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FOURIER MULTIPLIER

o Let m € L°°(R"), we define the Fourier multiplier operator as
follows :
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FOURIER MULTIPLIER

o Let m € L°°(R"), we define the Fourier multiplier operator as
follows :

Tuf()i= [ m(Of(E)e<de

for f € C°(R").
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FOURIER MULTIPLIER

o Let m € L°°(R"), we define the Fourier multiplier operator as
follows :

Tuf(x) = | m©)f(©)e<de

for f € C°(R").
@ By the use of the Plancherel Theorem it is easy to see that
T is bounded on L2(R").
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FOURIER MULTIPLIER

o Let m € L°°(R"), we define the Fourier multiplier operator as
follows :

Tuf(x) = | m©)f(©)e<de

for f € C°(R").
@ By the use of the Plancherel Theorem it is easy to see that
T is bounded on L2(R").

@ For p # 2, we need some regularity on m for T,, to be
bounded on LP(R").
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UNIMODULAR FOURIER MULTIPLIER

@ For a measurable function ¢ : R” — R and A € R, consider
the unimodular function e?.
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UNIMODULAR FOURIER MULTIPLIER

@ For a measurable function ¢ : R” — R and A € R, consider

the unimodular function e*?.
@ Fourier multiplier operator corresponding to the function /¢
gives solutions of IVP in linear PDE for some particular

choices of ¢.
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UNIMODULAR FOURIER MULTIPLIER

@ For a measurable function ¢ : R” — R and A € R, consider
the unimodular function e*?.

o Fourier multiplier operator corresponding to the function e/*?
gives solutions of IVP in linear PDE for some particular
choices of ¢.

@ When ¢(&) = |¢|? , it corresponds to the solution of the linear
Schrodinger equation at time A.

For ¢(&) = ||, the Fourier multiplier operator is related to the
solution of the wave equation.
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UNIMODULAR FOURIER MULTIPLIER

@ For a measurable function ¢ : R” — R and A € R, consider
the unimodular function e*?.

o Fourier multiplier operator corresponding to the function e/*?
gives solutions of IVP in linear PDE for some particular
choices of ¢.

o When ¢(&) = |£]? , it corresponds to the solution of the linear
Schrodinger equation at time A.

For ¢(&) = [£|, the Fourier multiplier operator is related to the
solution of the wave equation.

e Hormander proved that if ¢ is a C? smooth real-valued
function and Hei)\d)HMp(Rn) = O(1) for A € R and p # 2, then
¢ is a linear function.
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UNIMODULAR FOURIER MULTIPLIER

@ For a measurable function ¢ : R” — R and A € R, consider
the unimodular function e*?.

o Fourier multiplier operator corresponding to the function e/*?
gives solutions of IVP in linear PDE for some particular
choices of ¢.

o When ¢(&) = |£]? , it corresponds to the solution of the linear
Schrodinger equation at time A.

For ¢(&) = [£|, the Fourier multiplier operator is related to the
solution of the wave equation.

e Hormander proved that if ¢ is a C? smooth real-valued
function and [|*?||py (ry = O(1) for A € R and p # 2, then
¢ is a linear function.

@ He also conjectured that the above result holds for
# € CY(R"). In 1994 V. Lebedev and A. Olevskii [4] settled
this conjecture and proved the above result for ¢ € C1(R").
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BILINEAR MULTIPLIER

@ Let m(&,n) be a bounded measurable function on R” x R”
and (p,q,r), 0 < p,q,r < oo be a triplet of exponents.
Consider the bilinear operator M,, initially defined for
functions f and g in a suitable dense class by

/n /n €, n)e®™ > EMdedy. (1)
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BILINEAR MULTIPLIER

e Let m(&,n) be a bounded measurable function on R” x R”
and (p,q,r), 0 < p,q,r < oo be a triplet of exponents.
Consider the bilinear operator M,, initially defined for
functions f and g in a suitable dense class by

Ml )) = [ [ F©ameme ™ dean. (1)

