On Fourier Multipliers on the Heisenberg groups

Sayan Bagchi

Indian Statistical Institute, Kolkata

18.12.2017
Fourier multipliers on \mathbb{R}^n

Given a bounded measurable function $m(\xi)$ on \mathbb{R}^n we can define a transformation T_m by setting

$$(T_m f)(\xi) = m(\xi)\hat{f}(\xi), \quad f \in L^2(\mathbb{R}^n).$$

By Plancherel theorem, T_m is bounded operator on $L^2(\mathbb{R}^n)$.
Given a bounded measurable function \(m(\xi) \) on \(\mathbb{R}^n \) we can define a transformation \(T_m \) by setting

\[
\hat{(T_m f)}(\xi) = m(\xi)\hat{f}(\xi), \quad f \in L^2(\mathbb{R}^n).
\]

By Plancherel theorem, \(T_m \) is bounded operator on \(L^2(\mathbb{R}^n) \).

Definition (Fourier multiplier)

When \(T_m \) extends to \(L^p(\mathbb{R}^n) \) as a bounded operator we say that \(m \) (or equivalently \(T_m \)) is a **Fourier multiplier** for \(L^p(\mathbb{R}^n) \).
Theorem (Hörmander’s multiplier theorem)

Let \(k = \left\lfloor \frac{n}{2} \right\rfloor + 1 \) and \(m \) be of class \(C^k \) away from the origin. If for any \(\beta \in \mathbb{N}^n \) satisfying \(|\beta| < k \)

\[
\sup_{R} R^{|\beta| - \frac{n}{2}} \left(\int_{R^n} |D^\beta m(\xi)|^2 \chi_{\{R < |\xi| < 2R\}}(\xi) d\xi \right)^{\frac{1}{2}} < \infty,
\]

then \(m \) is a Fourier multiplier for \(L^p(\mathbb{R}^n) \) for \(1 < p < \infty \). In particular, if

\[
|D^\beta m(\xi)| \leq C|\xi|^{-|\beta|},
\]

then \(m \) is an \(L^p \)-multiplier, \(1 < p < \infty \).
Let us consider the Heisenberg group $H^n = \mathbb{C}^n \times \mathbb{R}$ equipped with the group operation

$$(z, t)(w, s) = (z + w, t + s + \frac{i}{2} \Im z \bar{w}).$$

H^n is a two-step nilpotent Lie group whose center is $\{(0, t) : t \in \mathbb{R}\}$.

Schrödinger representation:

For each $\lambda \in \mathbb{R} \setminus \{0\}$, define $\pi_\lambda(z, t) \phi(\xi) = e^{i\lambda t} e^{i\lambda (x . \xi + \frac{1}{2} x . y)} \phi(\xi + y)$ where $\phi \in L^2(\mathbb{R}^n)$ and $(z, t) = (x + iy, t) \in H^n$.

Notation: $\pi_\lambda(z) := \pi_\lambda(z, 0)$.

Sayan Bagchi, Fourier multipliers on H^n.
Let us consider the Heisenberg group $H^n = \mathbb{C}^n \times \mathbb{R}$ equipped with the group operation

$$(z, t)(w, s) = (z + w, t + s + \frac{i}{2} z \bar{w}).$$

H^n is a two-step nilpotent Lie group whose center is $\{(0, t) : t \in \mathbb{R}\}$.

Schödinger representation:

For each $\lambda \in \mathbb{R} \setminus \{0\}$, define

$$\pi_\lambda(z, t)\phi(\xi) = e^{i\lambda t} e^{i\lambda(x \cdot \xi + \frac{1}{2} x \cdot y)} \phi(\xi + y)$$

where $\phi \in L^2(\mathbb{R}^n)$ and $(z, t) = (x + iy, t) \in H^n$.

Notation: $\pi_\lambda(z) := \pi_\lambda(z, 0)$.

Sayan Bagchi

Fourier multipliers on H^n
The group Fourier transform of a function \(f \in L^1(H^n) \) is given by

\[
\hat{f}(\lambda) = \int_{H^n} f(z, t) \pi_\lambda(z, t) \, dz \, dt.
\]

If \(f^\lambda(z) = \int_{\mathbb{R}} f(z, t) e^{i\lambda t} \, dt \), then the group Fourier transform can be written as

\[
\hat{f}(\lambda) = \int_{\mathbb{C}^n} f^\lambda(z) \pi_\lambda(z) \, dz,
\]
Weyl Transform

Definition

Weyl transform of a function \(f \) on \(L^1(\mathbb{C}^n) \) in the following way:

\[
W_\lambda(f) = \int_{\mathbb{C}^n} f(z) \pi_\lambda(z) \, dz.
\]

We have the following relation between group Fourier transform on the Heisenberg group and Weyl Transform

\[
\hat{f}(\lambda) = W_\lambda(f^\lambda), \quad f \in L^1(H^n).
\]
Notation: S_2 := Hilbert space of Hilbert-Schmidt operators on $L^2(\mathbb{R}^n)$ with the inner product $(T, S) = tr(TS^*)$.

