum_{i=1}^n J_f(a_i)\delta_{a_i}.$$

where $J_f(a) = f(a+) - f(a-)$ is the jump at a and δ_{a_i} is the Dirac delta concentrated at a_i .

- 14. Let f be an absolutely continuous function on \mathbb{R} . Show that $T_{f'}$ is well defined $T_{f'} = DT_f$. (Hint: Use the integral $\int \int_A \phi'(x) f'(y) dx dy$ where $A = \{(x, y) \in \mathbb{R}^2 : -a \leq x < y \leq a\}$, where $\operatorname{supp} \phi \subset [-a, a]$).
- 15. Construct a distribution of infinite order.