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Fourier Multiplier

Let m ∈ L∞(Rn), we define the Fourier multiplier operator as
follows :

Tmf (x) :=

∫
Rn

m(ξ)f̂ (ξ)e ix ·ξdξ

for f ∈ C∞c (Rn).

By the use of the Plancherel Theorem it is easy to see that
Tm is bounded on L2(Rn).

For p 6= 2, we need some regularity on m for Tm to be
bounded on Lp(Rn).
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Unimodular Fourier Multiplier

For a measurable function φ : Rn → R and λ ∈ R, consider
the unimodular function e iλφ.

Fourier multiplier operator corresponding to the function e iλφ

gives solutions of IVP in linear PDE for some particular
choices of φ.

When φ(ξ) = |ξ|2 , it corresponds to the solution of the linear
Schrödinger equation at time λ.
For φ(ξ) = |ξ|, the Fourier multiplier operator is related to the
solution of the wave equation.

Hörmander proved that if φ is a C 2 smooth real-valued
function and ‖e iλφ‖Mp(Rn) = O(1) for λ ∈ R and p 6= 2, then
φ is a linear function.

He also conjectured that the above result holds for
φ ∈ C 1(Rn). In 1994 V. Lebedev and A. Olevskii [4] settled
this conjecture and proved the above result for φ ∈ C 1(Rn).
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Bilinear Multiplier

Let m(ξ, η) be a bounded measurable function on Rn × Rn

and (p, q, r), 0 < p, q, r ≤ ∞ be a triplet of exponents.
Consider the bilinear operator Mm initially defined for
functions f and g in a suitable dense class by

Mm(f , g)(x) =

∫
Rn

∫
Rn

f̂ (ξ)ĝ(η)m(ξ, η)e2πix ·(ξ+η)dξdη. (1)

We say that Mm is a bilinear multiplier operator for the triplet
(p, q, r) if Mm extends to a bounded operator from
Lp(Rn)× Lq(Rn) into Lr (Rn), more precisely

‖Mm(f , g)‖Lr (Rn) ≤ C‖f ‖Lp(Rn)‖g‖Lq(Rn)

where C is independent of f and g .
Let Mp,q,r (Rn) be the space of all bilinear multiplier symbols
for the triplet (p, q, r). The norm of m ∈Mp,q,r (Rn) is
defined to be the norm of the corresponding bilinear multiplier
operator Mm from Lp(Rn)× Lq(Rn) into Lr (Rn), i.e.
‖m‖Mp,q,r (Rn) = ‖Mm‖Lp(Rn)×Lq(Rn)→Lr (Rn).
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Unimodular Bilinear Multiplier

Let φ be a measurable function defined on Rn. For
f , g ∈ S(Rn) consider the bilinear operator

B(f , g)(x) :=

∫
Rn

∫
Rn

f̂ (ξ)ĝ(η)e iφ(ξ,η)e2πix ·(ξ+η)dξdη (2)

where φ is a nonlinear function.

These types of bilinear multipliers arise when we study the
solution of the non-linear PDE

i∂tu(t, x) + P(D)u(t, x) = |u(x)|2

u(0, x) = f (x),

where P(D) is a quadratic homogeneous function of
D = (∂x1 , ∂x2 , · · · ∂xn). The solution of the above PDE is
given by

u(t, x) = e itP(D)f (x) +

∫ t

0
e i(s−t)P(D)(u(s, .), u(s, .))(x)ds.

It is therefore natural to study the above bilinear operators.
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Definition

(Local L2 range) The sets of exponents (p, q, r) satisfying
2 ≤ p, q, r ′ ≤ ∞ and the Hölder condition 1

p + 1
q = 1

r is referred to

as the local L2 range of exponents in the context of bilinear
multipliers. We shall use the notation L for this set.
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Known Results

F. Bernicot and P. Germain proved the following theorem:

Theorem

[2] Let us assume that
∂η∂ξφ 6= 0

(∂2η − ∂η∂ξ)φ 6= 0 and ∂2ξ − ∂η∂ξφ 6= 0. Then the bilinear
oscillatory integral operator

Tλ(f , g)(x) :=
1

(2π)1/2

∫ ∫
f̂ (ξ)ĝ(η)e iλφ(ξ,η)e2πix ·(ξ+η)dξdη

satisfies the following boundedness: for all exponents p, q, r in the
local L2 range, there exists a constant C = C (p, q, r , φ,m) such
that for all λ 6= 0

‖Tλ(f , g)‖Lr′ ≤ C |λ|−
1
2 ‖f ‖Lp′‖g‖Lq′ .
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Main Results

We study the boundedness of the operator

Tφ,λ(f , g)(x) :=

∫
Rn

∫
Rn

f̂ (ξ)ĝ(η)e iλφ(ξ−η)e2πix ·(ξ+η)dξdη.