@ We say that M, is a bilinear multiplier operator for the triplet
(p,q,r) if My, extends to a bounded operator from
LP(R™) x L9(R™) into L"(R"), more precisely
[Mm(f, 8)llLrrry < Cllf || ooy llg | Lagrr)
where C is independent of f and g.
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BILINEAR MULTIPLIER

e Let m(&,n) be a bounded measurable function on R” x R”
and (p,q,r), 0 < p,q,r < oo be a triplet of exponents.
Consider the bilinear operator M,, initially defined for
functions f and g in a suitable dense class by

Ml )) = [ [ F©ameme ™ dean. (1)

o We say that M,, is a bilinear multiplier operator for the triplet
(p,q,r) if My, extends to a bounded operator from
LP(R™) x L9(R"™) into L"(R"), more precisely

[Mm(f, &)l rry < Clifllomyllgll Lagrn
where C is independent of f and g.
o Let M, 4 ,(R") be the space of all bilinear multiplier symbols
for the triplet (p, g, r). The norm of m € M, (R") is

defined to be the norm of the corresponding bilinear multiplier
operator Mp, from LP(R") x L9(R") into L"(R"), i.e.
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UNIMODULAR BILINEAR MULTIPLIER

@ Let ¢ be a measurable function defined on R". For
f,g € S(R") consider the bilinear operator

/ / lﬁ){r}) 2mix-(E+n) dde] (2)

where ¢ is a nonlinear function.
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UNIMODULAR BILINEAR MULTIPLIER

@ Let ¢ be a measurable function defined on R". For
f,g € S(R") consider the bilinear operator

/ / )elEmg2rixEtn gedy  (2)

where ¢ is a nonlinear function.
@ These types of bilinear multipliers arise when we study the
solution of the non-linear PDE

iOzu(t, x) + P(D)u(t,x) = |u(x)]?
u(0,x) = f(x),

where P(D) is a quadratic homogeneous function of
D = (Ox, Ox,y - - Ox,). The solution of the above PDE is
given by

u(t,x) = POV (x) + /0 t e/ =PP) (y(s, ), u(s,.))(x)ds.

It is therefore natural to study the above bilinear operators.
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Definition

(Local L? range) The sets of exponents (p, g, r) satisfying
1

2 < p,q,r' < oo and the Holder condition ,1) + % = < is referred to

as the local L? range of exponents in the context of bilinear
multipliers. We shall use the notation L for this set.
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KNOWN RESULTS

@ F. Bernicot and P. Germain proved the following theorem:

Theorem
[2] Let us assume that

Oped # 0

(02 — 0,0¢)p # 0 and Gg — 0,0¢¢ # 0. Then the bilinear
oscillatory integral operator

T, 8)0) = iz | | FOBmP A E gy

satisfies the following boundedness: for all exponents p, q,r in the
local L? range, there exists a constant C = C(p, q,r, ¢, m) such
that for all A # 0

_1
ITA(F; &)l < CIA2 1l o 18] -
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MAIN RESULTS

@ We study the boundedness of the operator

Tox(f,8)( / / //\(/>( ’f/)e27rf><'(§+n)d£d77'
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MAIN RESULTS

@ We study the boundedness of the operator

Tox(F,8)( / / l>\¢>(€ n) g2mix-(§+m) dédn.

@ We prove the following theorem

Let (p, q,r) be a triplet of exponents outside the local L?>—range
and satisfy the Holder condition. If ¢ is a C1(R") smooth real
nonlinear function, then

\|eiA¢(f—n>||Mp,q’,(Rn) — 00, A€R, |\ = 0.
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SKETCH OF THE PROOF

@ The theorem follows from the following lemma:

Lemma

Let ¢ : R" — R be a measurable function. Suppose that there are
N cubes Qx CR" k=1,2,..., N such that ¢(t) = {ax, t) + Bk
for almost all t € Qy, the vectors oy, k =1,2,...,N are all
distinct and By € R". Then for any unbounded sequence of real
numbers {\m} men we have

_ _1
sup ||€Am?ED]| 0 gay > N2, (3)
meN

where vy = max{E ' g , L1

JoTsArROOP KAUR (joint work with Saurabh Shrivastava) Unimodular Bilinear multipliers on LP spaces



CONTD.