Plancherel Theorem for Weyl Transform:

For a given $g \in L^1 \cap L^2(\mathbb{C}^n)$, it can be shown that $W_\lambda(g)$ is a Hilbert-Schmidt operator satisfying

$$||g||_{L^2}^2 = \left(\frac{2\pi}{n}\right)^n ||W_\lambda(g)||_{HS}.$$

Plancherel Theorem for group Fourier Transform:

For any given $f \in L^1 \cap L^2(\mathcal{H}^n)$ and for any $\lambda \in \mathbb{R}^\ast$, $\hat{f}(\lambda)$ is also a Hilbert-Schmidt operator. The map $f \rightarrow \hat{f}(\lambda)$ extends as an isometric isomorphism from $L^2(\mathcal{H}^n)$ to $L^2(\mathbb{R}^\ast, S_2, (2\pi)^{-n-1} |\lambda|^n d\lambda)$ and the Plancherel theorem can be read as

$$||f||_{L^2(\mathcal{H}^n)}^2 = \int_{-\infty}^{\infty} ||\hat{f}(\lambda)||_{HS}^2 |\lambda|^n d\lambda.$$
Plancherel theorems

Notation: $S_2 :=$ Hilbert space of Hilbert-Schmidt operators on $L^2(\mathbb{R}^n)$ with the inner product $(T, S) = \text{tr}(TS^*)$.

Plancherel Theorem for Weyl Transform:
For a given $g \in L^1 \cap L^2(\mathbb{C}^n)$, it can be shown that $W_\lambda(g)$ is a Hilbert-Schmidt operator satisfying

$$\|g\|_{L^2}^2 = (2\pi)^n |\lambda|^n \|W_\lambda(g)\|_{HS}.$$

In fact the map $g \rightarrow W_\lambda(g)$ can be extended as an isometric isomorphism from $L^2(\mathbb{C}^n)$ to S_2, the space of all Hilbert-Schmidt operators on $L^2(\mathbb{R}^n)$.

Plancherel Theorem for group Fourier Transform:
For any given $f \in L^1 \cap L^2(\mathbb{H}^n)$ and for any $\lambda \in \mathbb{R}^*$, $\hat{f}(\lambda)$ is also a Hilbert-Schmidt operator. The map $f \rightarrow \hat{f}(\lambda)$ extends as an isometric isomorphism from $L^2(\mathbb{H}^n)$ to $L^2(\mathbb{R}^*, S_2, (2\pi)^{-n-1} |\lambda|^n d\lambda)$ and the Plancherel theorem can be read as

$$\|f\|_{L^2(\mathbb{H}^n)}^2 = (2\pi)^{-n-1} \int_{-\infty}^{\infty} \|\hat{f}(\lambda)\|^2_{HS} |\lambda|^n d\lambda.$$
Plancherel theorems

Notation: \(S_2 := \) Hilbert space of Hilbert-Schmidt operators on \(L^2(\mathbb{R}^n) \) with the inner product \((T, S) = \text{tr}(TS^*)\).

Plancherel Theorem for Weyl Transform:
For a given \(g \in L^1 \cap L^2(\mathbb{C}^n) \), it can be shown that \(W_\lambda(g) \) is a Hilbert-Schmidt operator satisfying

\[
\|g\|^2_{L^2} = (2\pi)^n |\lambda|^n \|W_\lambda(g)\|_{HS}.
\]

In fact the map \(g \to W_\lambda(g) \) can be extended as an isometric isomorphism from \(L^2(\mathbb{C}^n) \) to \(S_2 \), the space of all Hilbert-Schmidt operators on \(L^2(\mathbb{R}^n) \).

