

Unimodular Bilinear multipliers on L^p spaces

JOTSAROOP KAUR
(*joint work with Saurabh Srivastava*)

Department of Mathematics,
IISER Bhopal

December 18, 2017

FOURIER MULTIPLIER

- Let $m \in L^\infty(\mathbb{R}^n)$, we define the Fourier multiplier operator as follows :

FOURIER MULTIPLIER

- Let $m \in L^\infty(\mathbb{R}^n)$, we define the Fourier multiplier operator as follows :

$$T_m f(x) := \int_{\mathbb{R}^n} m(\xi) \hat{f}(\xi) e^{ix \cdot \xi} d\xi$$

for $f \in C_c^\infty(\mathbb{R}^n)$.

FOURIER MULTIPLIER

- Let $m \in L^\infty(\mathbb{R}^n)$, we define the Fourier multiplier operator as follows :
 - $$T_m f(x) := \int_{\mathbb{R}^n} m(\xi) \hat{f}(\xi) e^{ix \cdot \xi} d\xi$$
for $f \in C_c^\infty(\mathbb{R}^n)$.
- By the use of the Plancherel Theorem it is easy to see that T_m is bounded on $L^2(\mathbb{R}^n)$.

FOURIER MULTIPLIER

- Let $m \in L^\infty(\mathbb{R}^n)$, we define the Fourier multiplier operator as follows :

-

$$T_m f(x) := \int_{\mathbb{R}^n} m(\xi) \hat{f}(\xi) e^{ix \cdot \xi} d\xi$$

for $f \in C_c^\infty(\mathbb{R}^n)$.

- By the use of the Plancherel Theorem it is easy to see that T_m is bounded on $L^2(\mathbb{R}^n)$.
- For $p \neq 2$, we need some regularity on m for T_m to be bounded on $L^p(\mathbb{R}^n)$.

UNIMODULAR FOURIER MULTIPLIER

- For a measurable function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ and $\lambda \in \mathbb{R}$, consider the unimodular function $e^{i\lambda\phi}$.

UNIMODULAR FOURIER MULTIPLIER

- For a measurable function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ and $\lambda \in \mathbb{R}$, consider the unimodular function $e^{i\lambda\phi}$.
- Fourier multiplier operator corresponding to the function $e^{i\lambda\phi}$ gives solutions of IVP in linear PDE for some particular choices of ϕ .

UNIMODULAR FOURIER MULTIPLIER

- For a measurable function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ and $\lambda \in \mathbb{R}$, consider the unimodular function $e^{i\lambda\phi}$.
- Fourier multiplier operator corresponding to the function $e^{i\lambda\phi}$ gives solutions of IVP in linear PDE for some particular choices of ϕ .
- When $\phi(\xi) = |\xi|^2$, it corresponds to the solution of the linear Schrödinger equation at time λ .
For $\phi(\xi) = |\xi|$, the Fourier multiplier operator is related to the solution of the wave equation.

UNIMODULAR FOURIER MULTIPLIER

- For a measurable function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ and $\lambda \in \mathbb{R}$, consider the unimodular function $e^{i\lambda\phi}$.
- Fourier multiplier operator corresponding to the function $e^{i\lambda\phi}$ gives solutions of IVP in linear PDE for some particular choices of ϕ .
- When $\phi(\xi) = |\xi|^2$, it corresponds to the solution of the linear Schrödinger equation at time λ .
For $\phi(\xi) = |\xi|$, the Fourier multiplier operator is related to the solution of the wave equation.
- Hörmander proved that if ϕ is a C^2 smooth real-valued function and $\|e^{i\lambda\phi}\|_{M_p(\mathbb{R}^n)} = O(1)$ for $\lambda \in \mathbb{R}$ and $p \neq 2$, then ϕ is a linear function.

