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Fourier multipliers on R”

Given a bounded measurable function m(§) on R” we can define a
transformation T, by setting

—

(Tmf)(€) = m(OF(),  fe PR

By Plancherel theorem, T, is bounded operator on L?(R").
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Fourier multipliers on R”

Given a bounded measurable function m(§) on R” we can define a
transformation T, by setting

—

(Tmf)(€) = m(OF(),  fe PR

By Plancherel theorem, T, is bounded operator on L?(R").

Definition (Fourier multiplier)

When T, extends to LP(R") as a bounded operator we say that m
(or equivalently T,,) is a Fourier multiplier for LP(R").
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Theorem (Hormander’s multiplier theorem)

Let k = [4] + 1 and m be of class CX away from the origin. If for
any € N" satisfying || < k

1

sup RIA1-3 ( / \Dﬁm@)rzmqg<2R}(s)df)2 < o0,
R Rn

then m is a Fourier multiplier for LP(R") for 1 < p < co. In
particular, if
D m(€)] < Cle|~7!,

then m is an LP-multiplier, 1 < p < co.
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Heisenberg group

Let us consider the Heisenberg group H” = C" x R equipped with
the group operation

(z,t)(w,s) = (z+w,t+s+ é%z.v_v).

H" is a two-step nilpotent Lie group whose center is
{(0,t) : t € R}.
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Heisenberg group

Let us consider the Heisenberg group H” = C" x R equipped with
the group operation

(z,t)(w,s) = (z+w,t+s+ é%‘z.v_v).
H" is a two-step nilpotent Lie group whose center is
{(0,t) : t € R}.

Schodinger representation:
For each A € R\ {0}, define

(2, £)9(§) = et Ig(¢ 1 y)

where ¢ € L?(R") and (z,t) = (x + iy, t) € H".
Notation: m)(z) := mx(z,0).
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Group Fourier Transform

Definition

The group Fourier transform of a function f € LY(H") is given by

f(A) = / f(z,t)ma(z, t)dzdt.

If £2(z) = [ f(z, t)e*dt, then the group fourier transform can
be written as

0= [ PEm@aeE
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Weyl Transform

Definition
Weyl transform of a function f on L*(C") in the following way:

WA(F) = / mE)dE

We have the following relation between group Fourier transform on
the Heisenberg group and Weyl Transform

F(N) = WA(FY), £ e L} (H").
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Plancherel theorems

Notation: S:= Hilbert space of Hilbert-Schmidt operators on
L?(R™) with the inner product (T,S) = tr(TS*).
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Plancherel theorems

Notation: S:= Hilbert space of Hilbert-Schmidt operators on
L?(R™) with the inner product (T,S) = tr(TS*).

Plancherel Theorem for Weyl Transform:

For a given g € L1 N L2(C"), it can be shown that W)(g) is a
Hilbert-Schmidt operator satisfying

lgllz2 = (2m)" A" Wa(&)l s

In fact the map g — W, (g) can be extended as an isometric
isomorphism from L2(C") to Sy, the space of all Hilbert-Schmidt
operators on L?(R").
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Plancherel theorems

Notation: S:= Hilbert space of Hilbert-Schmidt operators on
L?(R™) with the inner product (T,S) = tr(TS*).

Plancherel Theorem for Weyl Transform:

For a given g € L1 N L2(C"), it can be shown that W)(g) is a
Hilbert-Schmidt operator satisfying

lgllz2 = (2m)" A" Wa(&)l s

In fact the map g — W, (g) can be extended as an isometric
isomorphism from L2(C") to Sy, the space of all Hilbert-Schmidt
operators on L?(R").
Plancherel Theorem for group Fourier Transform:
For any given f € L1 N [2(H") and for any X € R*, f(\) is also a
Hilbert-Schmidt operator. The map f — f()\) extends as an
isometric isomorphism from L2(H") to L?(R*, Sy, (27) " 1|A|"d)\)
and the Plancherel theorem can be read as

1By = e [ IFOV sl
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Definition (Weyl multipliers)

Given a bounded linear operator m on L>(R") we can define an
operator T}, on L(C") by

WA(Tf) = mW(f)

which is certainly bounded on L?(C"). If this operator extends to a
bounded linear operator on LP(C") then we say that m is a (left)
Weyl multiplier for LP(C").