Plancherel Theorem for group Fourier Transform:
For any given \(f \in L^1 \cap L^2(H^n) \) and for any \(\lambda \in \mathbb{R}^* \), \(\hat{f}(\lambda) \) is also a Hilbert-Schmidt operator. The map \(f \to \hat{f}(\lambda) \) extends as an isometric isomorphism from \(L^2(H^n) \) to \(L^2(\mathbb{R}^*, S_2, (2\pi)^{-n-1} |\lambda|^n d\lambda) \) and the Plancherel theorem can be read as

\[
\|f\|^2_{L^2(H^n)} = (2\pi)^{-n-1} \int_{-\infty}^{\infty} \|\hat{f}(\lambda)\|^2_{HS} |\lambda|^n d\lambda.
\]
Definition (Weyl multipliers)

Given a bounded linear operator m on $L^2(\mathbb{R}^n)$ we can define an operator T^λ_m on $L^2(\mathbb{C}^n)$ by

$$W_\lambda(T^\lambda_m f) = mW_\lambda(f)$$

which is certainly bounded on $L^2(\mathbb{C}^n)$. If this operator extends to a bounded linear operator on $L^p(\mathbb{C}^n)$ then we say that m is a (left) Weyl multiplier for $L^p(\mathbb{C}^n)$.

We can also define right Weyl multipliers.
Some notations and definitions

\[A_j(\lambda) = \frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad A^*(\lambda) = -\frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad j = 0, 1, \ldots, n \]
Some notations and definitions

1. \(A_j(\lambda) = \frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad A^*(\lambda) = -\frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad j = 0, 1, \cdots, n \)

2. \[\delta_j(\lambda)m = |\lambda|^{-\frac{1}{2}} [m, A_j(\lambda)], \quad \bar{\delta}_j(\lambda)m = |\lambda|^{-\frac{1}{2}} [A^*(\lambda), m]. \]
Some notations and definitions

1. \(A_j(\lambda) = \frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad A^*(\lambda) = -\frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad j = 0, 1, \ldots, n \)

2. \(\delta_j(\lambda)m = |\lambda|^{-\frac{1}{2}} [m, A_j(\lambda)], \quad \bar{\delta}_j(\lambda)m = |\lambda|^{-\frac{1}{2}} [A^*(\lambda), m]. \)

3. \(\delta^\alpha(\lambda) = \delta^\alpha_1(\lambda) \delta^\alpha_2(\lambda) \cdots \delta^\alpha_n(\lambda), \quad \bar{\delta}^\beta(\lambda) = \bar{\delta}^\beta_1(\lambda) \bar{\delta}^\beta_2(\lambda) \cdots \bar{\delta}^\beta_n(\lambda), \)

where \(\alpha, \beta \in \mathbb{N}^n \cup \{0\}. \)
Some notations and definitions

1. $A_j(\lambda) = \frac{\partial}{\partial \xi_j} + |\lambda|\xi_j$, $A^*(\lambda) = -\frac{\partial}{\partial \xi_j} + |\lambda|\xi_j$, $j = 0, 1, \cdots, n$

2. $\delta_j(\lambda)m = |\lambda|^{-\frac{1}{2}}[m, A_j(\lambda)]$, $\bar{\delta}_j(\lambda)m = |\lambda|^{-\frac{1}{2}}[A^*(\lambda), m]$.

3. $\delta^\alpha(\lambda) = \delta_1^{\alpha_1}(\lambda)\delta_2^{\alpha_2}(\lambda)\cdots\delta_n^{\alpha_n}(\lambda)$, $\bar{\delta}^\beta(\lambda) = \bar{\delta}_1^{\beta_1}(\lambda)\bar{\delta}_2^{\beta_2}(\lambda)\cdots\bar{\delta}_n^{\beta_n}(\lambda)$,

where $\alpha, \beta \in \mathbb{N}^n \cup \{0\}$.

4. We say that an operator $S \in B(L^2(\mathbb{R}^n))$ is of class C^k if $\delta^\alpha(\lambda)\bar{\delta}^\beta(\lambda)S \in B(L^2(\mathbb{R}^n))$ for all $\alpha, \beta \in \mathbb{N}^n$ such that $|\alpha| + |\beta| \leq k$.