- For a measurable function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ and $\lambda \in \mathbb{R}$, consider the unimodular function $e^{i\lambda\phi}$.
- Fourier multiplier operator corresponding to the function $e^{i\lambda\phi}$ gives solutions of IVP in linear PDE for some particular choices of ϕ .
- When $\phi(\xi) = |\xi|^2$, it corresponds to the solution of the linear Schrödinger equation at time λ .
For $\phi(\xi) = |\xi|$, the Fourier multiplier operator is related to the solution of the wave equation.
- Hörmander proved that if ϕ is a C^2 smooth real-valued function and $\|e^{i\lambda\phi}\|_{M_p(\mathbb{R}^n)} = O(1)$ for $\lambda \in \mathbb{R}$ and $p \neq 2$, then ϕ is a linear function.
- He also conjectured that the above result holds for $\phi \in C^1(\mathbb{R}^n)$. In 1994 V. Lebedev and A. Olevskii [4] settled this conjecture and proved the above result for $\phi \in C^1(\mathbb{R}^n)$.

BILINEAR MULTIPLIER

- Let $m(\xi, \eta)$ be a bounded measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ and (p, q, r) , $0 < p, q, r \leq \infty$ be a triplet of exponents. Consider the bilinear operator M_m initially defined for functions f and g in a suitable dense class by

$$M_m(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) m(\xi, \eta) e^{2\pi i x \cdot (\xi + \eta)} d\xi d\eta. \quad (1)$$

BILINEAR MULTIPLIER

- Let $m(\xi, \eta)$ be a bounded measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ and (p, q, r) , $0 < p, q, r \leq \infty$ be a triplet of exponents. Consider the bilinear operator M_m initially defined for functions f and g in a suitable dense class by

$$M_m(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) m(\xi, \eta) e^{2\pi i x \cdot (\xi + \eta)} d\xi d\eta. \quad (1)$$

- We say that M_m is a bilinear multiplier operator for the triplet (p, q, r) if M_m extends to a bounded operator from $L^p(\mathbb{R}^n) \times L^q(\mathbb{R}^n)$ into $L^r(\mathbb{R}^n)$, more precisely

$$\|M_m(f, g)\|_{L^r(\mathbb{R}^n)} \leq C \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^q(\mathbb{R}^n)}$$

where C is independent of f and g .

BILINEAR MULTIPLIER

- Let $m(\xi, \eta)$ be a bounded measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ and (p, q, r) , $0 < p, q, r \leq \infty$ be a triplet of exponents. Consider the bilinear operator M_m initially defined for functions f and g in a suitable dense class by

$$M_m(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) m(\xi, \eta) e^{2\pi i x \cdot (\xi + \eta)} d\xi d\eta. \quad (1)$$

- We say that M_m is a bilinear multiplier operator for the triplet (p, q, r) if M_m extends to a bounded operator from $L^p(\mathbb{R}^n) \times L^q(\mathbb{R}^n)$ into $L^r(\mathbb{R}^n)$, more precisely

$$\|M_m(f, g)\|_{L^r(\mathbb{R}^n)} \leq C \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^q(\mathbb{R}^n)}$$

where C is independent of f and g .

- Let $\mathcal{M}_{p,q,r}(\mathbb{R}^n)$ be the space of all bilinear multiplier symbols for the triplet (p, q, r) . The norm of $m \in \mathcal{M}_{p,q,r}(\mathbb{R}^n)$ is defined to be the norm of the corresponding bilinear multiplier operator M_m from $L^p(\mathbb{R}^n) \times L^q(\mathbb{R}^n)$ into $L^r(\mathbb{R}^n)$, i.e.

$$\|m\|_{\mathcal{M}_{p,q,r}(\mathbb{R}^n)} = \|M_m\|_{L^p(\mathbb{R}^n) \times L^q(\mathbb{R}^n) \rightarrow L^r(\mathbb{R}^n)}$$

UNIMODULAR BILINEAR MULTIPLIER

- Let ϕ be a measurable function defined on \mathbb{R}^n . For $f, g \in \mathcal{S}(\mathbb{R}^n)$ consider the bilinear operator

$$B(f, g)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{i\phi(\xi, \eta)} e^{2\pi i x \cdot (\xi + \eta)} d\xi d\eta \quad (2)$$

where ϕ is a nonlinear function.