We can also define right Weyl multipliers.
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Some notations and definitions

Q@ A\ = % +AE, AN = —% + A&, j=0,1,---,
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Some notations and definitions
g A = g5 + Mg, AN =g + g, j=01,---,

5(Nm = A2 [m AV, G0 = (AT AT(V), m].
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Some notations and definitions
g Ai(A) = ‘d% + Ng,  A*(N) = —0%_ +N&, j=0,1,---,n

5(Nm = A2 [m AV, G0 = (AT AT(V), m].
o

0%(A) = 571 (N3 (N)--05m(N), - 67 (N) = O (N2 (N0 (),
where o, 8 € N" U {0}.
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Some notations and definitions
(2]

5(Nm = A2 [m AV, G0 = (AT AT(V), m].

o
0(N) = (N7 (V)05 (V), - 8P(N) = 57 (N)5" (A).-.3, (%),
where o, 8 € N" U {0}.
@ We say that an operator S € B(L?(R™)) is of class C* if
54N (N)S € B(L*(R")) for all a, B € N" such that
o + 18] < k.
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Some notations and definitions
Q A(N) = ‘d% + Mg, A*(N) = _a%- +N¢, j=0,1,---,n
(2]

5(Nm = A2 [m AV, G0 = (AT AT(V), m].

(3 )
3%(A) = 871 (NIS2(N)...097(N),  62(A) = 87 (A\)B52(N)...80 (M),

where o, 8 € N" U {0}.

@ We say that an operator S € B(L?(R")) is of class CX if
5°(A)67(N)S € B(L*(IR™)) for all o, 3 € N" such that
o + 18] < k.

o

Xk()‘) = Z PJ)\
2k=1<2j+n<2k
where PJ-)‘ are the projections onto the eigen space
corresponding to the eigenvalue (2j + n)|\| of the scaled
Hermite operator H(\) = —A + |\[?|x|2.
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Theorem (Mauceri; J.Func. Anal; 1980)
Let m € B(L?(R™)) be an operator of class C"** which satisfies
the following conditions: For all o, 3 € N |a| + 3] < n+1

sup 2KUelFHIB1=m)| (54N (X\)m)xu(N)| %5 < C .
keNn

Then the Weyl multiplier T\ is bounded on LP(C"),1 < p < 2 and
is of weak type (1,1).
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Theorem (Mauceri; J.Func. Anal; 1980)

Let m € B(L?(R™)) be an operator of class C"** which satisfies
the following conditions: For all ., 3 € N" || + |5| < n+1

sup 2512 H1B1=m) | (52(X)FB (\)m)xk (V)] |35 < C
keNn

Then the Weyl multiplier T\ is bounded on LP(C"),1 < p < 2 and
is of weak type (1,1). If the above assumption is replaced by

sup 2KUHZ=M | (A (8 (NE N m)lIfys < C -
6 n

Then the Weyl multiplier T}, is bounded on LP(C"),2 < p < co.

V.
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Theorem (S Bagchi, S Thangavelu, to be appear in J. Anal. Math)

Let m € B(L?(R™)) be an operator of class C" "' which satisfies
the condition

sup 2KUeHIBI=m) | (52(X) 5P (AN m)x i (M)][s < C .
keN?

for all i, 3 € N" |a| + 3| < n+ 1. Then the operator T}\ bounded
on LP(C"), 1 < p < 0.
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Theorem (S Bagchi, S Thangavelu, to be appear in J. Anal. Math)

Let m € B(L?(R™)) be an operator of class C" "' which satisfies
the condition

sup 2KUeHIBI=m) | (52(X) 5P (AN m)x i (M)][s < C .
keN?

for all i, 3 € N" |a| + 3| < n+ 1. Then the operator T}\ bounded
on LP(C"), 1 < p < co.Moreover, T} satisfies the weighted norm
inequality

/ | Taf(2)Pw(z)dz < C(w) [ |f(2)[Pw(z)dz
cn (o

for all w € A,/»(C"),2 < p < c0.
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Corollary

Let {m()\) € B(L?(R")) : A € R*} be a family of operators
satisfies the following inequality

sup 2KUeHFIB=M 1 (5%(0)82 (A ) m(N))xk (V) I[s < C
keNn

for all o, B € N || + | 8| < n+ 1. with uniform constant C. Then
we have the following vector-valued inequality

1 1
|| (D o ) o< (ZW) P
i=1

for any choice of \; € R* and f; € LP(C").
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Fourier Multipliers on H"

Definition
Let M = {M()\) € B(L?>(R™)) : A € R*} be a family of operators
which are uniformly bounded. Then the operator Ty, is defined as

follows .
(Tmf)(N) = MOAF(N).