Sayan Bagchi

Fourier multipliers on H^n
Some notations and definitions

1. \(A_j(\lambda) = \frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad A^*(\lambda) = -\frac{\partial}{\partial \xi_j} + |\lambda| \xi_j, \quad j = 0, 1, \ldots, n \)

2. \(\delta_j(\lambda)m = |\lambda|^{-\frac{1}{2}}[m, A_j(\lambda)], \quad \bar{\delta}_j(\lambda)m = |\lambda|^{-\frac{1}{2}}[A^*(\lambda), m]. \)

3. \(\delta^\alpha(\lambda) = \delta_1^{\alpha_1}(\lambda)\delta_2^{\alpha_2}(\lambda)\ldots\delta_n^{\alpha_n}(\lambda), \quad \bar{\delta}^\beta(\lambda) = \bar{\delta}_1^{\beta_1}(\lambda)\bar{\delta}_2^{\beta_2}(\lambda)\ldots\bar{\delta}_n^{\beta_n}(\lambda), \)

where \(\alpha, \beta \in \mathbb{N}^n \cup \{0\}. \)

4. We say that an operator \(S \in B(L^2(\mathbb{R}^n)) \) is of class \(C^k \) if \(\delta^\alpha(\lambda)\bar{\delta}^\beta(\lambda)S \in B(L^2(\mathbb{R}^n)) \) for all \(\alpha, \beta \in \mathbb{N}^n \) such that \(|\alpha| + |\beta| \leq k. \)

5. \(\chi_k(\lambda) = \sum_{2^{k-1} \leq 2j + n < 2^k} P_j^\lambda \)

where \(P_j^\lambda \) are the projections onto the eigen space corresponding to the eigenvalue \((2j + n)|\lambda| \) of the scaled Hermite operator \(H(\lambda) = -\Delta + |\lambda|^2|\chi|^2. \)
Theorem (Mauceri; J.Func. Anal; 1980)

Let $m \in B(L^2(\mathbb{R}^n))$ be an operator of class C^{n+1} which satisfies the following conditions: For all $\alpha, \beta \in \mathbb{N}^n$, $|\alpha| + |\beta| \leq n + 1$

$$
\sup_{k \in \mathbb{N}^n} 2^k(|\alpha|+|\beta|-n)\|\left(\delta^\alpha(\lambda)\bar{\delta}^\beta(\lambda)m\right)\chi_k(\lambda)\|_{HS}^2 \leq C.
$$

Then the Weyl multiplier T^λ_m is bounded on $L^p(\mathbb{C}^n)$, $1 < p \leq 2$ and is of weak type $(1, 1)$.
Theorem (Mauceri; J.Func. Anal; 1980)

Let \(m \in B(L^2(\mathbb{R}^n)) \) be an operator of class \(C^{n+1} \) which satisfies the following conditions: For all \(\alpha, \beta \in \mathbb{N}^n, |\alpha| + |\beta| \leq n + 1 \)

\[
\sup_{k \in \mathbb{N}^n} 2^k(|\alpha| + |\beta| - n) \left\| (\delta^\alpha(\lambda) \bar{\delta}^\beta(\lambda)m) \chi_k(\lambda) \right\|^2_{HS} \leq C.
\]

Then the Weyl multiplier \(T^\lambda_m \) is bounded on \(L^p(\mathbb{C}^n), 1 < p \leq 2 \) and is of weak type \((1,1)\). If the above assumption is replaced by

\[
\sup_{k \in \mathbb{N}^n} 2^k(|\alpha| + |\beta| - n) \left\| \chi_k(\lambda)(\delta^\alpha(\lambda) \bar{\delta}^\beta(\lambda)m) \right\|^2_{HS} \leq C.
\]

Then the Weyl multiplier \(T^\lambda_m \) is bounded on \(L^p(\mathbb{C}^n), 2 \leq p < \infty \).
Theorem (S Bagchi, S Thangavelu, to be appear in J. Anal. Math)

Let \(m \in B(L^2(\mathbb{R}^n)) \) be an operator of class \(\mathcal{C}^{n+1} \) which satisfies the condition

\[
\sup_{k \in \mathbb{N}^n} 2^k(|\alpha|+|\beta|-n) \| (\delta^\alpha(\lambda)\bar{\delta}^\beta(\lambda)m) \chi_k(\lambda) \|_{HS}^2 \leq C .
\]

for all \(\alpha, \beta \in \mathbb{N}^n, |\alpha| + |\beta| \leq n + 1 \). Then the operator \(T^\lambda_m \) bounded on \(L^p(\mathbb{C}^n) \), \(1 < p < \infty \).
Theorem (S Bagchi, S Thangavelu, to be appear in J. Anal. Math)

Let $m \in B(L^2(\mathbb{R}^n))$ be an operator of class C^{n+1} which satisfies the condition

$$\sup_{k \in \mathbb{N}^n} 2^k(|\alpha|+|\beta|-n)\|(\delta^\alpha(\lambda)\bar{\delta}^\beta(\lambda)m)\chi_k(\lambda)\|_{HS}^2 \leq C.$$

for all $\alpha, \beta \in \mathbb{N}^n$, $|\alpha| + |\beta| \leq n + 1$. Then the operator T^λ_m bounded on $L^p(\mathbb{C}^n)$, $1 < p < \infty$. Moreover, T^λ_m satisfies the weighted norm inequality

$$\int_{\mathbb{C}^n} |T^\lambda_m f(z)|^p w(z)dz \leq C(w) \int_{\mathbb{C}^n} |f(z)|^p w(z)dz$$

for all $w \in A_{p/2}(\mathbb{C}^n)$, $2 < p < \infty$.