UNIMODULAR BILINEAR MULTIPLIER

- Let ϕ be a measurable function defined on \mathbb{R}^n . For $f, g \in \mathcal{S}(\mathbb{R}^n)$ consider the bilinear operator

$$B(f, g)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{i\phi(\xi, \eta)} e^{2\pi i x \cdot (\xi + \eta)} d\xi d\eta \quad (2)$$

where ϕ is a nonlinear function.

- These types of bilinear multipliers arise when we study the solution of the non-linear PDE

$$\begin{aligned} i\partial_t u(t, x) + P(D)u(t, x) &= |u(x)|^2 \\ u(0, x) &= f(x), \end{aligned}$$

where $P(D)$ is a quadratic homogeneous function of $D = (\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$. The solution of the above PDE is given by

$$u(t, x) = e^{itP(D)} f(x) + \int_0^t e^{i(s-t)P(D)} (u(s, .), \overline{u(s, .)})(x) ds.$$

It is therefore natural to study the above bilinear operators.

Definition

(Local L^2 range) The sets of exponents (p, q, r) satisfying $2 \leq p, q, r' \leq \infty$ and the Hölder condition $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ is referred to as the local L^2 range of exponents in the context of bilinear multipliers. We shall use the notation L for this set.

KNOWN RESULTS

- F. Bernicot and P. Germain proved the following theorem:

Theorem

[2] Let us assume that

$$\partial_\eta \partial_\xi \phi \neq 0$$

$(\partial_\eta^2 - \partial_\eta \partial_\xi)\phi \neq 0$ and $\partial_\xi^2 - \partial_\eta \partial_\xi \phi \neq 0$. Then the bilinear oscillatory integral operator

$$T_\lambda(f, g)(x) := \frac{1}{(2\pi)^{1/2}} \int \int \hat{f}(\xi) \hat{g}(\eta) e^{i\lambda\phi(\xi, \eta)} e^{2\pi i x \cdot (\xi + \eta)} d\xi d\eta$$

satisfies the following boundedness: for all exponents p, q, r in the local L^2 range, there exists a constant $C = C(p, q, r, \phi, m)$ such that for all $\lambda \neq 0$

$$\|T_\lambda(f, g)\|_{L^{r'}} \leq C|\lambda|^{-\frac{1}{2}} \|f\|_{L^{p'}} \|g\|_{L^{q'}}.$$

MAIN RESULTS

- We study the boundedness of the operator

$$T_{\phi,\lambda}(f,g)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{i\lambda\phi(\xi-\eta)} e^{2\pi i x \cdot (\xi+\eta)} d\xi d\eta.$$

MAIN RESULTS

- We study the boundedness of the operator

$$T_{\phi,\lambda}(f,g)(x) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{i\lambda\phi(\xi-\eta)} e^{2\pi i x \cdot (\xi+\eta)} d\xi d\eta.$$

- We prove the following theorem

Theorem

Let (p, q, r) be a triplet of exponents outside the local L^2 –range and satisfy the Hölder condition. If ϕ is a $\mathcal{C}^1(\mathbb{R}^n)$ smooth real nonlinear function, then

$$\|e^{i\lambda\phi(\xi-\eta)}\|_{\mathcal{M}_{p,q,r}(\mathbb{R}^n)} \rightarrow \infty, \quad \lambda \in \mathbb{R}, \quad |\lambda| \rightarrow \infty.$$

SKETCH OF THE PROOF

- The theorem follows from the following lemma:

Lemma

Let $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ be a measurable function. Suppose that there are N cubes $Q_k \subset \mathbb{R}^n$, $k = 1, 2, \dots, N$ such that $\phi(t) = \langle \alpha_k, t \rangle + \beta_k$ for almost all $t \in Q_k$, the vectors α_k , $k = 1, 2, \dots, N$ are all distinct and $\beta_k \in \mathbb{R}^n$. Then for any unbounded sequence of real numbers $\{\lambda_m\}_{m \in \mathbb{N}}$ we have

$$\sup_{m \in \mathbb{N}} \|e^{i\lambda_m \phi(\xi - \eta)}\|_{\mathcal{M}_{p,q,r}(\mathbb{R}^n)} \geq N^{\gamma - \frac{1}{2}}, \quad (3)$$

where $\gamma = \max\left\{\frac{1}{p}, \frac{1}{q}, \frac{1}{r'}\right\}$.

- It is easy to check that the R.H.S. of the last inequality clearly blows up when the triplet (p, q, r) lies outside the local L^2 range with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.

- It is easy to check that the R.H.S. of the last inequality clearly blows up when the triplet (p, q, r) lies outside the local L^2 range with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.
- The lemma is based on the following proposition:

Proposition

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ be an N -tuple of distinct vectors of \mathbb{R}^n and $\rho > 0$ be a positive real number. For vector-valued function $f = (f_1, f_2, \dots, f_N)$ and $g = (g_1, g_2, \dots, g_N)$ consider the bilinear operator

$$S_{\alpha, \rho}(f, g)(x) = (f_1(\cdot + \rho\alpha_1)g_1(\cdot - \alpha_1),$$

$$f_2(\cdot + \rho\alpha_2)g_2(\cdot - \alpha_2), \dots, f_N(\cdot + \rho\alpha_1)g_N(\cdot - \alpha_N))(x).$$

Then the norm of the operator satisfies the following

$$\|S_{\alpha, \rho}\|_{p, q, r} \geq \max\{N^{1/p-1/2}, N^{1/q-1/2}\}.$$

COUNTER EXAMPLES IN LOCAL L^2 REGION

- We discuss examples of nonlinear functions ϕ for which $e^{i\phi}$ does not give rise to bilinear multiplier for exponents in the local L^2 —range. Therefore, we cannot expect to have a consistent positive result concerning bilinear multipliers of the form $e^{i\phi}$, where ϕ is a nonlinear function, even in local L^2 range.

COUNTER EXAMPLES IN LOCAL L^2 REGION

- **Case I: Boundary of local L^2 range.** The boundary of local L^2 range consists of line segments AC , CB and BA .

COUNTER EXAMPLES IN LOCAL L^2 REGION

- **Case I: Boundary of local L^2 range.** The boundary of local L^2 range consists of line segments AC , CB and BA .
- We show that the function $e^{i\xi \cdot \eta}$ cannot be a bilinear multiplier for points on the boundary. Define

$$T(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{2i\xi \cdot \eta} e^{ix \cdot (\xi + \eta)} d\xi d\eta.$$

COUNTER EXAMPLES IN LOCAL L^2 REGION

- **Case I: Boundary of local L^2 range.** The boundary of local L^2 range consists of line segments AC , CB and BA .
- We show that the function $e^{i\xi \cdot \eta}$ cannot be a bilinear multiplier for points on the boundary. Define

$$T(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{2i\xi \cdot \eta} e^{ix \cdot (\xi + \eta)} d\xi d\eta.$$

- Define

$$\langle T^{*,1}(h, g), f \rangle := \langle T(f, g), h \rangle \text{ and } \langle T^{*,2}(f, h), g \rangle := \langle T(f, g), h \rangle.$$

It is known that if T is bounded from $L^p \times L^q$ into L^r , then $T^{*,1}$ is bounded from $L^{r'} \times L^q$ into $L^{p'}$ and $T^{*,2}$ is bounded from $L^p \times L^{r'}$ into $L^{q'}$.