We prove the following theorem

Theorem

Let (p, q, r) be a triplet of exponents outside the local L2−range
and satisfy the Hölder condition. If φ is a C1(Rn) smooth real
nonlinear function, then

‖e iλφ(ξ−η)‖Mp,q,r (Rn) →∞, λ ∈ R, |λ| → ∞.
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and satisfy the Hölder condition. If φ is a C1(Rn) smooth real
nonlinear function, then

‖e iλφ(ξ−η)‖Mp,q,r (Rn) →∞, λ ∈ R, |λ| → ∞.

Jotsaroop Kaur (joint work with Saurabh Shrivastava) Unimodular Bilinear multipliers on Lp spaces



Sketch of the proof

The theorem follows from the following lemma:

Lemma

Let φ : Rn → R be a measurable function. Suppose that there are
N cubes Qk ⊂ Rn, k = 1, 2, . . . ,N such that φ(t) = 〈αk , t〉+ βk
for almost all t ∈ Qk , the vectors αk , k = 1, 2, . . . ,N are all
distinct and βk ∈ Rn. Then for any unbounded sequence of real
numbers {λm}m∈N we have

sup
m∈N
‖e iλmφ(ξ−η)‖Mp,q,r (Rn) ≥ Nγ− 1

2 , (3)

where γ = max{ 1p ,
1
q ,

1
r ′ }.
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Contd.

It is easy to check that the R.H.S. of the last inequality clearly
blows up when the triplet (p, q, r) lies outside the local L2

range with 1
p + 1

q = 1
r .

The lemma is based on the following proposition:

Proposition

Let α = (α1, α2, . . . , αN) be an N−tuple of distinct vectors of Rn

and ρ > 0 be a positive real number. For vector-valued function
f = (f1, f2, . . . , fN) and g = (g1, g2, . . . , gN) consider the bilinear
operator

Sα,ρ(f , g)(x) = (f1(·+ ρα1)g1(· − α1),

f2(·+ ρα2)g2(· − α2), . . . , fN(·+ ρα1)gN(· − αN))(x).

Then the norm of the operator satisfies the following

‖Sα,ρ‖p,q,r ≥ max{N1/p−1/2,N1/q−1/2}.
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Counter Examples in Local L2 region

We discuss examples of nonlinear functions φ for which e iφ

does not give rise to bilinear multiplier for exponents in the
local L2−range. Therefore, we cannot expect to have a
consistent positive result concerning bilinear multipliers of the
form e iφ, where φ is a nonlinear function, even in local L2

range.
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Counter Examples in Local L2 region

Case I: Boundary of local L2 range. The boundary of local
L2 range consists of line segments AC ,CB and BA.

We show that the function e iξ·η cannot be a bilinear multiplier
for points on the boundary. Define

T (f , g)(x) =

∫
Rn

∫
Rn

f̂ (ξ)ĝ(η)e2iξ·ηe ix ·(ξ+η)dξdη.

Define

〈T ∗,1(h, g), f 〉 := 〈T (f , g), h〉 and 〈T ∗,2(f , h), g〉 := 〈T (f , g), h〉.

It is known that if T is bounded from Lp × Lq into Lr , then
T ∗,1 is bounded from Lr

′ × Lq into Lp
′

and T ∗,2 is bounded
from Lp × Lr

′
into Lq

′
.

Using the adjoint operators one can easily conclude that
e2i(ξ+η,−η) ∈Mr ′,q,p′(Rn) and e2i(−ξ,η+ξ) ∈Mp,r ′,q′(Rn)
with norm exactly the same as that of e2iξ·η.
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Counter Examples in Local L2 region

Case II: Interior points. This case follows in a similar
fashion. We claim that the function e i(|ξ|

2+|η|2) does not give
rise to a bilinear multiplier for any point in the interior of the
region ABC.

Using the symmetry of the function e i(|ξ|
2+|η|2), it is enough to

show that e i(|ξ|
2+|η|2) /∈Mp,p, p

2
(Rn) for 2 < p < 4.
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