Sayan Bagchi

Fourier multipliers on H^n
Corollary

Let \(\{ m(\lambda) \in B(L^2(\mathbb{R}^n)) : \lambda \in \mathbb{R}^* \} \) be a family of operators satisfies the following inequality

\[
\sup_{k \in \mathbb{N}^n} 2^k(|\alpha|+|\beta|-n) \| (\delta^\alpha(\lambda)\bar{\delta}^\beta(\lambda)m(\lambda))\chi_k(\lambda) \|_{HS}^2 \leq C.
\]

for all \(\alpha, \beta \in \mathbb{N}^n, |\alpha| + |\beta| \leq n + 1 \). with uniform constant \(C \). Then we have the following vector-valued inequality

\[
\left\| \left(\sum_{i=1}^{n} |T_{m(\lambda_i)}f_i|^2 \right)^{\frac{1}{2}} \right\|_p \leq \left\| \left(\sum_{i=1}^{n} |f_i|^2 \right)^{\frac{1}{2}} \right\|_p
\]

for any choice of \(\lambda_i \in \mathbb{R}^* \) and \(f_j \in L^p(\mathbb{C}^n) \).
Fourier Multipliers on H^n

Definition

Let $M = \{ M(\lambda) \in B(L^2(\mathbb{R}^n)) : \lambda \in \mathbb{R}^* \}$ be a family of operators which are uniformly bounded. Then the operator T_M is defined as follows

\[
(T_Mf)(\lambda) = M(\lambda)\hat{f}(\lambda).
\]

Here \hat{f} stands for the group Fourier transform on the Heisenberg group. Clearly, T_M is certainly bounded on $L^2(H^n)$. If this operator extends to a bounded linear operator on $L^p(H^n)$ then we say that M is a (left) group Fourier multiplier for $L^p(H^n)$.

We can also define right Fourier multiplier for $L^p(H^n)$.
Fourier multipliers were first studied by Mauceri and De-Michele (Michigan. Math. J) for $n = 1$ in 1979.

In 1995, Chin-Chen Lin (Rev. Math. Ibero) generalized their result for higher dimension.

The above result is very complicated and the proof is extremely technical and involves messy calculations.
Fourier multipliers were first studied by Mauceri and De-Michele (Michigan. Math. J) for $n = 1$ in 1979.

In 1995, Chin-Chen Lin (Rev. Math. Ibero) generalized their result for higher dimension.

The above result is very complicated and the proof is extremely technical and involves messy calculations.

When $M(\lambda) = \varphi(H(\lambda))$, $H(\lambda)$ is the scaled Hermite operators on \mathbb{R}^n, the operator T_M becomes $\varphi(\mathcal{L})$, where \mathcal{L} is the sublaplacian of H^n. There are several works on the L^p boundedness of $\varphi(\mathcal{L})$ and the best possible result has been obtained by Muller-Stein (J.Math. Pure. Appl, 1994) and Hebisch (Colloq. Math., 1993).
Notations and Definitions:

- For \(m \in \mathbb{N}^n \). Define

\[
\begin{align*}
 m_i^+ &= \max\{m_i, 0\}, \quad m_i^- = -\min\{m_i, 0\}, \\
 m^+ &= (m_1^+, m_2^+, \ldots, m_n^+), \quad m^- = (m_1^-, m_2^-, \ldots, m_n^-).
\end{align*}
\]
Notations and Definitions:

- For $m \in \bar{\mathbb{N}}^n$. Define
 \[
 m_i^+ = \max\{m_i, 0\}, \quad m_i^- = -\min\{m_i, 0\},
 \]
 \[
 m^+ = (m_1^+, m_2^+, \cdots, m_n^+), \quad m^- = (m_1^-, m_2^-, \cdots, m_n^-).
 \]