COUNTER EXAMPLES IN LOCAL L^2 REGION

- **Case I: Boundary of local L^2 range.** The boundary of local L^2 range consists of line segments AC , CB and BA .
- We show that the function $e^{i\xi \cdot \eta}$ cannot be a bilinear multiplier for points on the boundary. Define

$$T(f, g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}(\xi) \hat{g}(\eta) e^{2i\xi \cdot \eta} e^{ix \cdot (\xi + \eta)} d\xi d\eta.$$

- Define

$$\langle T^{*,1}(h, g), f \rangle := \langle T(f, g), h \rangle \text{ and } \langle T^{*,2}(f, h), g \rangle := \langle T(f, g), h \rangle.$$

It is known that if T is bounded from $L^p \times L^q$ into L^r , then $T^{*,1}$ is bounded from $L^{r'} \times L^q$ into $L^{p'}$ and $T^{*,2}$ is bounded from $L^p \times L^{r'}$ into $L^{q'}$.

- Using the adjoint operators one can easily conclude that $e^{2i(\xi + \eta, -\eta)} \in \mathcal{M}_{r', q, p'}(\mathbb{R}^n)$ and $e^{2i(-\xi, \eta + \xi)} \in \mathcal{M}_{p, r', q'}(\mathbb{R}^n)$ with norm exactly the same as that of $e^{2i\xi \cdot \eta}$.

COUNTER EXAMPLES IN LOCAL L^2 REGION

- **Case II: Interior points.** This case follows in a similar fashion. We claim that the function $e^{i(|\xi|^2 + |\eta|^2)}$ does not give rise to a bilinear multiplier for any point in the interior of the region ABC.

- **Case II: Interior points.** This case follows in a similar fashion. We claim that the function $e^{i(|\xi|^2+|\eta|^2)}$ does not give rise to a bilinear multiplier for any point in the interior of the region ABC.
- Using the symmetry of the function $e^{i(|\xi|^2+|\eta|^2)}$, it is enough to show that $e^{i(|\xi|^2+|\eta|^2)} \notin \mathcal{M}_{p,p,\frac{p}{2}}(\mathbb{R}^n)$ for $2 < p < 4$.

REFERENCES

- Bényi, A.; Gröchenig, K.; Okoudjou, Kasso A.; Rogers, Luke G. , *Unimodular Fourier multipliers on modulation spaces*, J. Funct. Anal. 246, (2007), no. 2, 366–384.
- Bernicot, F.; Germain, P. *Bilinear oscillatory integrals and boundedness of new bilinear multipliers*, Adv. Math. 225 (2010), no. 4, 1739–1785.
- Blasco, O., *Bilinear multipliers and transference*, Int. J. Math. Math. Sci. 2005, no. 4, 545–554.
- Hörmander, L., *Estimates for translation invariant operators in L^p spaces*, Acta. Math. 104 (1960), 93–140.
- de Leeuw, K., *On L_p –multipliers*, Ann. of Math. (2) 81 (1965) 364–379.
- Grafakos, L.; Martell, J. M., *Extrapolation of weighted norm inequalities for multivariable operators and applications*, J. Geom. Anal., 14 (2004), no. 1, 19–46.

REFERENCES

- Lacey, M.; Thiele, C., *L^p estimates on the bilinear Hilbert transform for $2 < p < \infty$* , Ann. of Math.(2) 146 (1997), no. 3, 693–724.
- Lacey, M.; Thiele, C., *On Calderon's conjecture*, Ann. of Math.(2) 149 (1999), no. 2, 475–496.
- Lebedev, V.; Olevskii, A., *Idempotents of Fourier multiplier algebra*, Geom. Funct. Anal. 4 (1994), no. 5, 539–544.
- Lebedev, V.; Olevskii, A., *C^1 change of variables: Beurling-Helson type theorem and Hörmander conjecture on Fourier multipliers*, Geom. Funct. Anal. 4 (1994), 4, 213–235.
- Lebedev, V.; Olevskii, A., *Fourier L^p multipliers with bounded powers*, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), 3, 129–166.
- Shrivastava, S., *A note on bi-linear multipliers*, Proc. Amer. Math. Soc. 143 (2015), no. 7, 3055–3061.

THANK YOU !!!