@ It is easy to check that the R.H.S. of the last inequality clearly

blows up when the triplet (p, g, r) lies outside the local L2
range with %} + % = %

AROOP KAUR (joint work with Saurabh Shrivastava) Unimodular Bilinear multipliers on LP spaces



CONTD.

@ It is easy to check that the R.H.S. of the last inequality clearly

blows up when the triplet (p, g, r) lies outside the local L2
range with % + % = %

@ The lemma is based on the following proposition:

Proposition

Let « = (a1, 2,...,an) be an N—tuple of distinct vectors of R"
and p > 0 be a positive real number. For vector-valued function
f=(f,f,...,fy) and g = (g1, 8, - .., 8n) consider the bilinear
operator

Sap(f,8)(x) = (A + pa1)gi(- — a1),
(- + pa2)ga(- — a2), ..., fn(- + paa)gn (- — an))(x).

Then the norm of the operator satisfies the following

15a.pllp.q,r = max{Nl/P—1/2’ Nl/q—l/z}‘
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COUNTER EXAMPLES IN LOCAL L? REGION

@ We discuss examples of nonlinear functions ¢ for which e’®
does not give rise to bilinear multiplier for exponents in the
local L%2—range. Therefore, we cannot expect to have a
consistent positive result concerning bilinear multipliers of the
form e'?, where ¢ is a nonlinear function, even in local L2
range.

AROOP KAUR (joint work with Saurabh Shrivastava) Unimodular Bilinear multipliers on LP spaces



COUNTER EXAMPLES IN LOCAL L? REGION

e Case |: Boundary of local L? range. The boundary of local
L? range consists of line segments AC, CB and BA.
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COUNTER EXAMPLES IN LOCAL L? REGION

e Case I: Boundary of local L2 range. The boundary of local
L2 range consists of line segments AC, CB and BA.

@ We show that the function /¢ cannot be a bilinear multiplier
for points on the boundary. Define

/ / 7} 215 ne/x (&+n) d£d7]
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COUNTER EXAMPLES IN LOCAL L? REGION

e Case I: Boundary of local L2 range. The boundary of local
L2 range consists of line segments AC, CB and BA.

@ We show that the function /¢ cannot be a bilinear multiplier
for points on the boundary. Define

/ / 21{ ne/x §+77)d§d77
@ Define

(T*Y(h,g), ) := (T(f.g), h)and (T*2(f, h), g) := (T(f,g). h).

It is known that if T is bounded from LP x L9 into L", then
T*1 is bounded from L" x L9 into LP and T*2 is bounded
from LP x L" into LY.

JoTsArROOP KAUR (joint work with Saurabh Shrivastava) Unimodular Bilinear multipliers on LP spaces



COUNTER EXAMPLES IN LOCAL L? REGION

e Case I: Boundary of local L2 range. The boundary of local
L2 range consists of line segments AC, CB and BA.

@ We show that the function /¢ cannot be a bilinear multiplier
for points on the boundary. Define

/ / 215 ne/x §+77)d§d77
@ Define

(T*(h,g),f) = (T(f,g), h)yand (T**(f, h),g) := (T(f,g),h).

It is known that if T is bounded from LP x L9 into L', then
T*! is bounded from L x L9 into L and T*2 is bounded
from LP x L" into LY.

@ Using the adjoint operators one can easily conclude that
e2i(&+n—n) ¢ My g (R") and e2’(_5”’/+5)_ € Mprq(R")
with norm exactly the same as that of %€,
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COUNTER EXAMPLES IN LOCAL L? REGION

@ Case II: Interior points. This case follows in a similar
fashion. We claim that the function e/(€°+17*) does not give
rise to a bilinear multiplier for any point in the interior of the
region ABC.
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COUNTER EXAMPLES IN LOCAL L? REGION

@ Case II: Interior points. This case follows in a similar
fashion. We claim that the function e/(€°+17*) does not give
rise to a bilinear multiplier for any point in the interior of the
region ABC.

e Using the symmetry of the function e/(€°+17%) it is enough to
show that e/(lE*+In*) ¢ /\/lm,,g(R”) for 2 < p < 4.
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