- Let $\Phi^\lambda_{\mu}, \mu \in \mathbb{N}^n$, are the scaled Hermite function. For \((\lambda, m, \alpha) \in \mathbb{R}^* \times \mathbb{Z}^n \times \bar{\mathbb{N}}^n\), The partial isometries on $L^2(\mathbb{R}^n)$ can be defined as follows
 \[
 V_\alpha^m(\lambda)\Phi^\lambda_{\mu} = (-1)^{|m^+|}\delta_{\alpha+m^+,\mu}\Phi^\lambda_{\alpha+m^-}, \quad \text{when } \lambda > 0
 \]
 and
 \[
 V_\alpha^m(\lambda) = [V_\alpha^m(-\lambda)]^*, \quad \text{when } \lambda < 0.
 \]
 Here, $\delta_{\alpha,\beta}$ stands for kronecker delta.
If $M(\lambda) = \sum_{m,\alpha} B(\lambda, m, \alpha) V^m_\alpha(\lambda)$, then difference-differential operators are defined as follows: If $m_j \geq 1$,

$$
\Delta_{z_j} M(\lambda) = \left(\sum_{m,\alpha} B(\lambda, m - e_j, \alpha + e_j)(\alpha_j + 1)^{1/2} V^m_\alpha(\lambda) - \sum_{m,\alpha} B(\lambda, m - e_j, \alpha)(\alpha_j + m_j)^{1/2} V^m_\alpha(\lambda) \right),
$$

whereas if $m_j \leq 0$, then

$$
\Delta_{z_j} M(\lambda) = \sum_{m,\alpha} B(\lambda, m - e_j, \alpha - e_j) \alpha_j^{1/2} V^m_\alpha(\lambda) - \sum_{m,\alpha} B(\lambda, m - e_j, \alpha)(\alpha_j - m_j + 1)^{1/2} V^m_\alpha(\lambda).
$$
If $m_j \geq 1$,

$$
\Delta \bar{z}_j M(\lambda) = \left(\sum_{m,\alpha} B(\lambda, m + e_j, \alpha - e_j) \alpha_j^{\frac{1}{2}} V_\alpha^m(\lambda) \right) - \\
\sum_{m,\alpha} B(\lambda, m + e_j, \alpha)(\alpha_j + m_j + 1) \frac{1}{2} V_\alpha^m(\lambda),
$$

whereas if $m_j \leq 0$, then

$$
\Delta \bar{z}_j M(\lambda) = \sum_{m,\alpha} B(\lambda, m + e_j, \alpha + e_j)(\alpha_j + 1) \frac{1}{2} V_\alpha^m(\lambda) - \\
\sum_{m,\alpha} B(\lambda, m + e_j, \alpha)(\alpha_j - m_j) \frac{1}{2} V_\alpha^m(\lambda).
$$
\[\Delta_t M(\lambda) = \sum_{m,\alpha} \frac{\partial}{\partial \lambda} B(\lambda, m, \alpha) V_\alpha^m(\lambda) + \frac{n}{2\lambda} \sum_{m,\alpha} B(\lambda, m, \alpha) V_\alpha^m(\lambda) + \]

\[\frac{1}{2\lambda} \sum_{m,\alpha} \sum_{j=1}^n \sqrt{\alpha_j (\alpha_j + m_j) B(\lambda, m, \alpha - e_j) V_\alpha^m(\lambda)} - \]

\[\frac{1}{2\lambda} \sum_{m,\alpha} \sum_{j=1}^n \sqrt{(\alpha_j + 1)(\alpha_j + m_j + 1) B(\lambda, m, \alpha + e_j) V_\alpha^m(\lambda)} \]
\(\Delta_t M(\lambda) = \sum_{m, \alpha} \frac{\partial}{\partial \lambda} B(\lambda, m, \alpha) V^m_{\alpha}(\lambda) + \frac{n}{2\lambda} \sum_{m, \alpha} B(\lambda, m, \alpha) V^m_{\alpha}(\lambda) + \)

\[
\frac{1}{2\lambda} \sum_{m, \alpha} \sum_{j=1}^n \sqrt{\alpha_j (\alpha_j + m_j) B(\lambda, m, \alpha - e_j) V^m_{\alpha}(\lambda)} -
\]

\[
\frac{1}{2\lambda} \sum_{m, \alpha} \sum_{j=1}^n \sqrt{(\alpha_j + 1)(\alpha_j + m_j + 1) B(\lambda, m, \alpha + e_j) V^m_{\alpha}(\lambda)}
\]

We can define \(\Delta_P \) for any polynomial \(P(z, \bar{z}, t) \) by using the definitions of \(\Delta_z, \Delta_{\bar{z}} \) and \(\Delta_t \).