Here f stands for the group Fourier transform on the Heisenberg
group. Clearly, Ty is certainly bounded on L?(H"). If this
operator extends to a bounded linear operator on LP(H") then we
say that M is a (left) group Fourier multiplier for LP(H").

We can also define right Fourier multiplier for LP(H").

Sayan Bagchi Fourier multipliers on H"



o Fourier multipliers were first studied by Mauceri and
De-Michele (Michigan. Math .J)for n =1 in 1979.

@ In 1995, Chin-Chen Lin (Rev. Math. Ibero)generalized their
result for higher dimension.

@ The above result is very complicated and the proof is
extremely technical and involves messy calculations.
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Fourier multipliers were first studied by Mauceri and
De-Michele (Michigan. Math .J)for n =1 in 1979.

In 1995, Chin-Chen Lin (Rev. Math. Ibero)generalized their
result for higher dimension.

The above result is very complicated and the proof is
extremely technical and involves messy calculations.

When M(X) = ¢(H(X)), H(X) is the scaled Hermite operators
on R", the operator Ty becomes ¢(L), where L is the
sublaplacian of H". There are several works on the LP
boundedness of (L) and the best possible result has been
obtained by Muller-Stein (J.Math. Pure. Appl, 1994) and
Hebisch ( Collog. Math., 1993).
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Notations and Definitions:

e For m € N". Define

m = max{m;,0},  m; = —min{m;,0},
m+:(mf,m;“,---,m;r), m*:(m1_7m2_,.--7m;),
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Notations and Definitions:

e For m € N". Define

mf = max{m;,0}, m; = —min{m;,0},

m+:(mi~_’m;=""mn+)v m*:(m1_7m2_,.--7m;),

o Let <I>;\L, 1 € N are the scaled Hermite function. For
(A, m,a) € R* x Z" x N", The partial isometries on L?(R")
can be defined as follows

VIS = (1) 150 e, @2, when A >0

67

and
V(A = [V (=N)], when A <0.

Here, 0, 3 stands for kronecker delta.
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If M(A) =3 .0 BOX, m ) V(A), then difference-differential
operators are defined as follows: If m; > 1,

AMO) = (3" B, m— e, a+ ¢)(a; +1)2 V(N

3" B\, m— g, a)(a; + mj)zVI(N),

whereas if m; <0, then

1

AZzM(N) =D B\, m—ej,a—¢)a? VI(\)-
m,x

[0}

3" B m— ¢, a)(a; — mj +1)2V/"(A).

)
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If mj Z 1,

1
AzM(N) = (O B m+ e, — g)a? VI(N)—

3B m+ g, a)(ay + mj +1)2VI(N),

m,«x

whereas if m; <0, then

AzM(ON) =Y B, m+ e, a+ ¢)(aj +1)2 VI(N) -

m,«x

3" B\, m+ e, a)(a — mj)2 V().
m,o

Sayan Bagchi Fourier multipliers on H"



m,c 2 m,o
1 n -
522: aj(aj + mj)B(A, m, o — ) VI (N)—
m,c j:l

% > \/(O‘J +1)(ej + mj + 1)B(A\, m,a + &) V(N

ma j=1
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0 n

AM(O) =D ST BOLm a) V(N + o5 > B m,a) VI (M) +
1 ¢ m
o\ ;; Veulag + mp)B(A, m,a — e) VT (M) —

% > \/(af +1)(ej + mj + 1)B(A\, m,a + &) V(N

ma j=1

We can define Ap for any polynomial P(z,z,t) by using the
definitions of A,, Az and A;.