We say a family of operators \(M = \{ M(\lambda) \in B(L^2(\mathbb{R}^n)) : \lambda \in \mathbb{R}^* \} \) is in class \(C^k \) if \(\Delta_P M(\lambda) \in B(L^2(\mathbb{R}^n)) \) for every monomial \(P \) of degree \(\leq k \).
Theorem

Suppose $k \geq 4\left[\frac{n+5}{4}\right]$. Let M be a family of operators which is in class C^k. Also assume

$$\sup_{\lambda \in \mathbb{R}^*} \|M(\lambda)\| \leq C$$

and

$$\sup_{k>0} 2^{k(\deg P - n - 1)} \int_{-\infty}^{\infty} \|[\Delta_P M(\lambda)] \chi_k(\lambda)\|_{HS}^2 |\lambda|^n d\lambda \leq C$$

for every monomial P with $\deg P \leq 4\left[\frac{n+5}{4}\right]$. Then T_M is L^p bounded for $1 < p < \infty$ and also weak type $(1, 1)$.
A family \(\{ m(\lambda) \in B(L^p(\mathbb{R}^n) : \lambda \in \mathbb{R} \} \) is called R-bounded if

\[
\left\| \left(\sum_{j=1}^{\infty} |m(\lambda_j)f_j|^2 \right)^{1/2} \right\|_p \leq C \left\| \left(\sum_{j=1}^{\infty} |f_j|^2 \right)^{1/2} \right\|_p
\]

for all choices of \(\lambda_j \in \mathbb{R} \) and \(f_j \in L^p(\mathbb{R}^n) \).
A family \(\{ m(\lambda) \in B(L^p(\mathbb{R}^n)) : \lambda \in \mathbb{R} \} \) is called R-bounded if

\[
\| \left(\sum_{j=1}^{\infty} |m(\lambda_j)f_j|^2 \right)^{1/2} \|_p \leq C \| \left(\sum_{j=1}^{\infty} |f_j|^2 \right)^{1/2} \|_p
\]

for all choices of \(\lambda_j \in \mathbb{R} \) and \(f_j \in L^p(\mathbb{R}^n) \).

Theorem (L. Weis)

Let \(m(\lambda) \in B(L^p(\mathbb{R}^n)) \) for each \(\lambda \in \mathbb{R} \). Suppose \(\{ m(\lambda) : \lambda \in \mathbb{R} \} \) and \(\{ \lambda m'(\lambda) : \lambda \in \mathbb{R} \} \) are both R-bounded. Then the operator valued Fourier multiplier \(T_M \) defined by

\[
T_m f(t) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-i\lambda t} m(\lambda) \hat{f}(\lambda) d\lambda
\]

extends to \(L^p(\mathbb{R}, L^p(\mathbb{R}^n)) \) as a bounded operator for all \(1 < p < \infty \).
Let $M = \{ M(\lambda) \in B(L^2(R^n)) : \lambda \in \mathbb{R}^* \}$ be a family of operators. Suppose T_M is the corresponding group Fourier multiplier. Also, let $T^\lambda_M(\lambda)$ be the Weyl multiplier associated to parameter λ and operator $M(\lambda)$. Then one can easily show that

$$T_M f(z, t) = \int_{\mathbb{R}} e^{-i\lambda t} T^\lambda_M f^\lambda(z) d\lambda$$

for any $f \in L^2(H^n)$.

- We have already seen that if each $M(\lambda)$ satisfies Mauceri’s condition with uniform constant then $\{ M(\lambda) : \lambda \in \mathbb{R} \}$ is R-bounded.
Let $M = \{ M(\lambda) \in B(L^2(R^n)) : \lambda \in \mathbb{R}^* \}$ be a family of operators. Suppose T_M is the corresponding group Fourier multiplier. Also, let $T^\lambda_M(\lambda)$ be the Weyl multiplier associated to parameter λ and operator $M(\lambda)$. Then one can easily show that

$$T_M f(z, t) = \int_{\mathbb{R}} e^{-it\lambda} T^\lambda_M f^\lambda(z) d\lambda$$

for any $f \in L^2(H^n)$.

- We have already seen that if each $M(\lambda)$ satisfies Mauceri’s condition with uniform constant then $\{ M(\lambda) : \lambda \in \mathbb{R} \}$ is R-bounded.