We say a family of operators M = {M()\) € B(L2(R")) : A € R*}
is in class Ck if ApM()\) € B(L?(R™)) for every monomial P of
degree < k
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Theorem

Suppose k > 4[%5]. Let M be a family of operators which is in
class Ck. Also assume

sup [M(A)| < €
AER*

and

iug2k(degp_”_”/ IIAPMON)]xk(M s IA"dA < €
> —0o0

for every monomial P with degP < 4["+2]. Then Ty is LP
bounded for 1 < p < oo and also weak type (1,1).
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A approach using L. Weis's theorem

A family {m(\) € B(LP(R") : A € R} is called R-bounded if

- 1/2 - 1/2
| (Zm(kj)f) lp < Cl (ZV) lp
j=1 j=1

for all choices of A\; € R and f; € LP(R").
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A approach using L. Weis's theorem

A family {m(\) € B(LP(R") : A € R} is called R-bounded if

- 1/2 - 1/2
| (Zm(kj)f) lp < Cl (ZV) lp
j=1 j=1

for all choices of \; € R and f; € LP(R").

Theorem (L. Weis)

Let m(\) € B(LP(R™)) for each A € R. Suppose {m(\) : A € R}
and {\m'(\) : A € R} are both R-bounded. Then the operator
valued Fourier multiplier Ty, defined by

Tmf(t) = (2m)71/2 /OO e M m(A)F(N)dA

—00

extends to LP(R, LP(R")) as a bounded operator for all 1 < p < cc.
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Let M = {M()\) € B(L?(R™)) : A € R*} be a family of operators.
Suppose Ty is the corresponding group Fourier multiplier. Also,
let T,\’\ﬂ()\) be the Weyl multiplier associated to parameter A and
operator M(\). Then one can easily show that

Tmf(z,t) = / e M TR (2)dA
JR
for any f € L2(H™).
@ We have already seen that if each M(\) satisfies Mauceri's
condition with uniform constant then {M(\) : A € R} is
R-bounded.

Sayan Bagchi Fourier multipliers on H"



Let M = {M()\) € B(L?(R™)) : A € R*} be a family of operators.
Suppose Ty is the corresponding group Fourier multiplier. Also,
let T,\’\ﬂ()\) be the Weyl multiplier associated to parameter A and
operator M(\). Then one can easily show that

Tmf(z,t) = / e M TR (2)dA
JR
for any f € L2(H™).
@ We have already seen that if each M(\) satisfies Mauceri's
condition with uniform constant then {M(\) : A € R} is
R-bounded.

o {AM'(X) : A € R} may not be R-bounded always. Example:
Riesz transforms associated to the scaled Hermite operators.
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A new version of Fourier multiplier theorem on H"

consider a new operator ©(\) defined as follows

O(A)m(A) = —m(A) — 5 [m(A), &.V]+

2A\F Z

If g,tg € L2(H"), one can check that (Eg?)()\) =0(N\)E(N).
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A new version of Fourier multiplier theorem on H"

consider a new operator ©(\) defined as follows

O(A)m(A) = —m(A) — 5 [m(A), &.V]+

2A\F Z

If g, tg € L2(H"), one can check that (Eg?)()\) =0O(N\)g(N).

An operator-valued function M : R\ {0} — B(L?(R")) is said to
be in EX(R\ {0}) if §%(\)0%(N\)©%()) are in B(L2(R™)) for all
la| 4+ |8 +2s < k and XA € R\ {0}.
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Theorem (SB)

Let M be an operator-valued function which belongs to
EX(R\ {0}), k > 2[2£3]. Also, assume

sup [|[M(N)| < C.
ACR\{0}

If M satisfies

- @59 < s n
sup 2N(l_"_1)/ IA~%2 69(\)FP(N)O(A M) xn (V)| 25 |A"dA

N>0 —00

<C

for all o, 3 € N, s € N satisfying |a| + 3| +2s = | < 2[23],
then Ty is weak type (1,1) and bounded for 1 < p < oo.
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Theorem (SB)

Let M be an operator-valued function which belongs to
EX(R\ {0}), k > 2[2£3]. Also, assume

sup [|[M(N)| < C.
ACR\{0}

If M satisfies

sup 2N('_"_1)/ A5 82 ()P (VO (M) xn (V)35 IAI"dA
N>0 —00

<C

for all o, 3 € N, s € N satisfying |a| + 3| +2s = | < 2[23],
then Ty is weak type (1,1) and bounded for 1 < p < co. Also,

max .i
I Tarf llrqwy < CIWI™ 52 £ 1o

for all w € Ag(H”), 2< p<oo.
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Thank you
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