- $\{ \lambda M'(\lambda) : \lambda \in \mathbb{R} \}$ may not be R-bounded always. Example: Riesz transforms associated to the scaled Hermite operators.
A new version of Fourier multiplier theorem on \mathcal{H}^n

consider a new operator $\Theta(\lambda)$ defined as follows

$$\Theta(\lambda)m(\lambda) = \frac{d}{d\lambda}m(\lambda) - \frac{1}{2\lambda}[m(\lambda), \xi.\nabla] +$$

$$\frac{1}{2\lambda\sqrt{\lambda}} \sum_{j=1}^{n}(\delta_j(\lambda)m(\lambda)A_j^*(\lambda) + \delta_j^*(\lambda)m(\lambda)A_j(\lambda)).$$

If $g, tg \in L^2(\mathcal{H}^n)$, one can check that $(\hat{itg})(\lambda) = \Theta(\lambda)\hat{g}(\lambda)$.
A new version of Fourier multiplier theorem on \mathcal{H}^n

Consider a new operator $\Theta(\lambda)$ defined as follows

$$\Theta(\lambda)m(\lambda) = \frac{d}{d\lambda} m(\lambda) - \frac{1}{2\lambda} [m(\lambda), \xi. \nabla] + \frac{1}{2\lambda \sqrt{\lambda}} \sum_{j=1}^{n} (\delta_j(\lambda)m(\lambda)A^*_j(\lambda) + \delta^*_j(\lambda)m(\lambda)A_j(\lambda)).$$

If $g, tg \in L^2(\mathcal{H}^n)$, one can check that $\widehat{(itg)}(\lambda) = \Theta(\lambda)\hat{g}(\lambda)$.

An operator-valued function $M : \mathbb{R} \setminus \{0\} \rightarrow B(L^2(\mathbb{R}^n))$ is said to be in $E^k(\mathbb{R} \setminus \{0\})$ if $\delta^\alpha(\lambda)\delta^\beta(\lambda)\Theta^s(\lambda)$ are in $B(L^2(\mathbb{R}^n))$ for all $|\alpha| + |\beta| + 2s \leq k$ and $\lambda \in \mathbb{R} \setminus \{0\}$.
Theorem (SB)

Let \(M \) be an operator-valued function which belongs to \(E^k(\mathbb{R} \setminus \{0\}) \), \(k \geq 2\left[\frac{n+3}{2}\right] \). Also, assume

\[
\sup_{\lambda \in \mathbb{R}\setminus\{0\}} \| M(\lambda) \| \leq C.
\]

If \(M \) satisfies

\[
\sup_{N > 0} 2^N (l-n-1) \int_{-\infty}^{\infty} \| \lambda - \frac{\alpha + \beta}{2} \delta^\alpha(\lambda) \delta^\beta(\lambda) \Theta^s(\lambda) M(\lambda) \chi_N(\lambda) \|_{HS}^2 |\lambda|^n d\lambda \leq C
\]

for all \(\alpha, \beta \in \mathbb{N}^n \), \(s \in \mathbb{N} \) satisfying \(|\alpha| + |\beta| + 2s = l \leq 2\left[\frac{n+3}{2}\right] \),

then \(T_M \) is weak type \((1,1)\) and bounded for \(1 < p < \infty \).
Theorem (SB)

Let M be an operator-valued function which belongs to $E^k(\mathbb{R} \setminus \{0\})$, $k \geq 2\left[\frac{n+3}{2}\right]$. Also, assume

$$\sup_{\lambda \in \mathbb{R} \setminus \{0\}} \|M(\lambda)\| \leq C.$$

If M satisfies

$$\sup_{N>0} 2^{N(l-n-1)} \int_{-\infty}^{\infty} \|\lambda - \frac{\alpha + \beta}{2} \delta^\alpha(\lambda) \overline{\delta^\beta(\lambda) \Theta^s(\lambda)} M(\lambda) \chi_N(\lambda)\|^2_{HS} |\lambda|^n d\lambda \leq C$$

for all $\alpha, \beta \in \mathbb{N}^n$, $s \in \mathbb{N}$ satisfying $|\alpha| + |\beta| + 2s = l \leq 2\left[\frac{n+3}{2}\right]$, then T_M is weak type $(1, 1)$ and bounded for $1 < p < \infty$. Also,

$$\|T_M f\|_{L^p(w)} \leq C[w]^{\max\{1, \frac{1}{p-2}\}} \|f\|_{L^p(w)}$$

for all $w \in A_p^2(H^n)$, $2 < p < \infty$.

Sayan Bagchi
Fourier multipliers on H^n
Thank you